
Huang et al. Journal of Biomedical Semantics  (2016) 7:25 
DOI 10.1186/s13326-016-0064-2

RESEARCH Open Access

OmniSearch: a semantic search system
based on the Ontology for MIcroRNA Target
(OMIT) for microRNA-target gene interaction
data
Jingshan Huang1*, Fernando Gutierrez2, Harrison J. Strachan1, Dejing Dou2, Weili Huang3, Barry Smith4,
Judith A. Blake5, Karen Eilbeck6, Darren A. Natale7, Yu Lin8, Bin Wu9, Nisansa de Silva2, Xiaowei Wang10,
Zixing Liu11, Glen M. Borchert12, Ming Tan11 and Alan Ruttenberg13

Abstract

As a special class of non-coding RNAs (ncRNAs), microRNAs (miRNAs) perform important roles in numerous biological
and pathological processes. The realization of miRNA functions depends largely on how miRNAs regulate specific
target genes. It is therefore critical to identify, analyze, and cross-reference miRNA-target interactions to better explore
and delineate miRNA functions. Semantic technologies can help in this regard. We previously developed a miRNA
domain-specific application ontology, Ontology for MIcroRNA Target (OMIT), whose goal was to serve as a foundation
for semantic annotation, data integration, and semantic search in the miRNA field. In this paper we describe our
continuing effort to develop the OMIT, and demonstrate its use within a semantic search system, OmniSearch,
designed to facilitate knowledge capture of miRNA-target interaction data. Important changes in the current version
OMIT are summarized as: (1) following a modularized ontology design (with 2559 terms imported from the NCRO
ontology); (2) encoding all 1884 human miRNAs (vs. 300 in previous versions); and (3) setting up a GitHub project site
along with an issue tracker for more effective community collaboration on the ontology development. The OMIT
ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/omit.owl. The OmniSearch system
is also free and open to all users, accessible at: http://omnisearch.soc.southalabama.edu/index.php/Software.
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Introduction
microRNAs (miRNAs) are a type of non-coding RNA
(ncRNA) with important biological, biomedical, and clin-
ical impact. Prior research [1, 2] indicates that miRNAs
perform significant roles in both biological and patholog-
ical processes, thus affecting the control and regulation of
various human diseases. miRNAs realize critical functions
via binding to their respective target genes. The ability
to identify and analyze miRNA-target interactions in an
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effective manner is thus a key step in the understanding
and delineation of miRNA functions.
The conventional method by which the users of data

(e.g., biologists, bioinformaticians, and clinical investiga-
tors) determine miRNA functions involves:

• Searching for biologically validated miRNA targets,
for example, by querying the PubMed database [3];
and

• Finding additional potential miRNA targets, for
example, by initiating inquiries on various prediction
databases or websites such as miRDB [4], TargetScan
[5], and miRanda [6].
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Unfortunately, both steps currently require significant
manual effort because the relevant data sources are
both syntactically and semantically heterogeneous — that
is, the meaning of seemingly similar data from differ-
ent sources may be quite different and thus open to
misinterpretation. It is therefore challenging for users
to identify and establish possible links among original
data sources. As a result, conventional miRNA knowl-
edge discovery and acquisition methodologies are time-
consuming, labor-intensive, error-prone, and sensitive to
limitations in the prior knowledge of different end users.
These barriers are exacerbated by the need to obtain
additional information for each and every miRNA tar-
get (whether validated or putative) using existing data
sources and analysis tools, including but not limited to:
the DAVID Bioinformatics Resources (DAVID) [7], NCBI
Gene [8], the Medical Subject Headings (MeSH) Database
[9], the HUGO Gene Nomenclature Committee (HGNC)
Database [10], and NCBI Nucleotide [11].
Emerging semantic technologies can help in address-

ing the aforementioned challenges. The core of cur-
rent semantic technologies include specifications such as
the resource description framework (RDF), RDF Schema
(RDFS), and Web Ontology Language (OWL), all of
which are intended to provide a formal description of
classes of entities of different types and of the relations
between them in such a way as to enable automatic rea-
soning (inference). Semantic technologies can be applied
to miRNA knowledge acquisition by transforming data
obtained from heterogeneous miRNA-related databases
into a common framework by utilizing a single format
(such as RDF) and aligning the data through use of anno-
tations from common, formally defined ontologies. By
means of this transformation we can use the SPARQL
Protocol (SPARQL) [11] to query the enhanced data auto-
matically.
In previous research [12–17], we investigated the con-

struction of an application ontology for the miRNA field,
named Ontology for MIcroRNA Target (OMIT), the first
ontology to formally encode miRNA domain knowledge.
By providing a standardized metadata model to establish
miRNA data connections among heterogeneous sources,
the OMIT is able to fill two gaps: the lack of common
data elements and the lack of data exchange standards for
miRNA research, especially with regard to miRNA-target
interactions.
We describe two major scientific contributions in this

paper: (1) recent improvements to the OMIT ontology
and (2) a semantic search system, which is built upon the
ontology and enables the capture of miRNA-target inter-
action data in a way leading to more effective miRNA
knowledge acquisition.
The remainder of this paper is organized as follows.

“Related work” Section summarizes state-of-the-art

research in biomedical ontologies and semantic search,
respectively. “OMIT reconstruction” Section reports
our efforts on reconstructing the OMIT ontology.
“OmniSearch: an OMIT-based semantic search system”
Section describes technical details of OmniSearch,
an OMIT-based semantic search system. “Results and
discussion” Section reports our experimental results.
Finally, “Conclusions” Section summarizes the major
points and presents ideas for future research.

