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Abstract
Multiple metrics are used when assessing and validating the performance of quantitative structure–activity relation-
ship (QSAR) models. In the case of binary classification, balanced accuracy is a metric to assess the global perfor-
mance of such models. In contrast to accuracy, balanced accuracy does not depend on the respective prevalence 
of the two categories in the test set that is used to validate a QSAR classifier. As such, balanced accuracy is used 
to overcome the effect of imbalanced test sets on the model’s perceived accuracy. Matthews’ correlation coefficient 
(MCC), an alternative global performance metric, is also known to mitigate the imbalance of the test set. However, 
in contrast to the balanced accuracy, MCC remains dependent on the respective prevalence of the predicted catego-
ries. For simplicity, the rest of this work is based on the positive prevalence. The MCC value may be underestimated 
at high or extremely low positive prevalence. It contributes to more challenging comparisons between experiments 
using test sets with different positive prevalences and may lead to incorrect interpretations. The concept of balanced 
metrics beyond balanced accuracy is, to the best of our knowledge, not yet described in the cheminformatic litera-
ture. Therefore, after describing the relevant literature, this manuscript will first formally define a confusion matrix, 
sensitivity and specificity and then present, with synthetic data, the danger of comparing performance metrics 
under nonconstant prevalence. Second, it will demonstrate that balanced accuracy is the performance metric accu-
racy calibrated to a test set with a positive prevalence of 50% (i.e., balanced test set). This concept of balanced accu-
racy will then be extended to the MCC after showing its dependency on the positive prevalence. Applying the same 
concept to any other performance metric and widening it to the concept of calibrated metrics will then be briefly 
discussed. We will show that, like balanced accuracy, any balanced performance metric may be expressed as a func-
tion of the well-known values of sensitivity and specificity. Finally, a tale of two MCCs will exemplify the use of this 
concept of balanced MCC versus MCC with four use cases using synthetic data.

Scientific contribution  This work provides a formal, unified framework for understanding prevalence dependence 
in model validation metrics, deriving balanced metric expressions beyond balanced accuracy, and demonstrating 
their practical utility for common use cases. In contrast to prior literature, it introduces the derived confusion matrix 
to express metrics as functions of sensitivity, specificity and prevalence without needing additional coefficients. The 
manuscript extends the concept of balanced metrics to Matthews’ correlation coefficient and other widely used per-
formance indicators, enabling robust comparisons under prevalence shifts.

Keywords  Prevalence, Prevalence shift, Imbalanced, Balanced Matthews’ correlation coefficient, Calibrated metrics, 
Balanced metrics, Model validation, QSAR, Classification models

Introduction
Quantitative structure–activity relationship 
(QSAR) models play a crucial role in predicting and 
understanding the relationship between the chemical 
structure of a compound and its biological activity. 
These models use algorithms and statistical techniques 
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to predict the activity or property of a compound based 
on its structural features. QSAR models have found wide 
applications in various fields, including drug discovery, 
toxicology, environmental sciences, and chemical risk 
assessment.

However, the perception of the reliability and accuracy 
of QSAR models heavily depends on the validation 
methodology. Model validation is a critical step in 
assessing the performance and generalizability of 
QSAR models before they can be confidently applied 
in real-world scenarios. The validation process and 
experimentation aim to determine the model’s predictive 
power, its ability to generalise to unseen compounds, and 
its overall robustness [1, 2].

QSAR classification models are specifically designed 
to predict the class or category of a compound based on 
its structural features. They are commonly used to pre-
dict binary biological behaviour, such as toxicity (toxic/
nontoxic), pharmacology (active/inactive), or other 
categorical endpoints. The internal validation for the 
development of QSAR classification models involves the 
construction of a confusion matrix from which statistical 
metrics may be computed to evaluate their performance. 
To evaluate the performance of a QSAR classification 
model, various statistical metrics may be calculated from 
a confusion matrix. These metrics include accuracy, sen-
sitivity, specificity, positive and negative predictivity, 
Cohen’s kappa coefficient, F1 score, Matthews’ correla-
tion coefficient, informedness (i.e., sum of sensitivity and 
specificity minus one) and markedness (i.e., sum of posi-
tive and negative predictivity values minus one). Accu-
racy measures the overall correctness of the predictions, 
while sensitivity and specificity indicate the model’s abil-
ity to correctly identify positive and negative instances, 
respectively. Positive prediction evaluates the model’s 
ability to correctly classify positive instances. External 
validation is also crucial for assessing the classifier’s per-
formance. In external validation, the classification model 
is tested on an independent dataset that was not used 
during the model development process. External valida-
tion ensures that the model can accurately predict the 
class of compounds beyond the dataset it was trained on 
and indicates its real-world applicability.

However, except for sensitivity and specificity, these 
performance metrics are dependent on the positive 
prevalence of datasets used during the validation 
study and where the positive prevalence quantifies 
the imbalance of the dataset with respect to positive 
instances. As a result, comparing performance metrics 
based on datasets with different positive prevalences may 
lead to incorrect conclusions.

