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Abstract

Background: The increasing use of ontologies highlights the need for a library for working with ontologies that is
efficient, accessible from various programming languages, and compatible with common computational platforms.

Results: We developed owlcpp, a library for storing and searching RDF triples, parsing RDF/XML documents,
converting triples into OWL axioms, and reasoning. The library is written in ISO-compliant C++ to facilitate efficiency,
portability, and accessibility from other programming languages. Internally, owlcpp uses the Raptor RDF Syntax library
for parsing RDF/XML and the FaCT++ library for reasoning. The current version of owlcpp is supported under Linux,
OSX, and Windows platforms and provides an API for Python.

Conclusions: The results of our evaluation show that, compared to other commonly used libraries, owlcpp is significantly
more efficient in terms of memory usage and searching RDF triple stores. owlcpp performs strict parsing and detects
errors ignored by other libraries, thus reducing the possibility of incorrect semantic interpretation of ontologies. owlcpp is
available at http://owl-cpp.sf.net/ under the Boost Software License, Version 1.0.

Background
Ontologies are being increasingly recognized as import-
ant information resources that capture descriptive infor-
mation in a standardized, structured, and computable
form. One of the most widely used approaches for repre-
senting ontologies is the family of languages referred to
as the Web Ontology Language (OWL) [1]. The OWL
languages were designed to represent ontologies for use
in the Semantic Web and were therefore built on the
W3C semantic web stack, which includes XML, XML
Schema, RDF, and RDF Schema [2–5].
Working with OWL ontologies involves several com-

mon procedures, including parsing ontology documents,
storing them as RDF triples and axioms, querying and
serializing their in-memory representation, passing the
axioms to a reasoner, and performing logical queries.
Given the increasing size of ontologies, it is extremely
important to have software for working with OWL on-
tologies that can perform these procedures efficiently.
During the last decade, many open-source libraries

useful for working with OWL ontologies written in RDF
+XML format have become available. These, however,

fail to fully meet the needs of software developers build-
ing software for working with OWL ontologies. First,
existing libraries do not scale well enough to support
ontologies of over a few million triples [6, 7]. In
addition, the majority of them are implemented in
non-native languages, which are usually less efficient
and involve significant overhead when accessed from
other languages [8]. For example, the libraries with the
most extensive functionality, OWL API [9, 10] and
Apache Jena [11, 12], are implemented in Java. Given
the difficulties of accessing Java from other languages,
it is not surprising that the recent Perl and Python li-
braries ONTO-PERL [13], RDFLIB [14], and FuXi [15],
replicate some of the functionality already present in
OWL API and Jena. Redland RDF framework is imple-
mented in C and provides utilities for parsing, storing,
and querying RDF triples [16, 17]. Its native code base
allows it to more easily expose its API in several other
languages and to be usable on virtually any platform,
including mobile devices [18]. The functionality of
Redland is limited, though, because it does not directly
support OWL.
We sought to fill this gap by developing a library with

the following key features: (i) supports fast loading and
searching of large ontologies, (ii) has a small memory
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footprint, (iii) provides cross-platform compatibility, and
(iv) can be accessed from multiple programming lan-
guages. The resulting library, owlcpp, is designed to sup-
port a common workflow where OWL ontologies
written in RDF/XML are loaded from the file system
and submitted to a reasoner for processing (Fig. 1).
owlcpp is implemented in standard C++ and is aimed
primarily at C++ and Python software developers. Here
we discuss major design features and describe the results
of an evaluation in which we compared the loading time,
query time, and memory footprint of owlcpp and several
other libraries across a set of ontologies of varying size
and composition (Table 1).

Implementation
The design choices in implementing owlcpp were based
on providing the four key features listed above. Specific-
ally, owlcpp is developed in ISO-compliant C++03 [19],
which ensures source-level portability, supports gener-
ation of language bindings, facilitates creation of concise
and expressive APIs [20], and compiles into efficient ex-
ecutables. The API for owlcpp was designed to be concise
without sacrificing usability and performance. In the inter-
est of clarity and thread-safety, class methods and function
arguments were declared const wherever possible.
The compatibility of owlcpp with different platforms was

verified by compiling the library and executing the unit
tests on the following platforms and compilers: Linux,
Ubuntu 14.04 64-bit (gcc v4.8, Clang 3.5); Windows 7
64-bit (Microsoft Visual C++ 13); Mac OS X 10.6.8
(i686-apple-darwin10-gcc 4.2.1); Windows XP 32-bit
(Microsoft Visual C++ 9, MinGW gcc 4.5.2).
Currently, owlcpp comprises three modules, rdf, for