Related work
Related work in biomedical ontologies
The use of ontologies to describe, define, and inte-
grate biological entities has long been embraced by the
biological, biomedical, and clinical research commu-
nities. Here we briefly describe some representative
bio-ontologies included in both the Open Biological
and Biomedical Ontologies (OBO) Library [18] and the
National Center for Biomedical Ontology (NCBO) Bio-
Portal [19] that are pertinent to the development of this
project.
The Gene Ontology (GO) [20] is by far the most

successful and widely used ontology for biological
data description. It consists of three independent sub-
ontologies: biological processes, molecular functions, and
cellular components, which describe these aspects of gene
products: both protein and RNA. The GO has been widely
utilized to annotate gene products of model organisms.
By the time of writing this paper, there were GO annota-
tions for 36 organisms including Homo sapiens available
for download.
The Sequence Ontology (SO) [21] is an ontology to cap-

ture genomic features and the relationships that obtain
between them. This ontology contains the features neces-
sary to annotate a genome with structural features such as
gene models and also the terms necessary for the anno-
tation of genomic variants. SO terms define the kinds of
and parts of ncRNA features, and these terms are used
to identify these features and their location in genomic
sequence.
The PRotein Ontology (PRO) [22] is a comprehensive

description of the forms of protein, including isoforms,
modifications, and the relationships between them. Pro-
teins are functional entities in many processes eventually
impacted by the regulatory effect of ncRNAs (e.g., miRNA
bindings). The PRO provides an ontological representa-
tion of proteins with a particular focus on human proteins
and disease-related variants thereof.
The RNA Ontology (RNAO) [23] is a candidate OBO

foundry reference ontology to catalogue the molecu-
lar entities composing primary, secondary, and tertiary
components of RNA. The goal of this project is to
enable integration and computation over diverse RNA
datasets.
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Related work in semantic search
Semantic search is a research field that intends to improve
the access to contents by considering the semantics
behind the search process [24]. In other words, semantic
search goes beyond conventional, keyword-based search
by considering the contextual meaning of words, the
intent of the user, and the nature of the search space.
In general, semantic search requires the use of struc-
tured knowledge, such as ontologies, in the modeling and
interpretation of queries. Ontologies can help improve
the search by query expansion. One main idea in many
semantic search systems (e.g., [25–29]) is, the original
set of query keywords can be expanded by drawing on
synonyms and other relationships (e.g., subclass and part-
hood) that are not part of the query. For example, in
the work by Chauhan et al. [29], the original query was
first expanded by considering synonyms, then terms with
high semantic similarity were chosen from the ontology
to be integrated to the search query, and the seman-
tic similarity used for the query expansion was com-
puted by the distance among concepts in the ontology,
the position in the hierarchy, and the number of upper
classes.
Another way to implement semantic search is to use

ontologies to translate keyword-based search into formal
semantic queries. For example, Tran et al. [24] used
a set of models (mental, user, system, and query) to
capture information, such as thought entities, language
primitives, knowledge representation (KR) primitives,
and query elements. These models were then com-
bined with a set of assumptions to redefine original
queries, filling the gap between terms with structural
information from an ontology. That is, each term
within the query was considered a property of another
term.

OMIT reconstruction
Modularized ontology design
The OMIT ontology consists of the following modules:

• omit.owl — Defines all OMIT-specific terms and
relations, for example, prediction_from_miRDB and
gene_context_score_in_TargetScan.

• bfo.owl — Imports upper-level terms from the Basic
Formal Ontology (BFO) [30], for example, generically
dependent continuant and material entity.

• ro-imports.owl — Imports common relations (shared
across different ontologies) from the Relation
Ontology (RO) [31], for example, has participant and
regulates.

• ncro.owl — Imports ncRNA-related terms and
relations from the Non-coding RNA Ontology
(NCRO) [32], for example, miRNA_target_gene and
miRNA_gene_family.

• go-imports.owl — Imports gene product terms from
the GO, for example, RNA binding and regulation of
biological process.

• so-imports.owl — Imports sequence structural
feature terms from the SO, for example,
biological_region and insertion_site.

• obi-imports.owl — Imports life-science and clinical
investigation terms from the Ontology for Biomedical
Investigations (OBI) [33], for example, cultured cell
population and organism.

• chebi-imports.owl — Imports molecular entity
(especially small chemical compounds) terms from
the Chemical Entities of Biological Interest Ontology
(ChEBI) [34], for example, ribonucleic acid and
ribosomal RNA.

• iao-imports.owl — Imports information entity terms
from the Information Artifact Ontology (IAO) [35],
for example, information content entity.

• clo-imports.owl — Imports cell line-relevant terms
from the Cell Line Ontology (CLO) [36], for example,
cell line.

• pr-imports.owl — Imports protein-related entity
terms from the PRO, for example, amino acid chain
and protein.

• uberon-imports.owl — Imports cross-species
anatomy terms from the Uberon multi-species
anatomy ontology (UBERON) [37], for example,
anatomical structure and organ.

• doid-imports.owl — Imports disease terms from the
Human Disease Ontology (DOID) [38], for example,
disease of cellular proliferation and cancer.

Note that:

(1) Orthogonality among different ontologies is one
of the important practices proposed by the OBO
Foundry Initiative, and has been widely accepted in
the bio-ontology community. As a result, to achieve
better orthogonality, it is a common practice to reuse
contents defined in relevant, existing ontologies.
(2) The OMIT ontology directly imported the NCRO
ontology (a comprehensive ncRNA domain
ontology), which in turn, directly imported other
ontologies in the above list. Therefore, the OMIT
ontology itself includes two OWL files: “omit.owl”
and “ncro.owl.” All other OWL files,
“go-imports.owl” and “so-imports.owl” for example,
are shown as “indirectly imported” in Protégé.
(3) Ontology concepts are referred to as “classes” in
Protégé and “terms” in OBO Edit, respectively.
Therefore, “classes” and “terms” are interchangeably
used throughout the whole paper.