Balanced accuracy, as well as sensitivity and specific-
ity, is a well-known performance metric that naturally 

addresses this issue because it is independent of preva-
lence. Matthews’ correlation coefficient is also known 
to mitigate the issue around imbalanced datasets. How-
ever, in contrast to the balanced accuracy, this work will 
demonstrate that Matthews’ correlation coefficient is not 
fully immune to strong dataset imbalance and remains 
dependent on the positive prevalence. This dependency 
to positive prevalence can lead to misinterpretation of 
results when unbalanced metrics such as accuracy or 
Matthews’ correlation coefficient are compared under 
varying prevalence. Not accounting for prevalence effects 
may lead to incorrect model validations and erroneous 
conclusions. Greater awareness and adoption of cali-
brated/balanced metrics would mitigate these risks and 
improve the validity of model benchmarking in cases of 
nonconstant prevalence. Therefore, the main aims of this 
manuscript are threefold: to synthesise and harmonise 
previous work on prevalence dependence and balanced/
calibrated metrics from across disciplines into a unified 
framework relevant for cheminformatics, provide new 
insights by deriving and extending the concept of bal-
anced/calibrated metrics beyond balanced accuracy, and 
demonstrate the practical utility of balanced metrics for 
common use cases in cheminformatic model validation 
where prevalence shifts may occur.

Related work
When evaluating a QSAR classification model, there 
are independent publications that discuss, study and/
or propose a solution to the challenge of working under 
nonconstant or extreme positive prevalence in different 
scientific domains, such as machine learning, pattern 
recognition and screening tests [1, 3–9]. However, 
as far as we are aware, this is not described in the 
cheminformatic literature. Given the large number of 
performance metrics that may be calculated from a 
confusion matrix and the different methodologies that 
exist to tackle the problem, each publication discusses 
and studies the issue with various degrees of breadth, 
depth and perspective.

Luque et  al. [3] propose an imbalance coefficient 
δ to quantify the degree of class imbalance in binary 
classification, analyse and categorise metrics by their 
imbalance bias, find geometric mean and informedness 
as most robust, and offer bias-corrected balanced 
metric versions to remove class imbalance effects when 
assessing classifier performance. Siblini et al. [4] propose 
calibrating precision-based metrics such as F1 and 
area under the precision-recall curve by reweighting 
true and false positives to match a reference positive 
class ratio, making the metrics more robust to class 
imbalance changes while retaining sensitivity to model 
performance changes, and recommend reporting the 
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class ratio for proper interpretation. Brabec et  al. [5] 
demonstrated that the positive predictivity and ranking 
of models by precision-based metrics depend directly on 
the class imbalance ratio, unlike the sensitivity and false 
positive rate, with mathematical adjustments preferred 
over subsampling to specified ratios; they argued for 
evaluation via plots spanning imbalance levels rather 
than individual metric values and mandatory reporting 
of class priors. Cooper II et  al. [6] recommend using 
sensitivity and specificity as the primary measures to 
characterise the validity of carcinogen screening tests 
since positive predictivity also depends on carcinogen 
prevalence, emphasising the importance of reporting 
details on test substances and positivity criteria given 
the limitations of single summary indices. Heston et  al. 
[7] criticise a study for incomplete reporting of negative 
predictivity of cardiac Magnetic Resonance Imaging 
without overall disease prevalence, which is needed for 
interpretation, and suggest reporting a standardised 
negative predictivity calculated at a fixed 50% prevalence 
along with the actual value to enable better comparison 
of diagnostic test performance intrinsically. Cayley et al. 
[1] argue that no single metric fully captures QSAR 
model performance for predicting mutagenicity, and 
proper expert interpretation of validation statistics 
requires considering factors such as chemical space, 
data balance, quality, model transparency, and suitability 
for decision support. Jeni et al. [8] find facial action unit 
detection metrics such as accuracy, F1, and Cohen’s 
kappa coefficient are attenuated under class imbalance, 
while the area under the receiving operating curve is 
robust, recommending that skew-normalised scores be 
reported alongside original metrics to enable unbiased 
comparisons across different datasets. Altman et  al. [9] 
highlights that although positive and negative predictive 
values are vital for assessing real-world diagnostic 
performance, their interpretation requires careful 
consideration of the disease prevalence in the tested 
population, which substantially impacts the values. 
Although equations to calculate the positive and negative 
predictivity values for any prevalence, sensitivity and 
specificity are described, their origin or derivation is 
not. Other studies use mathematical expressions of the 
balanced positive and balanced negative predictivity 
values but do not explain or reference where they come 
from [10–12]. These mathematical expressions and the 
proof of their equivalence are described in Additional 
file 3.

The overarching theme across these prior publications 
is the need to carefully consider prevalence when 
evaluating classification models, as shifts or changes in 
prevalence can substantially impact certain performance 
metrics. This can lead to misinterpretation of validation 

results if the effect of prevalence is not accounted 
for when comparing metrics between datasets or 
experiments where prevalence differs. Solutions 
include the use of sensitivity and specificity, which are 
independent of the prevalence, and taking and reporting 
the value of the prevalence when looking at dependent 
performance metrics or balancing/calibrating them. The 
latter is the topic of this work.