storing and searching RDF terms and triples; io, for load-
ing ontology documents; and logic, for converting triples
into axioms and passing them to a reasoner. The io
module depends on the Redland Raptor [21], libXML2
[22], and iconv [23] libraries, and the logic module de-
pends on FaCT++ [24, 25]. The io and logic modules
have different external dependencies and can be built
and used separately from each other. owlcpp also uses
many of the Boost libraries, e.g., iterator, multi-index,
and file system [26].
The basic features of owlcpp, as well as those of other

key libraries, are shown in Table 2.

rdf module
The rdf module implements classes and methods as
needed to support the RDF standard. To accommodate
the demands of working with large ontologies, the de-
sign priorities for the module were compact in-memory
representation of RDF terms and triples, and their effi-
cient search and retrieval. The Triple_store class is
the main container provided by the module. It supports

storing, retrieving, and searching for prefix IRIs, RDF
terms, ontology document descriptions, and RDF triples
(Fig. 2). The library uses light-weight IDs to point to
prefix IRIs (Ns_id), terms (Node_id), and document
descriptions (Doc_id). The IDs for prefixes and terms

Fig. 1 Workflow of the owlcpp library. Owlcpp loads RDF/XML
documents from the file system, parses them using the Raptor RDF
Syntax library, stores RDF triples in a triple store, converts the triples
to OWL axioms, and passes these to FACT++ for reasoning
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standardized by RDF and OWL are defined by the li-
brary as compile-time constants.
The RDF standard defines three types of terms imple-

mented in owlcpp as the Node_iri, Node_literal,
and Node_blank classes (Fig. 3) [4]. These are
accessed through the interface defined by the abstract
Node class. A Node_iri object represents a prefix IRI
with an optional fragment identifier. A Node_literal
object stores an ID pointing to a Node_iri defining
the datatype (e.g., xsd:date, rdf:PlainLiteral), a
value as an appropriate internal type defined by sub-
classes of Node_literal, and, in the case of a string-
valued literal, a language. A Node_blank object stores
the ID of the document in which it was defined and an
integer uniquely identifying the blank node within the
document. In this way, blank nodes from different docu-
ments added to the same triple store are always kept
distinct.
The ontology document descriptions (Doc_meta

class) store Node_id’s for the ontology and version IRIs
and for the file system path for the ontology document.

The Triple class represents RDF triples by defining
a combination of subject, predicate, and object terms.
Since each term may appear in many triples, the
Triple class stores a light-weight ID rather than a
value for each of the terms. In addition, Triple stores
the ID of the source document.
Since term IDs do not distinguish between different types

of terms, the Triple class cannot, by itself, enforce the
type restrictions on its terms. For example, it is possible to
create a triple where the subject term ID refers to a literal
or where the predicate term ID refers to a blank node.
While such triples will not be created during normal ontol-
ogy parsing, it should still be noted that the Triple class
implements a generalized RDF triple [4].
Searching stored triples is a frequent, performance-

sensitive operation. The types of searches are application
dependent and may involve matching any combination
of subject, predicate, object, and document, while leav-
ing other elements unspecified. To efficiently perform
the required types of searches, owlcpp stores triples in
several indices. Within an index, triples are separated

Table 1 Ontologies used for evaluating owlcpp

Name Size Terms Triples Axioms

MB IRI Literal Blank

OBP [29] 3.0 935 2366 5056 25,924 6109

OBI [30] 6.1 4106 10,115 8709 75,666 32,800

Uberon [31] 62.0 32,078 118,935 87,713 579,388 56,956

OpenGALEN parta 130.5 45,404 8423 771,980 2,004,170 187,893

VTO [37] 149.2 110,418 502,521 103,801 1,358,341 829,796

MESH [38] 193.8 916,056 249,740 4345 1,667,128 1,654,092

DRON [39]b 214.8 344,403 322,903 322,902 2,281,817 1,313,110

Biomodels [40] 253.2 232,214 535,725 481,909 2,686,610 1,905,822

OpenGALEN [41] 546.3 127,042 56,469 3,508,389 8,724,486 555,740
aOpenGALEN8_DD_2_Chapters.owl and its imports
bdron- ndc.owl