Table 1 lists a subset of important terms and relations
imported into the OMIT.
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Table 1 A subset of imported terms and relations

Imported term or relation Source ontology Original ID

RO:part of Relation Ontology BFO_0000050

RO:participates in Relation Ontology RO_0000056

RO:has participant Relation Ontology RO_0000057

BFO:entity Basic Formal Ontology BFO_0000001

BFO:continuant Basic Formal Ontology BFO_0000002

BFO:independent continuant Basic Formal Ontology BFO_0000004

BFO:occurrent Basic Formal Ontology BFO_0000003

BFO:material entity Basic Formal Ontology BFO_0000040

CHEBI:molecular entity Chemical Entities of Biological Interest Ontology CHEBI_23367

CHEBI:ribonucleic acid Chemical Entities of Biological Interest Ontology CHEBI_23367

CHEBI:ribosomal RNA Chemical Entities of Biological Interest Ontology CHEBI_18111

CHEBI:small nuclear RNA Chemical Entities of Biological Interest Ontology CHEBI_74035

CHEBI:transfer RNA Chemical Entities of Biological Interest Ontology CHEBI_17843

NCRO:human_miRNA Non-coding RNA Ontology NCRO_0000810

NCRO:hsa-miR-125b-1-3p Non-coding RNA Ontology NCRO_0003283

NCRO:hsa-miR-125b-2-3p Non-coding RNA Ontology NCRO_0003284

NCRO:hsa-miR-125b-5p Non-coding RNA Ontology NCRO_0003282

NCRO:miRNA_target_gene Non-coding RNA Ontology NCRO_0000025

NCRO:miRNA_and_target_gene_binding Non-coding RNA Ontology NCRO_0000003

NCRO:protein_miRNA_promoter_binding Non-coding RNA Ontology NCRO_0000011

IAO:information content entity Information Artifact Ontology IAO_0000030

IAO:measurement datum Information Artifact Ontology IAO_0000109

• The format for the left column (Imported Term or
Relation) is PREFIX:human-readable label, for
example, NCRO:miRNA_target_gene and RO:part of.

• The format for the right column (Original ID) is
PREFIX_unique identifier, for example,
NCRO_0000025 and BFO_0000001.

Ontology core design
The core design of the OMIT ontology is shown in Fig. 1.
Compared with earlier versions, the current version con-
tains many important new terms and relations, and some
of which are listed in Tables 2 and 3, respectively.

• Both terms and relations are represented in the
format of PREFIX:label in Fig. 1.

• For the purpose of better readability, labels rather
than identifiers are used in Tables 2 and 3.

• Relations in Table 3 were either defined in or
imported into the OMIT, which can be easily
distinguished from each other by different prefixes
used in the first column.

OmniSearch: an OMIT-based semantic search
system
Based on the OMIT ontology, we developed a semantic
search system:OmniSearch. First, the OmniSearch system

will conduct semantic annotation on various sources that
were originally heterogeneous in their semantics; follow-
ing that, OMIT-annotated data will then be integrated
into a unified and consistent data layer in RDF; and finally,
complex semantic queries will be performed to provide
meaningful results and clues to system end users (e.g.,
biologists, bioinformaticians, and clinical investigators).

Data sources used
Data sources used in the OmniSearch system include
three miRNA target prediction databases (miRDB, Tar-
getScan, and miRanda), as well as PubMed, NCBI Gene,
GO, RNA Central, DAVID, HGNC, and MeSH term
databases. These sources contain both structured data
(database instances) and unstructured data (free text), and
are semantically heterogeneous among each other.

Software architecture
TheOmniSearch system consists of several softwaremod-
ules: semantic annotation, data integration, and semantic
search.
Semantic data annotation is the process of tagging

source files with predefined ontological metadata like
names, entities, attributes, definitions, and descriptions.
The annotation provides original data with extrametadata
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Fig. 1 The design of core terms and relations in the OMIT ontology (both terms and relations are represented in the format of PREFIX:label)

Table 2 A subset of new OMIT terms

OMIT new term Direct parent term Human-readable explanation

computationally_asserted_evidence IAO:information content entity Evidence obtained from some

computational methods.

information_from_miRNA_ OMIT:computationally_asserted_evidence Records obtained from various

target_prediction_database miRNA target prediction databases.

prediction_from_miRDB OMIT:information_from_miRNA_ Records specifically obtained

target_prediction_database from the miRDB database.

prediction_from_TargetScan OMIT:information_from_miRNA_ Records specifically obtained

target_prediction_database from the TargetScan database.

prediction_from_miRanda OMIT:information_from_miRNA_ Records specifically obtained

target_prediction_database from the miRanda database.

target_score_in_miRDB IAO:measurement datum The score of some specific

miRNA-target binding prediction

from the miRDB database.

gene_context_score_in_TargetScan IAO:measurement datum The context score of some specific

miRNA-target binding prediction

from the TargetScan database.

mirSVR_score_in_miRanda IAO:measurement datum The mirSVR score of some specific

miRNA-target binding prediction

from the miRanda database.

information_from_NCBI_gene IAO:information content entity Records obtained from NCBI Gene

according to gene IDs or gene symbols.

information_from_NCBI_nucleotide IAO:information content entity Records obtained from NCBI Nucleotide

according to GenBank Accession numbers.

information_from_PubMed IAO:information content entity Records obtained from the PubMed

database according to PMIDs.
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Table 3 A subset of new OMIT relations

New relation Domain Range Human-readable explanation

OMIT:miRNA_target_ NCRO:miRNA_and_ OMIT:computationally_ Specific miRNA-target binding

assumption_ target_gene_binding asserted_evidence prediction is based on some

based_on computationally asserted evidence.