Definitions of the problem
Definition
In the case of binary classification, a confusion matrix 
is a two-by-two table that summarises the performance 
of a QSAR classification model against a test set. The 
test set is made of N instances in total. The class of each 
instance is known and is either positive or negative. 
When a QSAR classification model is validated against 
a test set, four prediction types are possible: true posi-
tive, true negative, false positive and false negative. A 
prediction is a true positive (TP) when the model pre-
dicts a positive instance correctly and a false positive 
(FP) if the class of the instance is negative. A prediction 
is a true negative (TN) when the model predicts a nega-
tive instance correctly and a false negative (FN) if the 
class of the instance is positive. The count of these pre-
diction types is tabulated where the rows are the actual 
class, and the columns are the predicted class, or vice 
versa. The resulting table is a confusion matrix, as illus-
trated in Fig. 1.

The total number of counts is N, the total number of 
instances in the test set. The confusion matrix has three 
degrees of freedom and may be used to compute a 
large range of statistics. Such statistics include positive 
prevalence, which is the relative frequency of positive 
instances within the test set as defined in Eq.  (1). The 
relative frequency of true positives within the total 
number of positive instances of the test set is defined 

Fig. 1  A confusion matrix summarises the counts of TP (true 
positive), FN (false positive), FP (false positive) and TN (true negative)
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as the sensitivity in Eq.  (2). The relative frequency of 
true negatives within the total number of negative 
instances of the test set is defined as the specificity in 
Eq. (3). Sensitivity and specificity may also be described 
as conditional probabilities but are out of the scope of 
this manuscript.

Equation  1. Positive prevalence definition from the 
prediction types tabulated in a confusion matrix.

Equation 2. Sensitivity definition from the prediction 
types tabulated in a confusion matrix.

(1)
Pre =

TP + FN

N
where N = TP + FN + FP + TN

(2)Sen =
TP

TP + FN

Equation  3. Specificity definition from the prediction 
types tabulated in a confusion matrix.

The total number of instances N and these three 
statistics fully characterise a unique confusion matrix 
and therefore fully describe the performance of a model 
against a test set. The prevalence and the total number of 
instances N characterise the test set, whereas sensitivity 
and specificity characterise the performance of the 
model.

When a model is validated against more than one test 
set, the variation in the values of the sensitivity and the 
specificity allows the modeller to describe the relative 
performance of a model. Based on the variation in sen-
sitivity and specificity values, there exist three broad 
descriptions of the model performance. One of them 
is subjective and use case specific. This scenario occurs 
when the variations in sensitivity and specificity change 
in opposite directions (e.g., the sensitivity increases 
while the specificity decreases). On the other hand, the 
two other scenarios are objective and occur when the 
variations in both sensitivity and specificity change in the 
same direction. When both variations are positive, or in 
other words, both sensitivity and specificity increase, one 
may say that the model performs better (Fig. 2). In con-
trast, when both variations are negative, the model per-
forms worse.

This scenario is exemplified with synthetic data, as 
a model is validated against an external test set and is 
expected to underperform when compared to an internal 
test set. The synthetic data describe the performances of 

(3)Spe =
TN

FP + TN

Fig. 2  Model performance improves when the variation in sensitivity 
and specificity is greater than zero. Both positive variations indicate 
a relative increase in the count of true positive and true negative 
instances with a concomitant relative decrease in false positive 
and false negative

Fig. 3  A model validated against an internal and external dataset of the same prevalence with their respective confusion matrix and their value 
of sensitivity, specificity, prevalence and their respective qualitative variation. Both the variation in sensitivity and specificity decreases; the model 
underperforms, as one would expect when exposed to the external dataset
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a model validated against an internal and external dataset 
of both positive prevalence 0.900 (i.e., 90.0% of instances 
have a positive class) and a total of instances of 2000 and 
1000, respectively. For each dataset, the confusion matrix 
and the values of sensitivity, specificity, prevalence and 
their respective qualitative variation are reported in 
Fig.  3. Although both confusion matrices display good 
performance for the model under investigation, both sen-
sitivity and specificity decreased, which indicates, with 
no ambiguity and as expected, that the model underper-
formed when exposed to the external dataset.

Many other statistics may be defined and computed 
from a confusion matrix. Such statistics include accu-
racy, balanced accuracy, Matthews’ coefficient correla-
tion, positive predictivity, negative predictivity, Cohen’s 
kappa coefficient, F1 score, informedness and marked-
ness. The above example in Fig. 3 can be completed with 
the values of additional statistics, and as expected, all 
vary in the same direction. A decrease is observed for all 
the reported statistics, including accuracy and Matthew’s 
coefficient correlation, as shown in Fig.  4. For the pur-
pose of illustrating the main concepts, this manuscript 

Fig. 4  Values of the Matthews correlation coefficient, accuracy, balanced accuracy, positive predictivity, negative predictivity and Cohen’s kappa 
coefficient. The statistics that will be discussed in detail are in bold

Fig. 5  A model validated against an internal and external dataset of different prevalence with their respective confusion matrix and their value 
of sensitivity, specificity, prevalence and their respective qualitative variation. Both the variation in sensitivity and specificity decreases: the model 
underperforms as one would expect when exposed to the external dataset
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will focus on accuracy and Matthews’ coefficient correla-
tion, and we will later generalise the proposed principles 
to other metrics.

