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Abstract

Background: Functional similarity between molecules results in similar phenotypes, such as diseases. Therefore, it is
an effective way to reveal the function of molecules based on their induced diseases. However, the lack of a tool
for obtaining the similarity score of pair-wise disease sets (SSDS) limits this type of application.

Results: Here, we introduce DisSetSim, an online system to solve this problem in this article. Five state-of-the-art methods
involving Resnik’s, Lin’s, Wang’s, PSB, and SemFunSim methods were implemented to measure the similarity score of pair-
wise diseases (SSD) first. And then “pair-wise-best pairs-average” (PWBPA) method was implemented to calculated the
SSDS by the SSD. The system was applied for calculating the functional similarity of miRNAs based on their induced
disease sets. The results were further used to predict potential disease-miRNA relationships.

Conclusions: The high area under the receiver operating characteristic curve AUC (0.9296) based on leave-one-out cross
validation shows that the PWBPA method achieves a high true positive rate and a low false positive rate. The system can
be accessed from http://www.bio-annotation.cn:8080/DisSetSim/.

Keywords: Functional similarity, Similarity score, Disease sets, Disease-miRNA relationships

Background
The similarity of pair-wise disease sets (SDS) has drawn
more and more attention in identifying functional similar-
ity of the disease-caused molecules [1], predicting poten-
tial relationships between diseases and molecules [2–8],
and so on. In previous studies, Wang et al. utilized the
SDS to construct a human miRNA functional similarity
network (MFSN) [1]. And Sun et al. used the SDS to
predict novel disease lncRNA relationships [9].
The performance of calculating the SDS is mainly

based on the method for computing the similarity of
pair-wise diseases (SD). Currently, seven state-of-art
methods involving Resnik’s [10], Lin’s [11], Wang’s [12],
process-similarity based (PSB) [13], SemFunSim [14],
ILNCSIM [15], and FMLNCSIM [16] methods were

frequently used for computing the SD. Among these
methods, Resnik’s [10], Lin’s [11], and Wang’s methods
[12] are designed earlier for Gene Ontology (GO) [8,
17]. And these methods were introduced for calculating
the SD by DOSim [18] and DisSim [19]. Resnik’s and
Lin’s methods [10, 11] are based on information content
(IC) for computing similarity between terms of ontology.
And Wang’s method [12] is based on the hierarchical
structure of the ontology. PSB and SemFunSim methods
are newly developed for Disease Ontology (DO) [20].
PSB method [13] utilized the association of biological
process between genes to calculate disease similarity. In
comparison, SemFunSim method [14] considered more
types of the functional associations including protein-
protein interaction [21], human mRNA co-expression
[22], and so on.
Resources for calculating the similarity score of pair-

wise diseases (SSD) mainly includes the vocabularies of
diseases and disease-related genes. The frequently used
disease vocabularies contain Online Mendelian Inherit-
ance in Man (OMIM) [23], Medical Subject Headings
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(MeSH) [24], and DO [20]. OMIM records the names of
genetic disorders without providing semantic associations
between them. MeSH provides a hierarchy of terms in
biomedical domain. It contains 16 categories, of which
only C and F03 involve disease names. In comparison with
OMIM and MeSH, DO has been established around the
concept of disease, and it aims to provide a clear definition
for each disease. The disease-related genes are scattered in
the databases, such as Gene Reference into Function
(GeneRIF) [25], OMIM [23], Genetic Association
Database (GAD) [26] and Comparative Toxicogenomics
Database (CTD) [27]. It is better to use relationships of all
of these databases.
“pair-wise-all pairs-maximum” (PWAPM) method and

“pair-wise-best pairs-average” (PWBPA) method are
optional for calculating similarity of pair-wise term sets
[28]. For comparing multiple aspects, the best measure
is the PWBPA method, which is widely utilized in calcu-
lating similarity of DO and GO term sets [1, 7, 9, 12].
Although DOSim [18] and DisSim [19] implemented

the disease similarity methods in R package and web
interface, no tools provided the function to calculate the
similarity score of pair-wise disease sets (SSDS)
currently. In this article, we designed and implemented
an online tool DisSetSim to calculate the SSDS. Five
state-of-art disease similarity methods (Resnik’s, Lin’s,
Wang’s, PSB, and SemFunSim) and the PWBPA method
was implemented in the tool. The system is freely avail-
able at http://www.bio-annotation.cn:8080/DisSetSim/.