OMIT:is_quality_ IAO:measurement datum OMIT:computationally_ A piece of measurement datum

measurement_of asserted_evidence (e.g., the target score in miRDB)

is a quality measurement of

computationally asserted evidence.

OMIT:is_gene_ NCRO:miRNA_target_gene OMIT:target_protein A miRNA target gene

template_of_protein serves as a template

of relevant protein.

RO:has participant OMIT:prediction_from_miRDB SO:miRNA Each miRNA-target binding

prediction record has one

miRNA as a participant.

RO:has participant OMIT:prediction_from_miRDB NCRO:miRNA_target_gene Each miRNA-target binding

prediction record has one

target as a participant.

RO:part of OMIT:target_score_in_miRDB OMIT:prediction_from_miRDB Each miRNA-target binding

prediction record from

miRDB contains one score.

Each record from NCBI

RO:part of OMIT:PubMed_summary_ OMIT:information_from_NCBI_gene Gene contains one or

in_NCBI_gene more PubMed summaries.

information formally defined in the OMIT ontology. The
output of semantic data annotation is a collection of
RDF triples (from both free text and database instances).
These triples will be accumulated into a centralized RDF
repository: OmniStore.
We used Python scripts to conduct automated seman-

tic annotation and data integration. As an example, Fig. 2
shows the flowchart of our programs to annotate miRDB
data. We explain below the detailed steps. One miRDB
file, the “miRNA data” file, contains two columns con-
sisting of miRNA names and their associated interna-
tionalized resource identifiers (IRIs). Another miRDB file,
the “gene data” file, contains four columns consisting
of miRNA names, gene IDs, gene symbols, and target
scores.

• Step One: As each miRNA name and its associated
IRI were read in from the miRNA data file, they were
placed into a dictionary where the miRNA name is
the key and the IRI is the value.

• Step Two: All lines were read in from the gene data
file, and each line was converted into a total of four
RDF triples. (1) The first triple was generated to
represent a newly created instance of the

prediction_from_miRDB class, namely, instance_i,
and a new OMIT IRI was assigned to instance_i. (2)
Next, the miRNA name read from the same line was
used to retrieve its corresponding IRI from the
dictionary (generated in Step One). The second triple
then connected this retrieved IRI with instance_i. (3)
Two more triples were generated to connect
instance_i with the corresponding gene ID and target
score read in from the same line, respectively.

• Step Three: Finally, all generated RDF triples were
written into a Turtle file.

Note that:

(1) “Semantic annotation and data integration”
Section exhibits some example triples resulted from
the above-mentioned annotation process.
(2) Mappings between database schemas and
ontological entities were defined in the OMIT
ontology and can be reused or modified in the future,
when needed.
(3) Due to our automated annotation and integration
techniques, only minimum effort will be required to
integrate a new resource in the future.
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Fig. 2 Semantic annotation and data integration flowchart in the OmniSearch system

Because all semantic tags are to be generated from the
global metadata model defined in the OMIT ontology, the
RDF triple repository will provide a unified view over orig-
inal data sources at semantic level. Consequently, complex
semantic queries will be enabled. To implement semantic
search, we made use of Apache HTTP server [39], PHP:
Hypertext Preprocessor (PHP) server [40], and Apache
Jena Fuseki server [41]. The overall software architec-
ture is demonstrated in Fig. 3, with the following working
protocol:

• Query parameters are sent from the client’s browser
to the Apache server through Ajax requests.

• SPARQL queries are dynamically generated by the
Apache server using these query parameters, which
are then sent to the Apache Jena Fuseki server.

• JSON objects, containing the requested information,
are retrieved from the RDF triple store (installed on
the Apache Jena Fuseki server) after running the
dynamically generated SPARQL queries.

• These JSON objects are returned to the Apache
server, which are used to generate either (1) a list of

miRNAs and/or MeSH terms or (2) the HTML
Markup for the search result table.

• Finally, the Apache server sends the obtained data, or
an error message if the search fails, back to the
client’s browser as a JSON object.

User interface design
The OmniSearch is a Web-based search system that is
free and open to all users, accessible at: http://omnisearch.
soc.southalabama.edu/index.php/Software. As shown in
Fig. 4, the main components of the graphic user inter-
face (GUI) are: two search criteria boxes, a search result
table, a pagination control, a set of result viewing filters,
a result download tool, and DAVID analysis functionality.
More discussion on our friendly user interface design can
be found in “Search results and discussion” Section.

Results and discussion
The significantly refactored OMIT ontology
The updated version of the OMIT ontology contains
a total of 3169 terms and 46 relations (besides a total
of 5515 is_a relations). Note that out of 46 relations

http://omnisearch.soc.southalabama.edu/index.php/Software
http://omnisearch.soc.southalabama.edu/index.php/Software
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Fig. 3 Semantic search architecture in the OmniSearch system

mentioned here, there are 5 data properties, and the
rest are object properties. Also note that these terms
and relations include both OMIT-specific ones and those
imported ones1.
Compared with the previous versions [12–17], impor-

tant changes in the current version OMIT ontology are
summarized as follows.

• As discussed earlier in “Modularized ontology design”
Section, we have followed amodularized ontology
design in this new version, which will significantly
further facilitate the ontology maintenance and
update. In particular, a total of 2559 terms in the
updated OMIT have been imported from the NCRO
ontology [32]. Because the NCRO is a comprehensive
domain ontology in the ncRNA field, following the
NCRO hierarchy will enhance the interoperability
between the OMIT and future ontologies to be
developed in other ncRNA sub-domains.

• In the previous versions of OMIT, around 300
human miRNAs were included. In the current
version, all 1884 miRNAs appearing in humans
have been encoded, along with the information about

the gene family group of each and every miRNA.
According to miRBase [42], there are a total of 320
different gene family groups. This information can be
highly valuable because the fact that two or more
miRNAs of interest indeed belong to the same gene
family group can provide biologists,
bioinformaticians, and clinical investigators with
critical clues in constructing new hypothesis.