Examples of metrics benefiting from these principles 
are summarised in Additional file 3.

The issue of comparing performance metrics 
under nonconstant prevalence
In the previous example, the prevalences of the internal 
and external test sets were the same. When this state-
ment is no longer true, unexpected results may arise and 
lead to incorrect conclusions. The synthetic data shown 
in Fig.  5 represent the data of a model that is validated 
with an external and an internal dataset with a total num-
ber of instances of 2000 and 1000 and a prevalence of 
0.900 and 0.600, respectively. The corresponding external 
confusion matrix has changed, but the values of sensitiv-
ity and specificity remain identical. Therefore, one may 
again conclude that the model’s performance decreases 
when exposed to the external dataset.

However, this time, when considering other perfor-
mance metrics, we can observe that some metrics are 
increasing. For instance, metric values such as Matthews’ 
correlation coefficient, accuracy, positive predictivity, and 
Cohen’s kappa coefficient increase and therefore would 
inform the observer that the model performs better when 
validated against the external dataset, which feels coun-
terintuitive given that both sensitivity and specificity 
decrease (Fig. 6).

Balanced accuracy variation, on the other hand, is 
consistent with the expected outcome, and as will be 
demonstrated later in this manuscript, balanced accu-
racy is the performance metric accuracy calibrated 
to a test set with a prevalence of 0.500 and therefore 
prevalence-independent.

The same principle of recalibrating the metric to a 
balanced prevalence can be generalised and applied to 
other metrics and is the topic of the following section.

Towards balanced performance metrics
This section will derive a confusion matrix expressed 
with sensitivity, specificity, prevalence and the total 
number of instances N in a dataset in place of the four 
types of prediction: true positive, true negative, false 
positive and false negative. This derived confusion matrix 
may be used to express any performance metrics as a 
function of sensitivity, specificity and prevalence, and 
in this manuscript, we describe this translation in detail 
for accuracy and Matthews’ correlation coefficient. The 
derivation for other performance metrics is presented in 
Additional file 3.

Derived confusion matrix
To turn a confusion matrix into a derived confusion 
matrix, the four types of prediction need to be expressed 
as functions of either sensitivity or specificity, prevalence 
and the total number of instances N.

Fig. 6  Values of the Matthews correlation coefficient, accuracy, balanced accuracy, positive predictivity, negative predictivity and Cohen’s kappa 
coefficient and their qualitative variation. Values in bold indicate an unexpected variation when compared to an increase in both sensitivity 
and specificity. Values in italics show an over- or underestimated quantitative variation
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Eq.  1 may be rearranged to give the count of positive 
and negative instances of a test set as a function of preva-
lence and N.

and

Thus, the count of positive instances is the sum of true 
positive and false negative counts and is shown in Eq. (4).

Equation 4. Count of positive instances as a function of 
prevalence and N.

The count of negative instances is the sum of the true 
negative and false positive counts and is shown in Eq. (5).

Equation 5. Count of negative instances as a function of 
prevalence and N.

The expressions of Eqs.  (4) and  (5) appear in the 
denominator of Eq.  (2) for sensitivity and Eq.  (3) for 
specificity, respectively, where they can be substituted 
and rearranged to give an expression of the true positive 
and negative counts. Starting from Eq. (2) for sensitivity

and starting from Eq. (3) for specificity

Pre =
TP + FN

N

⇔ TP + FN = Pre · N

Pre =
TP + FN

N

⇔ 1− Pre = 1−
TP + FN

N

=
FP + TN

N

⇔ TN + FP = (1− Pre) · N

(4)TP + FN = Pre · N

(5)FP + TN = (1− Pre) · N

Sen =
TP

TP + FN
=

TP

Pre · N

⇔ TP = Sen · Pre · N

give respectively the true positive count as a function of 
sensitivity, prevalence and N shown in Eq.  (6) and the 
true negative count as a function of specificity, prevalence 
and N shown in Eq. (7).

Equation  6. True positive count as a function of 
sensitivity, prevalence and N.

Equation  7. True negative count as a function of 
specificity, prevalence and N.

Eq. (2) for sensitivity may be rearranged as follows:

where the denominator may be substituted by Eq. (4) and 
rearranged. Thus:

which gives the false negative count as a function of 
sensitivity, prevalence, and N, as shown in Eq. (8).

Equation  8. False negative count as a function of 
sensitivity, prevalence and N.