Table 2 Basic features of owlcpp and other similar libraries

Feature owlcpp Redland Jena OWL API

Load RDF/XML ✓ ✓ ✓ ✓

Serialize RDF/XML – ✓ ✓ ✓

Turtle I/O – ✓ ✓ ✓

OWL/XML, Functional, Manchester I/O – – – ✓

Search RDF triples ✓ ✓ ✓ –

Convert RDF to axioms ✓ – ✓ ✓

Access FaCT++ reasoner ✓ – – ✓

Access to other reasoners (Chainsaw, JFact, HermiT, Pellet, RacerPro) – – – ✓

Axiom API – – – ✓

C/C++ API ✓ ✓ – –

Python API ✓ ✓ – –

Java API – ✓ ✓
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into bins according to one term and sorted within each bin
according to the other terms. For example, an index in
which triples are binned by subject and sorted by predicate,
object, and document can help to efficiently identify the tri-
ples matching a subject and a predicate. On the other hand,
if matching an object and a predicate is required, an index
configured to bin by object and sort by predicate, subject,
and document is expected to perform better.

Since the indices have a significant memory footprint,
the user can define the number and type of indices dur-
ing compilation. By default, owlcpp uses two indices: (i)
bin by subject and sort by predicate, object, and docu-
ment, and (ii) bin by object and sort by predicate, sub-
ject, and document. These defaults were selected
because they were empirically found to perform best for
axiom generation, as described below.

Fig. 2 A diagram of the owlcpp Triple_store class, objects it stores, and some implemented methods. The Triple_store class serves as
a container for prefix IRIs (Ns_iri), different types of RDF terms, which are accessed through the abstract Node interface, ontology document
descriptions (Doc_meta), and RDF triples (Triple). Each object can be retrieved through an overloaded square bracket operator by supplying
the object’s appropriately typed ID

Fig. 3 The RDF term type hierarchy as implemented in owlcpp. The RDF standard defines three types of terms implemented in owlcpp as
the Node_iri, Node_literal, and Node_blank classes, which are accessed through the abstract Node interface. The abstract
Node_literal class is further subtyped by concrete literal classes that represent the literal values as appropriate internal types, e.g.,
Node_bool for boolean types, Node_int for integers, etc. String-valued literals may also specify the language of their string values
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Searching stored RDF triples is done using the
find_triple method provided by Triple_store.
The method is designed to automatically select the opti-
mal search procedure based on the type of query and
the available triple indices. The results of the search are
returned as an iterator range [27], which is both efficient
and convenient, because the range can be used to test
the success of the search, to obtain the first match, or to
iterate over all matching triples.

io module
The io module provides several methods for loading
RDF/XML ontology documents to a triple store. The
documents can be loaded from the C++ Standard Library
input streams using method load or directly from the
filesystem using load_file. Loading an ontology docu-
ment involves reading data from a stream, parsing XML
structures, interpreting them as RDF statements, convert-
ing the statements into RDF terms and triples, and insert-
ing them into a triple store. Currently, the Redland Raptor
library is used as an RDF parser [16], which, in turn, relies
on libxml [22] for parsing XML and iconv [23] for charac-
ter encoding support.
The io module is designed for early detection of and

recovery from errors. The errors may originate at differ-
ent levels of the document loading process, such as
opening a file or parsing XML, RDF, or OWL. An error
occurring for any reason during document loading
aborts the process by throwing an exception containing
detailed information about its causes. In addition, in-
stead of producing a triple store that contains an un-
certain number of triples from the document that
caused the error, the exception leaves the triple store
in a valid state with none of the document’s content in
the triple store. This behavior allows the user to utilize
the existing triple store content or to attempt loading
the document again.
OWL documents often import the contents of other

documents, identifying them by their ontology IRIs and
version IRIs. The io module provides a mechanism to
automatically load the imports from the file system. To
be able to locate the documents, the module implements
a Catalog class that stores document descriptions and
maps the document, ontology and version IRIs to file
system paths. The module also provides a method for
scanning file system directories for ontology documents
and adding their metadata to the catalog. Supplying a
Catalog object to the load or load_file methods
causes the module to also load the imported documents
to the triple store. Automatically loading documents
from the Internet is not currently supported by the
module because this feature introduces a significant un-
certainty to the success and performance of ontology

loading and adds complex operating system-specific de-
pendencies to the library.