• In our previous investigations, we established a
dedicated project website [43], as well as entries in
both the OBO Library [44] and the NCBO BioPortal
[45]. To further disseminate the ontology, and, to
gather feedback from community in a more effective
manner, we have recently created a GitHub project
site (https://github.com/OmniSearch/omit) for this
new version OMIT ontology. We have also
established a tracker [46] for an enhanced
mechanism in handling the discussion among
groups to further improve the ontology. New
concepts, definitions, and their locations in the
OMIT can now be proposed, debated, and approved
(or rejected) by an open group of individuals through
this tracker.

https://github.com/OmniSearch/omit
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Fig. 4 GUI design in the OmniSearch system

Semantic annotation and data integration
Experimental setup
The OmniStore RDF repository is housed on a server with
the following configuration: Intel(R) Core(TM) i7-3632
QM CPU @ 2.80 GHz 2.80 GHz; 32.00 GB memory; and
Windows Server 8 Operating System.

Semantic annotation and data integration results
OmniStore contains a total of 6,136,514 RDF triples, and
the file size of OmniStore is 369 MB. All triples are rep-
resented in RDF 1.1 Turtle: Terse RDF Triple Language
format [47], for example:

<http://purl.obolibrary.org/obo/OMIT_

0015037>

rdfs:subClassOf

<http://purl.obolibrary.org/obo/NCRO_

0000025> .

<http://purl.obolibrary.org/obo/OMIT_

0015037>

rdfs:label

"IRF4" .

<http://purl.obolibrary.org/obo/OMIT_

0995324>

rdf:type

<http://purl.obolibrary.org/obo/OMIT_

0000020> .

<http://purl.obolibrary.org/obo/OMIT_

0995324>

<http://purl.obolibrary.org/obo/RO_

0000057>

<http://purl.obolibrary.org/obo/OMIT_

0015037> .

<http://purl.obolibrary.org/obo/OMIT_

0995324>

<http://purl.obolibrary.org/obo/RO_

0000057>

<http://purl.obolibrary.org/obo/OMIT_

0050688> .

<http://purl.obolibrary.org/obo/OMIT_

0995324>

<http://purl.obolibrary.org/obo/OMIT_

0000108>

100 .

The semantics of the above six example triples is: IRF4
(OMIT_0015037) is a subclass of the miRNA_target_gene
class (NCRO_0000025); one miRDB database record
(OMIT_0995324), which is an instance of the pre-
diction_from_miRDB class (OMIT_0000020), indicates
that IRF4 is a predicted target of the miRNA hsa-
miR-125b-5p (OMIT_0050688); and the prediction score
(OMIT_0000108) is 100.
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Semantic search
We use one example in this section to demonstrate in
detail how the OmniSearch system assists in end users’
knowledge acquisition.

Experimental setup
Semantic search was conducted on a personal computer
(PC) with the following configuration: Intel(R) Core(TM)
i7-3632 QM CPU @ 2.50 GHz 2.50 GHz; 16.00 GB mem-
ory; and Windows 10 64-bit Operating System.

SPARQL query statements
The SPARQL statements to generate the miRNA and
MeSH term lists in the two search boxes are as fol-
lows, where the PHP variable $type is used to determine
whether the client is requesting a miRNA or MeSH term,
and the PHP variable $input contains either a partial or
exact miRNA or MeSH term. Note that each line of the
query statement has a detailed explanation right above it
(the line starting with a pound sign “#”).

# prefix declarations

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-

schema#>

# result clause

SELECT ?label

# query pattern

WHERE {

# get IRI of either human_miRNA or

MeSH_Term as parent

?parent rdfs:label $type .

# get all children of parent

?child rdfs:subClassOf ?parent .

# get label for each child

?child rdfs:label ?label .

# filter results to only include label

that match the user input

FILTER REGEX(LCASE(?label), LCASE

($input))

}

# order the result by label

ORDER BY ?label

Suppose that the question of interest is: “What is the
role of hsa-miR-125b-5p in cancer drug resistance?” The
SPARQL statements are as follows. Similarly, all query
statements have a detailed explanation.

# prefix declarations

PREFIX rdfs: <http://www.w3.org/2000/01/

rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-

rdf-syntax-ns#>

PREFIX obo: <http://purl.obolibrary.org/

obo/>

# result clause

SELECT ?gene_symbol

# group the gene ids together

(GROUP_CONCAT(DISTINCT ?g_id;

SEPARATOR=",") AS ?gene_id)

# assign mdb_score to mirdb_score if

bound, otherwise assign 0

(MAX(COALESCE((?mdb_score),

?mdb_score,0)) AS ?mirdb_score)

# assign ts_score to targetscan_score

if bound, otherwise assign 0

(MAX(COALESCE(?ts_score), ?ts_score, 0))

AS ?targetscan_score)

# assign absolute value of mrnd_score

to miranda_score if bound, otherwise

assign 0

(MAX(COALESCE(ABS(?mrnd_score), 0)) AS

?miranda_score)

# concatenate and group all pubmed ids

together, separated by a comma

(GROUP_CONCAT(DISTINCT ?pmid;

SEPARATOR=",") AS ?pubmed_ids)

# query pattern

WHERE {

# get microRNA IRI with label

"hsa-miR-125b-5p"

?mirna rdfs:label "hsa-miR-125b-5p" .

# get prediction that has_human_miRNA

microRNA IRI

?prediction obo:OMIT_0000159 ?mirna .

# get target where prediction has_

miRNA_target_gene

?prediction obo:OMIT_0000160 ?target .