In the same manner, Eq.  (3) for specificity may be 
rearranged as follows:

Spe =
TP

TP + FN
=

TN

(1− Pre) · N

⇔ TN = Spe · (1− Pre) · N

(6)TP = Sen · Pre · N

(7)TN = Spe · (1− Pre) · N

Sen =
TP

TP + FN

1− Sen = 1−
TP

TP + FN
=

FN

TP + FN

⇔ TN = Spe · (1− Pre) · N

1− Sen =
FN

TP + FN
=

FN

Pre · N

⇔ FN = (1− Sen) · Pre · N

(8)FN = (1− Sen) · Pre · N

Fig. 7  From the confusion matrix to the derived confusion matrix
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where the denominator may be substituted by Eq. (5) and 
rearranged. Thus:

which gives the false positive count as a function of 
specificity, prevalence and N, as shown in Eq. (9).

Equation  9. False positive count as a function of 
specificity, prevalence and N.

Thus, the four prediction types of a confusion matrix 
can be substituted with Eqs.  (6), (7), (8) and (9) to give 
the derived confusion matrix, as shown in Fig. 7.

The equivalence between a confusion matrix and a 
derived confusion matrix demonstrates two points. 
First, given that the performance of a model against 
a test set is fully described by its confusion matrix, it 
is also true for sensitivity, specificity, and prevalence. 
Second, from the derived confusion matrix, any 
metric that is defined as a function of the four types 
of prediction may also be expressed as a function of 
sensitivity, specificity and prevalence, where N cancels 
out to yield a metric that is normalised to a specific 
range. For example, sensitivity, specificity and accuracy 
range from 0 to 1, and Matthews’ correlation coefficient 
ranges from − 1 to 1.

From accuracy to balanced accuracy
Accuracy is defined as the relative frequency of correct 
predictions relative to the total number of instances in 
the test set. The accuracy expression is shown in Eq. (10).

Equation  10. Accuracy definition from the prediction 
types tabulated in a confusion matrix.

The number of true positives and true negatives can 
be substituted with the corresponding expression of the 
derived confusion matrix and simplified to give accuracy 
as a function of sensitivity, specificity and prevalence, as 
shown in Eq.  (11). The details of this derivation can be 
found in Additional file 3.

Spe =
TN

FP + TN

1− Spe = 1−
TN

FP + TN
=

FP

FP + TN

1− Spe = 1−
FP

FP + TN
=

FP

(1− Pre) · N

⇔ FP = (1− Spe) · (1− Pre) · N

(9)FP = (1− Spe) · (1− Pre) · N

(10)
Acc =

TP + TN

N
where N = TP + FN + FP + TN

Equation  11. Accuracy as a function of sensitivity, 
specificity and prevalence.

Equation  (11) shows that accuracy is the average of 
sensitivity and specificity weighted by the prevalence and 
the negative prevalence, respectively, which is one minus 
the prevalence. At a prevalence of 0.500 (i.e., Pre = 0.500), 
Eq. (11) may be rewritten as follows:

and give the expression of balanced accuracy. Therefore, 
balanced accuracy is the performance metric accuracy 
calibrated to a test set with a positive prevalence of 50% 
(i.e., balanced test set). Consequently, the expression 
of accuracy in Eq.  (11) allows the modeller to calibrate 
accuracy at a given prevalence. For example, Acc0.9 is the 
accuracy calibrated to a test set with a prevalence of 90%. 
The expression of accuracy in Eq.  (11) allows the mod-
eller to visualise how accuracy depends on prevalence to 
given values of sensitivity and specificity. Eq. (11) may be 
rearranged as shown below:

(11)AccPre = Sen · Pre+ Spe · (1− Pre)

Acc0.5 = Sen ·
1

2
+ Spe ·

(

1−
1

2

)

= Sen ·
1

2
+ Spe ·

1

2

=
Sen+ Spe

2
= Bal.Acc

AccPre = Sen · Pre + Spe · (1− Pre)

= Sen · Pre + Spe − Spe · Pre

= (Sen− Spe) · Pr e + Spe

Fig. 8  Linear relationship between accuracy and prevalence 
at constant values of sensitivity and specificity: 0.71 and 0.89, 
respectively. The dot marks the balanced accuracy
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and give a linear relationship between accuracy and prev-
alence when the values of sensitivity and specificity are 
constant. In other words, this relationship gives the value 
of accuracy for prevalence ranging from 0 to 1 when sen-
sitivity and specificity are fixed. Figure  8 illustrates this 
linear relationship when sensitivity and specificity equal 
0.71 and 0.89, respectively. Additional files 2 and 4 pro-
vide R scripts to be used in RStudio and Additional file 1 
is a JupyterLab notebook that allows the user to set values 
of sensitivity and specificity and visualise how it affects 
the value of accuracy.