logic module
The logic module is responsible for translating RDF tri-
ples into OWL axioms and facilitating interaction with
reasoners. Translation of triples to axioms is imple-
mented by following the W3C Recommendation [28]. If
the triples do not meet some of the stated requirements,
the process is aborted by throwing an exception contain-
ing detailed information about its causes. Axioms can
be generated from the entire store, or from a subset of
the triples. Generating an axiom associated with a par-
ticular triple usually requires information stored in
other triples, which are found by searching the triple
store. The axiom generation algorithm searches the
triple store by subject, by subject and predicate, and by
predicate and object.
Frequent search operations make configuration of

triple indices an important factor affecting axiom gener-
ation performance. The optimal configuration was iden-
tified empirically by comparing axiom generation times
using eight hand-picked index configurations and three
different ontologies: the Ontology of Biological Pathways
(OBP) [29], the Ontology for Biomedical Investigations
(OBI) [30], and the Integrated Cross-species Anatomy
Ontology (Uberon) [31]. For Uberon, the largest ontol-
ogy of the three, selecting the best index configuration
reduced the axiom generation time by a factor of 2.5
thousand.
Currently, the logic module works with FaCT++, which

is, to our knowledge, the only open-source C/C++ reasoner
library for OWL DL [24]. Logical queries are currently per-
formed directly through the FaCT++ interface.

Concurrency
Although owlcpp does not provide explicit support for
concurrency, similar to C++ Standard Library con-
tainers, it is designed to maximize the number of
thread-safe operations without penalizing performance.
Operations that do not change the state of owlcpp con-
tainers (e.g., all const methods) are guaranteed to be
thread-safe. On the other hand, if multiple threads con-
currently access an owlcpp container object and at least
one of the threads modifies its state (e.g., inserts an RDF
triple), the behavior is undefined. Therefore the user is
expected to ensure that a modifying thread obtains ex-
clusive access to owlcpp containers.

Build system
The build system for owlcpp is based on Boost.Build and
is compatible with both Unix-like and Windows plat-
forms [32, 33]. It is responsible for compilation and link-
ing of static and shared variants of the library, as well as
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the sample executables according to the configuration
provided by the user. The system also builds the re-
quired third-party dependencies from their sources, gen-
erates a Distutils module of owlcpp Python bindings,
and produces API documentation using Doxygen [34].

Unit tests
Unit tests comprise approximately 20 % of the library
source code and cover most of its functionality. A separ-
ate test suite is implemented for each of the owlcpp
modules. The tests for the io and logic modules make
use of many small sample ontology documents that are
part of the project source tree. Some of the documents
are designed to test error detection at the XML, RDF, or
OWL level. Some of the sample documents used by the
logic module tests were adapted from the OWL 2 Test
Cases [35]. The tests verify expected consistency of the
ontologies and perform more specific logical queries. All
unit tests are executed by the build system with a single
command.

Python bindings
The current version of owlcpp includes bindings for
Python developed using the Boost.Python library. The
functionality of the bindings is verified by a separate
unit test suite. The bindings and their dependencies
are packaged by the build system into a distributable
Python module. APIs for other programming lan-
guages can also be exposed from owlcpp relatively eas-
ily and with minimal overhead. In future versions of
owlcpp, these will be provided with the help of the
SWIG library [36].

Results
Evaluation
To evaluate owlcpp, we compared the document loading
time, triple query time, and memory foot print of owlcpp
with those of Redland, Jena, and OWL API. Evaluation
was conducted using five ontologies of varying size and
composition: the Vertebrate Taxonomy Ontology (VTO)
[37], Medical Subject Headings ontology (MESH) [38],
Drug Ontology (DRON) [39], Biomodels Ontology [40],
and OpenGALEN [41]. In addition, a one quarter por-
tion of OpenGALEN (OpenGALEN part) was used. The
statistics of the ontologies, including filesystem foot-
prints and the counts for RDF terms, triples, and axioms
are listed in Table 1.
To test the ability of the library to process large ontol-

ogies on off-the-shelf hardware, the tests were con-
ducted on an underpowered, by current standards,
computer. Performance was tested on a laptop with an
Intel Core2 Duo T7700 2.40GHz CPU, 3GB of RAM,
running Linux Ubuntu 14.04 64-bit. The performance of
Java libraries was tested using Oracle Java JDK v1.7.0_51

with a 2 GB maximum memory pool (-Xmx2048m). Un-
less noted otherwise, owlcpp was compiled with gcc v4.8
using the default triple index configuration. Redland v1.0.13
with a hashed in-memory store, Jena v2.12.1 with an in-
memory RDF store, and OWL API v4.0.1 were used for
comparison, also with their default settings. The source
code for performance tests can be found in Additional file
1. All testing was done using owlcpp v0.3.5.