# get gene symbol label of target

?target rdfs:label ?gene_symbol .

# get target gene_id as g_id

?target obo:OMIT_0000109 ?g_id .

OPTIONAL {

# get prediction of type

prediction_from_TargetScan

?prediction rdf:type obo:

OMIT_0000019 .

# get prediction score as ts_score

?prediction obo:OMIT_0000108

?ts_score

}.
OPTIONAL {

# get prediction of type

prediction_from_miRDB

?prediction rdf:type obo:OMIT_

0000020 .

# get prediction score as mdb_score

?prediction obo:OMIT_0000108 ?mdb_

score

}.
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OPTIONAL {

# get prediction of type

prediction_from_miRanda

?prediction rdf:type obo:OMIT_

0000021 .

# get prediction score as mrnd_

score

?prediction obo:OMIT_0000108 ?mrnd_

score

}.

OPTIONAL {

# get MeSH Term IRI for "drug

resistance"

?mesh_term rdfs:label "drug

resistance" .

### exact match ###

# get ’pubmed id’ associated with

the target gene

?target obo:OMIT_0000151

?pubmed_id .

# get ’pubmed id’ associated with

the mesh term

?mesh_term obo:OMIT_0000151

?pubmed_id

### narrower match ###

# get each successive child of mesh

term

#?child rdfs:subClassOf* ?mesh_

term .

# get ’pubmed id’ associated with

the target gene

#?target obo:OMIT_0000151

?pubmed_id .

# get ’pubmed id’ associated with

the child mesh term

#?child obo:OMIT_0000151

?pubmed_id

### broader match ###

# get each successive parent mesh

term

#?mesh_term rdfs:subClassOf*
?parent .

# restric parent to be a subclass

of MeSH_Term

#?parent rdfs:subClassOf obo:OMIT_

0000110 .

# get ’pubmed id’ associated with

the target gene

#?target obo:OMIT_0000151

?pubmed_id .

# get ’pubmed id’ associated with

the parent mesh term

#?parent obo:OMIT_0000151

?pubmed_id

}.

}

# group the results by gene symbol

GROUP BY ?gene_symbol

# order the results by mirdb score then by

targetscan score

ORDER BY DESC(?mirdb_score)DESC

(?targetscan_score) DESC(?miranda_score)

Search results and discussion
Corresponding to the aforementioned question of inter-
est, Fig. 5 demonstrates the search results from a query
on hsa-miR-125b-5p along with a MeSH-term filter “drug
resistance”.

• The “Candidate Targets” column contains all targets
predicted by at least one target prediction database.
The user can choose a prediction database and sort
all targets by the scores, in descending order, from
the selected database.

• The “Predicted By” column shows that each target is
predicted by which database(s), along with the Web
link(s) to these database(s).

• The “Publications” column links to all PubMed
publications that are relevant to the search and
filtering criteria. In this example, the criteria for any
line are: the predicted target on that line, the miRNA
hsa-miR-125b-5p, and the MeSH-term filter “drug
resistance.”

• The “GO Annotations” column connects to GO
annotation results of each predicted target and the
miRNA hsa-miR-125b-5p, respectively.

• Pathway analysis through DAVID can be performed
on selected targets, either using the checkboxes to the
left of the table or clicking the “Select All Targets”
checkbox. Additionally, the user can select the desired
tool to perform such analysis, “Gene Functional
Classification,” “Functional Annotation Clustering,”
“Functional Annotation Summary,” and so forth.

• The whole result table can be downloaded in two
different formats (tab-delimited text or CSV format);
the user is also able to download only the predicted
targets (selected ones or all).

We examined the search results demonstrated in this
example, and our observations are summarized below.

1. Effective querying and accurate search results.

• Potential targets from all three miRNA target
prediction databases (miRDB, TargetScan, and
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Fig. 5 Search results for the question of “What is the role of hsa-miR-125b-5p in cancer drug resistance?”

miRanda) were correctly retrieved. There were
476 and 924 targets from miRDB and
TargetScan, respectively; and there were 323
common targets. Consequently, a total of 1077
distinct targets were retrieved in the table when
the “Predicted by Any Database” filter was
chosen. Note that the miRanda database did not
contain prediction results for the miRNA
hsa-miR-125b-5p; therefore, no results
appeared in the table when the display filter was
set to “Predicted by All Databases.” In fact, this
observation further verified the effectiveness of
the OmniSearch system.

• Relevant papers according to the search criteria
were successfully retrieved. For example, two
publications (PMID: 2497002 and 22808086)
were retrieved for the predicted target LIN28A,
supporting the conclusion that “Lin28A

contributes to cancer drug resistance;” and three
publications (PMID: 21823019, 24643683, and
19463775) were retrieved for the predicted
target BAK1, supporting another conclusion
that “BAK1 has an important role in cancer drug
response and drug resistance.”

• RNA Central annotations and GO annotations
were correctly obtained. In this example query,
a total of five sequences regarding the miRNA
hsa-miR-125b-5p were retrieved from RNA
Central annotations, and GO annotations for all
predicted targets were retrieved as well. For
example, a total of 117 GO annotations
(GO_REF:0000038, GO_REF:0000033, and so
forth) were retrieved regarding a potential
target, BAK1.

• Based on the above knowledge returned in the
OmniSearch GUI, regarding the example
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question of “What is the role of
hsa-miR-125b-5p in cancer drug resistance?”
end users obtained the following answer: It is
reasonable to speculate that expression of
the miRNA hsa-miR-125b-5p contributes to
cancer drug resistance, possibly through its
suppression of expression for target genes
BAK1 and/or LIN28A.