Sensitivity minus specificity (i.e., Sen – Spe) is the 
slope, and specificity (i.e., Spe) is the value of accuracy 
when prevalence tends to zero. When the prevalence 
tends towards one, the accuracy tends towards sensitivity. 
When sensitivity and specificity tend to be similar, the 
slope tends to be zero, and the accuracy tends to be the 
same as the sensitivity and specificity. Therefore, accuracy 
becomes independent of the prevalence when sensitivity 
and specificity values tend to be the same, which would 
be represented by a horizontal line. In other words, the 
prevalence has no effect when sensitivity and specificity 
have the same value. In the same vein, when the values 
of sensitivity and specificity diverge, the slope increases. 
Consequently, accuracy may be over- or underestimated 
when the prevalence value tends to be high or low.

Form Matthews’ correlation coefficient to balanced 
Matthew’s correlation coefficient.
Matthews’ correlation coefficient indicates the 
correlation that exists between the actual and predicted 
classes. A value of one or minus one indicates a perfect 
positive or negative correlation, respectively, whereas 
a value of zero indicates an absence of correlation. 
Matthews’ correlation coefficient expression as a function 
of the four prediction types is shown in Eq. (12).

Equation  12. Matthews’ correlation coefficient 
definition from the prediction types tabulated in a 
confusion matrix.

Like accuracy, Matthew’s correlation coefficient can 
be expressed as a function of sensitivity, specificity, and 
prevalence, as shown in Eq. (13). The details of this deri-
vation can be found in the Additional file 3.

(12)

MCC =
TP · TN − FP · FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

(13)MCCPre
=

Sen+ Spe − 1
√

[

Sen+ (1− Spe) (1−Pre)
Pre

][

Spe + (1− Sen) Pre
(1−Pre)

]

Equation  13. Matthews’ correlation coefficient as a 
function of sensitivity, specificity and prevalence.

In the same manner as accuracy at a prevalence of 
0.500 (i.e., Pre = 0.500), Eq. (13) may be rewritten to give 
the balanced Matthews’ correlation coefficient, as shown 
in Eq.  (14). See Additional file  3 for the details of the 
proof.

Equation  14. Balanced Matthews’ correlation 
coefficient.

The numerator is the same expression as informedness, 
also known as Youden’s index [13]. The balanced 
accuracy values range from zero to one. However, this 
range may be scaled to minus one to one by applying a 
linear transformation on the expression of balanced 
accuracy. Given that the minimum and maximum values 
of balanced accuracy are 0 and 1, respectively, the linear 
transformation is given in the following expression and 
then applied to the definition of balanced accuracy: the 
average of sensitivity and specificity.

Thus, there are two noteworthy points to state. First, 
informedness and Youden’s coefficient are the same as 
balanced accuracy rescaled to the range of minus one 
to one. Second, the numerator of Matthews’ correla-
tion coefficient in Eq. (13) and its balanced expression in 
Eq. (14) is also equivalent to balanced accuracy rescaled 
to the range of minus one. As such, the balanced Mat-
thews’ coefficient correlation and the rescaled balanced 
accuracy differ only by the expression of the denominator 
of the latter and have the same value when sensitivity and 
specificity are equal. In that case, the denominator of the 
balanced Matthews’ coefficient correlation is evaluated to 
one.

 Eq.  13 shows a nonlinear relationship between Mat-
thews’ correlation coefficient and prevalence at a given 
sensitivity and specificity. Fig.  9 illustrates this nonlin-
ear relationship when the sensitivity and specificity are 
equal to 0.71 and 0.89, respectively. Additional files 2 and 

(14)MCC0.5
=

Sen+ Spe − 1
√

1− (Sen− Spe)2
= Bal.MCC

Bal.Acc[−1,1] = 2 · Bal.Acc[0,1] − 1 = Sen+ Spe− 1

Bal.MCC = Bal.Acc[−1,1] when Sen = Spe
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4 provide R scripts to be used in RStudio and Additional 
file 1 is a JupyterLab notebook that allows the user to set 
values of sensitivity and specificity and visualise how it 
affects the value of Matthews’ correlation coefficient.

The curve has an umbrella-like shape. The umbrella-like 
shape may point upwards or downwards, which indicates 
a positive (MMC > 0) and negative (MCC < 0) correlation, 
respectively. This is due to the presence of two anchors, or 
two invariant points on the curve, at prevalence 0 and 1. 
A these two invariant points, the value of the Matthews’ 
correlation coefficient is zero regardless of the values of 
sensitivity and specificity, save when either or both are 
equal to 1 or 0 (see R scripts in RStudio in Additional files 
2 and 4 or the JupyterLab notebook in Additional files 
1). When sensitivity and specificity have different values, 
the umbrella-like shape is asymmetrical. It becomes 
symmetrical to the vertical line at a prevalence of 0.500 
when sensitivity and specificity have the same value. In 
that specific case, the value of Matthews’ correlation 
coefficient reaches either its maximum or minimum 
value: the umbrella-like shape points upwards and 
downwards, respectively. As the values of sensitivity and 
specificity vary such as their sum tends to 1, the balanced 
accuracy rescaled between minus one and one (i.e., the 
numerator in Eq.  (13) as demonstrated above) tends to 
zero, and the umbrella-like shape flattens. In contrast, 
as the balanced accuracy rescaled between minus 
one and one tends to 1 or −  1, the umbrella-like shape 
swells upwards or downwards, respectively. In contrast 
to accuracy, Matthews’ correlation coefficient does not 

have a linear relationship with prevalence at given values 
of sensitivity and specificity. However, its value remains 
dependent on prevalence. At extremely low or high 
values of prevalence, it drops sharply towards zero even 
though the values of sensitivity and specificity may be 
high.