Ontology loading performance
To evaluate ontology loading performance, each of the
six ontologies was loaded into each of the four libraries.
Some libraries were unable to load the larger ontologies.
Jena was unable to load the complete OpenGALEN
ontology, while Redland failed to load the complete
OpenGALEN, Biomodels, and DRON ontologies. An at-
tempt to load the complete OpenGALEN into Redland
on a system with 32GB of RAM was also unsuccessful.
The loading rates (size of the ontology file system foot-
print divided by the recorded loading time) is shown in
Fig. 4a. The ontology loading rate of owlcpp ranges from
3.1 to 6.9 MB/s, while the range for the other libraries is
from 2.6 to 7.2 MB/s. The owlcpp loading rate is faster
than that of Jena for the five ontologies Jena could load
and faster than that of Redland for two of the three on-
tologies Redland could load. Redland had a faster load-
ing rate than owlcpp for MeSH. In addition, the owlcpp
loading rate is faster than that of OWL API for four of
the six test ontologies. OWL API has a faster loading
rate for both OpenGALEN full and part.

Memory footprint
The amount of memory required by each library during
ontology loading was estimated by probing the resident
set size of the process virtual memory. The peak RAM
utilization normalized by the size of the ontology on the
file system is shown in Fig. 4b. Of the libraries tested,
owlcpp had the smallest memory footprint for all ontol-
ogies ranging from 1.8 to 3.2 bytes of RAM required for
each byte on the file system. The same ratio ranged from
7.0 to 11.5 for Redland, from 6.8 to 10.7 for Jena, and
from 2.6 to 7.0 for OWL API.

Triple search efficiency
Searching by subject and predicate is the most common
triples search during axiom generation. Therefore, the
triple search performance of the libraries was tested by
repeating queries where the subject was selected at ran-
dom, and the predicate was rdfs:subClassOf. For
each query, all matching triples were identified and
counted. The number of queries for each test was se-
lected so as to keep the test time at about one minute.
The number of queries performed by each library di-
vided by the elapsed time is shown on Fig. 4c. The
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owlcpp library showed significantly higher search rates
ranging from 3.0 to 3.2 million queries per second (MQ/s).
Jena showed significantly lower rates from 0.53 to
0.83 MQ/s. The rates for Redland ranged from 0.2 to
0.69 MQ/s. Note that OWL API was not included in this
evaluation because it stores axioms rather than triples.

Accuracy and error detection
In addition to evaluating the performance of owlcpp, we
wanted to assess the accuracy of parsing and axiom gen-
eration. This was done using the OWL 2 Test Cases
[35], some of which are incorporated into owlcpp unit
tests. Further testing was done during the development
of the Ontology of Biological Pathways (OBP) [29] by
executing queries formulated by domain experts and
comparing the results with ones from Protégé running
with either FaCT++ or the HermiT reasoner plug-in
[42]. The results of the queries were always identical.
Strict error checking has proven to be an important

feature of owlcpp, helping to avoid incorrect semantic
interpretation of ontologies and facilitating their devel-
opment. Examples of errors detected by owlcpp but ig-
nored by OWL API and Jena are undeclared property
and annotation predicates and misspelled standard
OWL terms.

Discussion
owlcpp is a C++ library providing support for storing
and searching RDF terms and triples, for loading RDF/
XML documents along with their imports into a triple
store, for generating OWL axioms based on stored tri-
ples, and passing axioms to the FaCT++ reasoner. To
the best of our knowledge, owlcpp is the first C++ library
for working with OWL ontologies.
Our primary goal was to design a library for software

developers that would scale well for working with large
ontologies. To facilitate use by software developers, we
designed owlcpp to have a concise and expressive C++
API and an efficient Python API. For example, loading
an ontology file into an owlcpp triple store can be