Discussion:
(1) miRDB, TargetScan, and miRanda databases have
quite different meanings among each other in terms
of their database entities. Due to the underlying
OMIT and the formally defined semantics in the
ontology, the OmniSearch system was able to
effectively integrate the prediction results from all
three databases. Note that conventional,
database-oriented techniques can also implement
such integration; however, inflexible, ad-hoc
hard-coding will be required.
(2) To retrieve a correct set of relevant papers
requires accessing numerous heterogeneous data
sources such as NCBI Gene, PubMed, HGNC, and
MeSH. Without the common data elements defined
in the OMIT and the thereafter semantic
technologies including semantic annotation and data
integration, it would have been extremely challenging
to effectively integrate data from these sources, which
is the case in database-oriented search and querying.
(3) As discussed earlier in “OMIT
reconstruction” Section, the OMIT is closely
connected with the GO by importing a set of GO
terms. Compared with data integration based on
traditional, relational databases, our approach has
further facilitated integrating data about GO
annotations.

2. More efficient querying process.
• One-stop visit rather than accessing different

data sources separately, resulting in about 60 %
of time saved for end users.

• DAVID analysis was performed in a more
efficient manner due to the target gene list
automatically generated by the system. resulting
in about 50 % of time saved for end users.

• It was easier to compare different prediction
results among miRDB, TargetScan, and
miRanda databases, resulting in about 60 % of
time saved for end users.

• The above percentages of saved time were
calculated as follows: We asked the
aforementioned domain experts to perform a
given set of queries using their conventional
methods; next, they performed the same set of
queries through the OmniSearch GUI; and

finally, the saved time for all domain experts
were averaged. Greater details on the system
time and saved time for end users are contained
in Table 4.

• Applying the MeSH-term filter resulted in a
much smaller number of relevant publications
returned. For example, 50 vs. 16 for the target
ABCC5, 13 vs. 2 for the target DPH2, and 31 vs.
3 for the target FOXQ1. More examples are
demonstrated in Table 5.

Discussion:
(1) The reduced time spent by users was due to both
data integration and the more accurate semantics
defined in the ontology.
(2) In an non-ontology software system, to filtering
on MeSH terms almost unavoidably results in
hard-coding some ad-hoc searching rules in source
code. On the contrary, semantics-oriented systems,
such as OmniSearch, can well handle this issue in a
more efficient manner. By decoupling domain
knowledge from source code, ontologies and software
applications can be developed independently, leading
to more flexible software development.
(3) Based on the is_a relation, the OmniSearch
system can perform logic reasoning over the
ontology concept hierarchy (that is, both broader and
narrower terms of the ontology term of interest),
thus greatly improving the flexibility of search and
query capability. For example, after a MeSH term is
chosen by users, they are able to search the exact
MeSH term, or its broader terms (i.e., ancestor
terms) and narrower terms (i.e., offspring terms)
defined in the ontology. Such results would not have
been obtained without semantic technologies
because systems based on relational databases are
not able to perform any logical reasoning. Of course,
users can still manually perform numerous queries
and then obtain similar results as obtained from our
system. However, such manual querying is
significantly more time-consuming and
labor-intensive, and more importantly, error-prone.
(4) Cross-referencing among miRDB, TargetScan,
and miRanda prediction results was made much
easier because relevant database entities have already
been formally defined in the OMIT. In other words,
unambiguous semantics was accurately encoded with
common data elements provided by the ontology,
resulting in successful data sharing and exchanging
among heterogeneous data sources.
(5) We asked the aforementioned domain experts to
verify the accuracy of MeSH-term filtering. Because
all returned publications contained the
corresponding MeSH term, the Precision measure
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Table 4 The system time and saved time for end users

Query
First search Second search System time User time Percentage of saved Percentage of saved Percentage of saved
criterion criterion (seconds) (seconds) time for end users time on DAVID analysis time on result comparison

1 hsa-miR-1231 cell movement 2.51 10 62 % 55 % 61 %

2 hsa-miR-1288-5p cell proliferation 2.89 9 61 % 51 % 62 %

3 hsa-miR-143-3p mitosis 5.54 10 61 % 52 % 60 %

4 hsa-miR-192-5p leukemic infiltration 2.24 8 53 % 53 % 59 %

5 hsa-miR-216a-5p drug resistance, 4.09 11 65 % 55 % 62 %

multiple

6 hsa-miR-29c-3p recurrence 8.99 11 68 % 53 % 63 %

7 hsa-miR-3155a dna cleavage 1.21 6 53 % 47 % 55 %

8 hsa-miR-320b drug resistance 17.59 18 73 % 51 % 66 %

9 hsa-miR-3622a-5p entosis 0.30 6 51 % 43 % 57 %

10 hsa-miR-371b-5p mitochondrial 3.89 12 66 % 59 % 64 %

dynamics

11 hsa-miR-3934-5p dna methylation 0.93 8 61 % 45 % 59 %

12 hsa-miR-4263 mutagenesis 1.65 6 52 % 46 % 56 %

13 hsa-miR-4431 mitochondrial 0.17 6 53 % 47 % 55 %

degradation

14 hsa-miR-4505 cell transformation, 4.25 10 63 % 55 % 61 %

neoplastic

15 hsa-miR-4648 cell polarity 0.71 6 52 % 45 % 57 %

16 hsa-miR-4700-3p neoplasm regression, 1.56 7 53 % 51 % 59 %

spontaneous

17 hsa-miR-4756-5p endocytosis 3.76 10 67 % 53 % 62 %

18 hsa-miR-4802-3p drug resistance, 1.67 7 55 % 47 % 59 %

microbial

19 hsa-miR-501-3p insulin resistance 1.78 8 57 % 43 % 61 %

20 hsa-miR-520a-3p ubiquitination 13.31 17 75 % 55 % 65 %

Average ————— ————— 3.95 9.30 60.05 % 50.30 % 60.15 %

was evaluated as 100 %. As for the Recall measure, it
took a much longer time to evaluate because we
needed to identify all publications that were
incorrectly filtered out by the system. For example,
there were three (one, resp.) publications relevant to
CSNK2A1 (DVL3, resp.) that should not have been
filtered out. More such examples are demonstrated
in Table 6. Overall, an average Recall of 73 % was
achieved, meaning that while a user is able to obtain
desired knowledge in a much more efficient manner
(by reading significantly less publications, as shown in
Table 5), the potential information lost is rather low.