Discussion and use cases
Comparing performance metrics to assess a model 
during a validation when faced with test sets of 
nonconstant prevalence may lead to incorrect 
conclusions. The above example based on the synthetic 
data in Figs.  5 and 6 illustrates such an undesirable 
outcome. This issue arises because of the dependence 
of these metrics on prevalence and makes their 
comparison inappropriate as the prevalence shifts. 
Therefore, the notion of metrics that are independent 
of the prevalence of the dataset is needed. As we have 
seen, a solution to overcome this issue is to calibrate 
the metrics that need to be compared. A specific 
way of calibrating is balancing. As such, balanced 
accuracy, which is a well-known performance metric, 
satisfies the above notion. Therefore, values of 
balanced accuracy can be compared and will lead to 
a correct conclusion when evaluating a model under 
nonconstant prevalence. We have demonstrated the 
application of calibration and specifically balanced 
calibration to Matthews’ correlation coefficient metric 
and demonstrated how it mitigates the impact of 
prevalence. Additional file 3 describes the behaviour of 
positive predictivity, negative predictivity and Cohen’s 
kappa coefficient under nonconstant prevalence as 
a mathematical formula. Plots of these metrics as 
functions of sensitivity, specificity and prevalence as 
well as their balanced version as functions of sensitivity 
and specificity are also described. This manuscript 
also shows that the balanced accuracy is not a 
performance metric distinct from accuracy but in fact is 
an accuracy which is calibrated to a prevalence of 50%. 
Finally, rescaling the balanced accuracy to the range 
of −  1 to 1 showed that the resulting mathematical 
expression is the same as that of informedness or 
Youden’s index, which, in addition, happens to be the 
numerator of Matthews’ correlation and its balanced 
version.

When do one need to mind one’s prevalence? Prev-
alence needs to be accounted for whenever a shift 
occurs. Such a shift may occur in different use cases. 
Four uses cases are described in this discussion: vali-
dation based on the cluster splits methodology, non-
stationary data streams, external versus internal 
validations, and the use of a framework of a domain of 
applicability of a model.

Fig. 9  Nonlinear relationship between a Matthews’ correlation 
coefficient and prevalence at constant values of sensitivity 
and specificity: 0.71 and 0.89, respectively. The dot marks 
the balanced Matthews’ correlation coefficient
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A cluster splits method may be used to generate test 
sets that cover different domains of the original test set. 
As a result, the prevalence of each test set may be dif-
ferent, and evaluating a model in these conditions with 
prevalence-dependent metrics may lead to incorrect 
conclusions.

These same inappropriate conditions may arise when 
there is a data stream, such as test sets with a temporal 
dependence. As time passes, the prevalence within 
the test window may vary and lead to undesirable 
consequences if the model is assessed with prevalence-
dependent metrics.

A model may perform well on an internal dataset. As 
such, it may be deployed and validated against external 
test sets where the model is expected to underperform 
while maintaining reasonable performances. However, 
there is no guarantee that the prevalence remains con-
stant: the internal and external test sets may have differ-
ent prevalence. Figures 5 and 6 illustrate such a scenario 
where the validation result seems to be counterintui-
tive. If accuracy or Matthews’ correlation coefficient 
were used as sole metrics, the model could be consid-
ered excellent when it is not the case at all. The use of 
balanced metrics corrects this misinterpretation and is 
shown in Fig. 10 with the same synthetic data as in Figs. 5 
and 6 but showing the value of the balanced Matthews’ 
correlation coefficient. As expected, its value decreases 
in agreement with the variations observed for sensitivity 
and specificity.

A framework of domain of applicability may be applied 
to a test set before being validated. As such, the test set 
may contain a great deal of data out of domain, which 

are discarded as the model is deemed unfit to give mean-
ingful predictions. In the presence of an applicability 
domain, the concept of coverage must be introduced. The 
coverage evaluates the proportion of instances for which 
the model can make a prediction. Therefore, the coverage 
of the model may decrease, but it is expected to perform 
better when meaningless predictions are removed from 
the test set. Hence, the size of the original test may be 
reduced in such a manner that the prevalence shifts. This 
use case is illustrated in Fig. 11 with synthetic data.