Methods
Date sources
Data sets of DisSetSim are from open source databases, and
they are listed in Table 1. DO [20] records disease names. It
provides terms for calculating disease similarity. GeneRIF
[25], OMIM [23], GAD [26] and CTD [27] are manually
curated databases of disease-related genes. All of diseases in
these databases are mapped to terms in DO based on SIDD
[29]. GO annotation (GOA) [30] includes functional anno-
tation of genes. HumanNet is the gene functional network
of human. In addition, HMDD v2.0 [31] contains disease-

related miRNAs, diseases of which were manually mapped
to terms in DO by OAHG [32].

Methods for calculating similarity score of pair-wise
diseases
Five state-of-art methods involving Resnik’s [10], Lin’s
[11], Wang’s [12], PSB [13], and SemFunSim methods
[14] have been implemented for calculating the SSD.
Resnik’s and Lin’s methods are based on IC. The IC of

a disease t is described as Eq. 1:

IC tð Þ ¼ −log2
nt
N

; ð1Þ

where N is the total number of genes annotated by
diseases, and nt is the number of genes annotated by t.
Assuming t1 and t2 are two diseases, the similarity of
them is defined by Resnik as following [10]:

SimResnik t1; ; t2ð Þ ¼ IC tMICAð Þ; ð2Þ
where tMICA is the most informative common ancestor
(MICA) of t1 and t2. Lin defines the similarity of t1 and
t2 as Eq. 3 [11]:

SimLin t1; ; t2ð Þ ¼ 2⋅IC tMICAð Þ
IC t1ð Þ þ IC t2ð Þ : ð3Þ

Assuming T1 is the set involving t1 and all of its ances-
tor terms of ontology. Semantic contribution of term t
to t1 is represented as following:

St1 tð Þ ¼ 1 t ¼ t1

St1 tð Þ ¼ max w⋅St1 t
0� � j t 0∈T 1

� �
t≠t1

(
;

ð4Þ
where w is the contribution factor of each semantic
relationship. According to Wang et al. [1], w is defined
as 0.5 for ‘IS_A’ relationship of DO [20]. Then, all the
semantic contributions of T1 to t1 is SV(t1), which is
defined as following:

SV t1ð Þ ¼
X
t∈T1

St1 tð Þ: ð5Þ

Assuming T2 is the set involving t2 and all of its ances-
tor terms, the similarity between t1 and t2 is defined as
following by Wang’s method [12]:

SimWang t1; t2ð Þ ¼

X
t∈T 1∩T 2

St1 tð Þ þ St2 tð Þð Þ

SV t1ð Þ þ SV t2ð Þ : ð6Þ

Assuming t1 and t2 can be related with m and n bio-
logical processes of GO based on hypergeometric test,
respectively, the similarity of t1 and t2 is defined by the
PSB method as following:

Table 1 Data sources

Data source Web site

DO http://disease-ontology.org/

CTD http://ctdbase.org/

GeneRIF http://www.ncbi.nlm.nih.gov/gene/about-generif

GAD https://geneticassociationdb.nih.gov/

OMIM http://www.omim.org/

GO & GOA http://www.geneontology.org

HumanNet http://www.functionalnet.org/humannet/

OAHG bio-annotation.cn/OAHG/
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SimPSB t1; t2ð Þ ¼ 1
2

Xm
i¼1

max
1≤j≤n

Sim p1i; p2j
� �� �

m

0
BBB@

þ

Xn
j¼1

max
1≤i≤m

Sim p2j; p1i
� �� �

n

1
CCCCA

ð7Þ
where p1i and p2j is the ith and jth significant related
biological process terms of t1 and t2, respectively.
Sim(p1i, p2j) represents similarity between two processes
p1i and p2j, which is defined as Eq. 8:

Sim p1; p2ð Þ ¼ 1
2
⋅ ICGO p1ð Þ þ ICGO p2ð Þð Þ⋅ n p1∩p2ð Þ

n p1∪p2ð Þ ⋅
ICGO p1ð Þ
Max ICGOð Þ

⋅
ICDO p1ð Þ
Max ICDOð Þ ⋅

ICGO p2ð Þ
Max ICGOð Þ ⋅

ICDO p2ð Þ
Max ICDOð Þ ;

ð8Þ
where ICGO and ICDO represent IC based on GO and
DO, respectively. n(p1 ∩p2) and n(p1 ∪p2) denote the
number of common genes of p1 and p2, and the number
of total genes of p1 and p2, respectively.
Assuming G1 and G2 represent related gene sets of t1

and t2, respectively. Then, the similarity of t1 and t2 by
the SemFunSim method can be described as following:

SimSemFunSim t1;t2ð Þ¼
Xm
i¼1

max
1≤j≤n

Sim g1i; g2j
� �� �

þ
Xn
j¼1

max
1≤i≤m

Sim g2j; g1i
� �� �

mþn

⋅
m

∣GMICA∣
⋅

n
∣GMICA∣

ð9Þ
where |GMICA| represents the number of genes in
GMICA. m and n denote the number of genes in G1 and
G2, respectively. Sim(g1i, g2j) is the functional similarity
score between genes g1i and g2j, which could be obtained
from HumanNet [33].