3. Friendly user interface.

• For both search boxes, a list of partially
matching terms were presented in a drop-down
box as users typed in the box. Users were also

allowed to not to type in anything, in which case
all terms will be presented.

• The “Rows Per Page” drop-down and pagination
control helped users to easily navigate among all
predicted targets.

• A set of display filters were designed to allow
users to conveniently and freely customize their
preferred way to view retrieved results from
various facets. For example, results can be
sorted by the prediction score from any selected
prediction database; users can choose to view
only results that have publication evidence, or
does not have such evidence, or both; and so
forth.

• Flexible download options were provided, and
all downloaded documents had self-explanatory,
meaningful file names that contain the search
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Table 5 Reduced number of publications after applying the
MeSH-term filter “drug resistance”

Target gene Original number Number of papers Percentage
symbol of papers after MeSH filtering reduced

ABCC5 50 16 68 %

DPH2 13 2 85 %

FOXQ1 31 3 90 %

CIAPIN1 43 4 91 %

SLC38A9 12 1 92 %

MCL1 452 31 93 %

MKNK2 30 2 93 %

BAG4 32 2 94 %

ARID3B 18 1 94 %

HSPB2 79 4 95 %

THEMIS2 20 1 95 %

BAK1 266 11 96 %

SULT4A1 27 1 96 %

FUT4 57 2 96 %

GPC6 29 1 97 %

DDX54 29 1 97 %

MBD1 58 2 97 %

PRDM1 118 4 97 %

DTNB 30 1 97 %

LIN28A 91 3 97 %

SIRT7 33 1 97 %

ZBTB7A 67 2 97 %

NCOR2 240 7 97 %

TTPA 35 1 97 %

MAP3K10 35 1 97 %

SGPL1 36 1 97 %

MYO18A 36 1 97 %

EIF4EBP1 217 6 97 %

LIMK1 109 3 97 %

TP53INP1 37 1 97 %

CYTH1 39 1 97 %

SLC7A1 41 1 98 %

date, “Query_Results_for_hsa-miR-125b-5p-
2015-12-05.csv” and
“Target_List_for_hsa-miR-125b-5p-2015-12-
05.txt” for example.

Conclusions
As a special class of ncRNAs, miRNAs have been demon-
strated to play important roles in various biological and
pathological processes. Because miRNAs realize their
functions by regulating respective targets, it is critical to

Table 6 An example set of publications correctly/incorrectly
filtered by “drug resistance”

Gene symbol Total number of
publications
without applying
the “drug resistance”
filter

Total number
of publications
that contain the
MeSH term “drug
resistance”

Total number of
incorrectly filtered
publications

IRF4 130 3 0

ARID3B 18 1 0

SGPL1 36 1 0

ESRRA 131 3 0

PAFAH1B1 129 1 0

ETS1 287 5 0

TTPA 35 1 0

DVL3 60 1 1

THEMIS2 20 1 0

VTCN1 66 1 0

WDR5 128 1 0

ETV6 198 4 0

TAZ 74 1 0

IL6R 300 1 0

DPH2 13 2 0

BTG2 84 1 0

CYP24A1 146 2 0

LIN28A 91 3 0

TRPS1 69 1 0

CSNK2A1 619 5 3

TP53INP1 37 1 0

GPC6 29 1 0

DICER1 291 3 0

identify and analyze miRNA-target interaction data to
better explore and delineate miRNA functions. Semantic
technologies and domain ontologies have been utilized to
overcome limitations of conventional miRNA knowledge
acquisitionmethods. To this end, we followed the research
direction identified in our previous investigations regard-
ing the establishment of common data elements and data
exchange standards in the miRNA research. Specifically,
our major scientific contributions in this paper are:

• We have significantly improved the OMIT ontology
by: (1) following a modularized ontology design; (2)
encoding all 1884 human miRNAs; and (3) setting up
a GitHub project site along with an issue tracker for
more effective community collaboration on the
ontology development. The up-to-date ontology file is
accessible at: http://purl.obolibrary.org/obo/omit.owl.

• Based upon the OMIT, we built the OmniSearch
semantic search system, accessible at: http://

http://purl.obolibrary.org/obo/omit.owl
http://omnisearch.soc.southalabama.edu/index.php/Software
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omnisearch.soc.southalabama.edu/index.php/
Software. Our experimental results demonstrated
promising performance of OmniSearch.
Consequently, more effective, more efficient
miRNA-related knowledge capture has been
achieved.

Finally, some research directions are envisioned as fol-
lows for our future work.
(1) To investigate a new set of filters to perform a wider

scope of ontology reasoning. For example, potential filters
can be developed according to different miRNA cate-
gories such as: oncogenic or tumor-suppressive miRNAs;
individual tissues and/or cell lines in which miRNAs are
expressed; and the gene family group to which miRNAs
belong.
(2) To verify the consistency of contents retrieved

from different data resources is another important future
research topic. It is not trivial to resolve conflicting facts
among different sources.
(3) It would be terrific for users to have more flexible

options in further exploiting the semantics of the domain.
Note that to construct more flexible queries will involve
natural language processing (NLP) techniques, which are
beyond the scope of this paper. Nevertheless, such an
interesting topic can be considered in the future.

Endnote
1There are 103 and 18 OMIT-specific terms and

relations, respectively.
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