The initial dataset contains a total of 2000 instances 
with a prevalence of 0.600 when there is no applicability 
domain applied. The model under investigation shows 
good performance, with sensitivity and specificity val-
ues of 0.680 and 0.850, respectively. The Matthews’ cor-
relation coefficient is also very satisfactory, with a value 
of 0.520. Nevertheless, sensitivity may be improved. 
A framework of the applicability domain may be used 
to achieve this goal with the knowledge that the cover-
age may drop. When applying the framework shown in 
Fig. 11, the coverage drops to 50%. Indeed, 1000 instances 
are out of domain and do not contribute to the calcula-
tion of the performance metrics. However, the sensitivity 
and specificity increased to 0.710 and 0.890, respectively, 
as expected. Paradoxically, Matthews’ correlation coeffi-
cient value drops to 0.377. If such a value is solely consid-
ered to assess the performance of the model, an incorrect 
conclusion is drawn. The reason comes from the fact 
that the prevalence of the instances in the applicability 
domain of the model increased to 0.900 from 0.600. A 
prevalence shift occurred. In this condition, Matthews’ 
correlation coefficients under nonconstant prevalence 

Fig. 10  Values of Matthews’ correlation coefficient: balanced and not balanced in the internal versus external test set scenario. The variation 
of the latter agrees with those of sensitivity and specificity in contrast to that of the former



Page 12 of 13Guesné et al. Journal of Cheminformatics           (2024) 16:43 

cannot be compared and may lead to incorrect conclu-
sions. To correct this misleading result, a balanced/cali-
brated Matthews’ correlation coefficient may be used, 
which is illustrated with its balanced value in Fig.  11. 
The balanced Matthews’ correlation coefficients increase 
from 0.538 to 0.610, as expected, and lead to the proper 
conclusion.

Conclusion
This manuscript lays out a simplified and harmonised 
approach to the issue of comparing prevalence depend-
ant metrics under nonconstant prevalence experiments. 
This includes the introduction of the derived confusion 
matrix that provides a mathematical tool to express any 
metrics as a function of sensitivity, specificity and preva-
lence. In contrast to the literature, it also avoids the intro-
duction of additional metrics, coefficients or frameworks 
to solve or describe the above issue. As a result, the con-
cepts described in the literature are harmonised in this 
manuscript, which only uses the well-known metrics of 
sensitivity, specificity and prevalence. The derived con-
fusion matrix also highlights that sensitivity, specificity 
and prevalence fully characterise the performance of a 
model. Based on this derived confusion matrix, we pro-
pose a general method to calibrate performance metrics 
with respect to the prevalence, and we recommend using 
a balanced prevalence of 0.5 as a reference calibration to 
compare model performances under nonconstant preva-
lence. For instance, the balanced accuracy is an accuracy 
that is calibrated to a prevalence of 50%. The same princi-
ple can be applied to any metric derived from the confu-
sion matrix. We demonstrate the value of the approach 

on Matthews’ correlation coefficient  leading to balanced 
Matthews’ correlation coefficient, a robust global per-
formance metric even under nonconstant prevalence. 
Finally, rescaling the balanced accuracy to the range of 
− 1 to 1 showed that the resulting mathematical expres-
sion is the same as that of informedness or Youden’s 
index. In addition, it appears to be in the numerator of 
Matthews’ correlation and its balanced version. This 
manuscript highlights the benefits of calibrated/balanced 
metrics for robust model evaluation and provides a for-
mal grounding tailored to key use cases in cheminfor-
matics research where prevalence fluctuations may occur. 
It is hoped that by increasing accessibility and demon-
strating relevance to core cheminformatics applications, 
this work will lead to wider consideration of prevalence 
effects and increased uptake of calibrated/balanced 
metrics in future studies. Three final words: mind your 
prevalence!

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​024-​00837-w. It is also available at the GitHub repository 
MindYourPrevalence. The repository can be accessed at https://​github.​com/​
Lhasa​Limit​ed/​MindY​ourPr​evale​nce.

Additional file 1. A JupyterLab notebook. Upon execution, an interactive 
plot shows the relationship between performance metrics and prevalence 
at given values of sensitivity and specificity. The values of sensitivity and 
specificity may be modified with sliding bars. Check boxes allow the user 
to select what performance metrics to display.

Additional file 2. A R file that contains a R script that may be used in 
RStudio. It must source the Additional file 4, that needs to be renamed 
"UtilityFunctions.R" upon saving, so it can execute properly. Upon execu-
tion, an interactive plot shows the relationship between performance 
metrics and prevalence at given values of sensitivity and specificity. 
The values of sensitivity and specificity may be modified with sliding 

Fig. 11  A tale of two Matthews’ correlation coefficients: balanced or not balanced?
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bars. Check boxes allow the user to select what performance metrics to 
display. The controls appears upon clicking on the cog icon in the top left 
corner of the Plots window of RStudio.

Additional file 3. A word document that describes in detail the derivation 
of the performance metrics accuracy, Matthews’ correlation coefficient, 
positive predictivity, negative predictivity and Cohen’s kappa coefficient as 
functions of sensitivity, specificity and prevalence as well as their balanced 
version. Each plot and their corresponding function show the relationship 
that exists between the performance metrics and the prevalence at given 
values of sensitivity and specificity.

Additional file 4. A R file that contains utily functions and must to be 
renamed "UtilityFunctions.R" upon saving for the proper execution of the 
R script in Additional file 2.
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