Method for calculating similarity score of pair-wise dis-
ease sets
The PWBPA method was utilized for calculating the
SSDS. The similarity of two disease sets T1 and T2 is de-
fined as following:

PWBPA T1;T2ð Þ ¼ PN
i¼0

max
0<j≤M

Sim ti; tj
� �þPM

j¼0
max
0<i≤N

Sim tj; ti
� �

N þM
;

ð10Þ
where T1 and T2 contains N and M diseases,

respectively. ti and tj represents ith and jth terms of T1

and T2, respectively.

Predicting potential association between diseases and
miRNAs
Functional similarity between miRNAs could be calcu-
lated based on their related disease sets. Similarities of
each pair-wise miRNAs are utilized to establish a MFSN.
Node of the network represents miRNA. Weight of edge
is the functional similarity score. Then, disease-related
miRNAs were prioritized using the network ranking
algorithm named random walk with restart (RWR) [7].
The random walker starts on one or several seed

nodes and then randomly transits to neighboring nodes
considering the probabilities of the edges between the
two nodes. And the probability to return to the seed
nodes is supposed as γ. Then, RWR algorithm can be
defined as following:

Ptþ1 ¼ γP0 þ 1−γð ÞAPt ð11Þ

where P0 denotes the initial probability vector, Pt is a
vector in which the ith element represents the probabil-
ity of finding the walker at node i and step t, A is the
column-normalized adjacency matrix of the network.
The algorithm was performed until the difference
between Pt and Pt+1 falling below 10−10, which means all
the nodes become stable.
In this study, the known miRNAs of a disease were

considered as seed nodes. The unknown miRNAs of it
could be scored based on RWR on the MFSN. After
ranking the miRNAs based on the scores, disease-related
miRNAs could be prioritized.

Implementation
DisSetSim has been implemented on a JavaEE framework
and run on the web server (2-core (2.26 GHz) proces-
sors) of Ucloud [34]. The four-layer architecture involv-
ing DATABASE, ALGORITHM, TOOLS, and VIEW
layer is shown in Fig. 1 The detailed description of the
architecture is fixed as following.
(1) DATABASE layer. This layer stores DO, disease-

related genes, and functional associations between genes.
These are exploited by ALGORITHM layer for calculat-
ing the similarity between disease sets.
(2) ALGORITHM layer. Five algorithms of measuring

the similarity between DO terms have been imple-
mented, which include Resnik’s, Lin’s, Wang’s, PSB, and
SemFunSim methods. And the method named PWBPA
for calculating the SSDS were also implemented.
(3) TOOL layer. Two tools including PairSim and

BatchSim have been provided for exploring the SSDS.
PairSim calculates the similarity for a given pair of
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disease sets, and BatchSim computes similarity between
each pair of multiple disease sets.
(4) VIEW layer. Web pages are provided for viewing the

results. It shows the similarity of pair-wise disease sets.

Results
Web interface
DisSetSim provides two tools PairSim and BatchSim for
querying the SSDS. The details about the usage of these
two tools are described as follows.

The usage of PairSim
Figure 2a shows a case for searching the similarity score
of a given pair of disease sets. The web page for input-
ting disease sets is http://www.bio-annotation.cn:8080/
DisSetSim/ basic-init. Each of these disease sets could be
inputted in a textbox. A disease set is comprised by
several diseases. And each disease is represented by the
identifier of term in DO. All the term identifiers could
be downloaded from the hyperlink ‘disease terms’ in the
inputting page. Here, we click the ‘example’ button to
use our example. Then, we choose one of the five
methods (Resnik’s, Lin’s, Wang’s, PSB, and SemFunSim)
for calculating the SSD. After submitting this pair of
disease sets, the system could return the similarity score
based on the PWBPA method.