Fig. 4 Performance comparison of the owlcpp, Redland, Jena, and OWL
API libraries. The measurements were done using the following
ontologies (by size, see Table 1): part of OpenGALEN (OG part), VTO,
MESH, DRON, Biomodels, and complete OpenGALEN (OG full). The bars
showing performance measurements are color-coded by library and
grouped by ontology. The standard deviations of the measurements are
shown as error bars. The corresponding bars are not shown if ontology
loading failed. a shows ontology loading rates—ontology size divided
by loading time. b shows the RAM footprint of each library after
ontology loading normalized by the filesystem size of the ontology.
c shows triple store querying rates. Each query identifies all triples
matching a combination of a random subject and a constant
predicate. Triple querying rates for OWL API are not shown be-
cause this operation is not supported
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accomplished with just two lines of code, whereas the
same operation through the Redland Raptor library API
requires over a dozen lines [43]. The API for RDF triple
store search is another example. In owlcpp, a single
method, Triple_store::find_triple(), can be
used to search for triples matching a specific subject,
predicate, object, document, or any combination thereof.
The search is performed without sacrificing performance
by selecting the most suitable triple index at compile
time. The result of the search, an iterator range, can be
used transparently to determine whether the triple store
contains a triple matching the specified condition, to re-
trieve the first matching triple, or to iterate over all
matching triples. On the other hand, the triple stores of
both Redland and Jena define over ten different methods
for searching triples.
Of critical importance to the utility of owlcpp is ensur-

ing its scalability for use with large ontologies. Thus, we
designed owlcpp to have a compact, in-memory storage
of RDF terms and triples, efficient indexing of stored tri-
ples, and no virtual machine requirement. The latter fa-
cilitates owlcpp’s deployment in HPC environments. To
evaluate the scalability of owlcpp, we compared its mem-
ory footprint, ontology document loading time, and
triple query time with those of Jena, Redland, and
OWLAPI. We found that owlcpp has a smaller memory
footprint than the other three libraries for all ontologies
tested (Fig. 4b), and we find that the ontology document
loading time is faster for owlcpp than the other libraries
for all tests with two exceptions (Fig. 4a): Redland was
faster loading MesH, and OWLAPI was faster loading
OpenGALEN or a part of OpenGALEN. The lower per-
formance of owlcpp with the MeSH ontology is probably
due to this ontology’s low ratio of triples to IRIs. In
MeSH, each IRI appears, on average, in 1.8 triples,
whereas in other ontologies this ratio ranges from 6.6 to
69. This property of MeSH increases the relative cost of
IRI parsing, while diminishing the benefit of utilizing IRI
IDs. Ontology loading by owlcpp is slower for OpenGA-
LEN, either full or part, than for the other ontologies.
This is probably due to a 50 % greater number of triples
per megabyte in the OpenGALEN ontology.
While interpreting the performance measurements of

the owlcpp, Redland, Jena, and OWL API libraries, it is
important to note significant differences in their archi-
tecture. owlcpp and Redland are natively-compiled li-
braries, whereas Jena and OWL API run under Java
virtual machine and exhibit less deterministic perform-
ance and memory footprint due to just-in-time compil-
ation and garbage collection. Furthermore, while owlcpp,
Redland, and Jena store the documents in memory as a
set of RDF triples, OWL API immediately converts the
triples into axioms and annotations, which, arguably,
can be stored in memory more compactly. Nevertheless,

the performance comparison is useful because it helps
predict the hardware requirements for a task and reflects
on the overall user experience.
There are several limitations of owlcpp, which will be

addressed in future versions. First, RDF/XML is the only
OWL format currently supported by owlcpp. Future ver-
sions will introduce support for additional syntaxes, par-
ticularly Manchester, Turtle, and OWL/XML. Second,
owlcpp doesn’t currently provide a Java API, and is
therefore not interoperable with most of the currently
available RDF/OWL tools. In future versions, we will
provide a Java API. Third, although it is possible to
manually add more nodes and triples to an owlcpp triple
store, it is not currently possible to save the new RDF
graph. Another important limitation of owlcpp is the
lack of a description logic expression and axiom inter-
face for axiom editing. Future versions will include this
and will also improve readability of error messages, pro-
vide options for less strict parsing and axiom generation,
and include a module for batch execution of OWL 2
Test Cases. Finally, future versions of owlcpp will pro-
vide an axiom-based in-memory data structure.

Conclusions
owlcpp presents a number of benefits for developers and
users. Its compact datamodel and efficient execution
make it possible to work with large ontologies using off-
the-shelf hardware. As a native library, owlcpp does not
depend on a virtual machine installation, facilitating its
deployment in HPC environments. The C++ and Python
APIs of owlcpp are concise and expressive and facilitate its
integration with other software modules. Currently, owlcpp
is used in many groups to work with biological ontologies
as well as in other fields including virtual reality, robotics,
image analysis, and answer set programming.

Availability and requirements
Project name: owlcpp
Project home page: http://owl-cpp.sourceforge.net/
Operating system(s): Cross-platform (tested: Linux,
Windows, Mac)
Programming language: C++, Python
Other requirements: Boost, libxml2, iconv (under
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