The usage of BatchSim
Figure 2b shows a case for searching the similarity score
of all the pairs based on the selected files. The web page
for inputting disease sets is http://www.bio-annota-
tion.cn:8080/DisSetSim/batch-init. Two files including
disease sets should be selected before submitting. The
file should be a plain text which contains several disease

sets. Each disease set must be in a newline, and each dis-
ease set contains several disease IDs which are separated
by commas. The size of uploaded file must be <2 Mb.
Here, we selected our example file in this page. Then,
we choose one of the five methods for calculating the
SSD. After clicking the ‘submit’ button, the system could
return the similarity score of all the pairs of the selected
files based on the PWBPA method.

miRNA functional similarity network
By applying DisSetSim to the inputted disease sets of
miRNAs, the similarity score of each miRNA pair could
be obtained. Using miRNA as node and similar miRNAs
as edge, the MFSN was constructed based on various
similarity cutoffs. As shown in Fig. 3a, the number of links
dramatically decreases when the cutoff increases
from low value to high value. When the cutoff is
equal to or bigger than 0.7, the link numbers remain
relatively stable. Therefore, we use 0.7 as cutoff for
the MFSN. In total, 1042 miRNA-miRNA functional
associations between 346 miRNAs were obtained as
MFSN (Fig. 3c). Similar to the most of the reported
biological networks, the degree of this MFSN also shows a
scale-free distribution [5, 9, 35–37]. It means that most of
the miRNAs only have a few functionally similar miRNAs,
and a few of miRNAs have a numerous functional similar
miRNA (Fig. 3b).
Here, the PWBPA method was utilized for calculat-

ing similarity between disease sets, and SemFunSim
was used as computing the similarity of pair-wise dis-
eases. This is because that the SemFunSim method
was proven to obtain the best performance [14]. Alterna-
tively, other state-of-art methods could also be chosen to
construct MFSN.

Resnik
ALGORITHM

DATABASE

TOOL

Disease Ontology Disease-related genes

VIEW

Lin Wang PSB SemFunSim

PWBPA

Functional interaction 
between genes

PairSim BatchSim

Fig. 1 System overview of DisSetSim
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Disease-related miRNAs
By applying the above similarity scores of miRNAs,
novel disease-related miRNAs were predicted based on
RWR algorithm (See ‘Methods’ section). To evaluate
the performance of the similarity scores of miRNAs,
leave-one-out cross validation of 5710 known experi-
mentally confirmed miRNA-disease associations, in-
cluding 265 diseases with at least two miRNAs, were
used for this assessment. For a disease of interest,
each known miRNA of this disease was left out as
the testing case, and the remaining miRNAs of this
disease were used as seed nodes. All the miRNAs
except the miRNAs of this disease were considered as
candidate miRNAs. We then examined how well the
testing miRNA ranked relative to the candidate miR-
NAs. If the ranking of this testing miRNA exceeded a

given cutoff, we regarded this miRNA-disease associ-
ation as successfully predicted. As a result, an area
under the ROC curve (AUC) of 0.9296 was achieved
(Fig. 4), which demonstrated that our miRNA func-
tional similarity was effective in recovering known
experimentally confirmed disease-related miRNAs.

Discussion
As the best of our knowledge, non-coding RNAs
(ncRNAs) attract more and more attentions because
of their important regulation roles in molecular level.
However, the lack of protein limits the identification
of their function. Here the application of our tool in
constructing MFSN and predicting miRNA-disease
associations provides a novel way to help for explor-
ing the function of miRNAs especially for prioritizing

A

B

Fig. 2 Schematic workflow of DisSetSim. a Schematic workflow of PairSim. b Schematic workflow of BatchSim
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miRNA-disease associations. This application can be
extended to other ncRNAs, such as lncRNAs and
circRNAs. Although methods for calculating the SDS
have been implemented by previous methods, it is
not easy to calculate the SSDS. Therefore, DisSetSim
benefits researchers for exploring the function of
disease-related molecular.

Conclusions
In this article, we designed and developed a web system
DisSetSim to calculate the SSDS. Five state-of-art
methods were implemented (see ‘METHODS’ section)

for calculating disease similarity. And the PWBPA
method was implemented for calculating the SSDS. Two
tools involving PairSim and BatchSim provide the
function to obtain the SSDS by inputting a pair-wise
disease sets and multiple disease sets, respectively.
The functional similarity of miRNAs could be calcu-

lated based on our system. Here, the similarity of each
pair-wise miRNAs was calculated. And then a MFSN
was constructed based on miRNA similarity. The
network was further utilized to predicate disease-related
miRNAs based on RWR. The high AUC (0.9296) shows
the MFSN is very suitable for predicting potential rela-
tionships between diseases and miRNAs.
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