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Abstract 

Established molecular machine learning models process individual molecules as inputs to predict their biologi-
cal, chemical, or physical properties. However, such algorithms require large datasets and have not been optimized 
to predict property differences between molecules, limiting their ability to learn from smaller datasets and to directly 
compare the anticipated properties of two molecules. Many drug and material development tasks would benefit 
from an algorithm that can directly compare two molecules to guide molecular optimization and prioritization, 
especially for tasks with limited available data. Here, we develop DeepDelta, a pairwise deep learning approach 
that processes two molecules simultaneously and learns to predict property differences between two molecules 
from small datasets. On 10 ADMET benchmark tasks, our DeepDelta approach significantly outperforms two estab-
lished molecular machine learning algorithms, the directed message passing neural network (D-MPNN) ChemProp 
and Random Forest using radial fingerprints, for 70% of benchmarks in terms of Pearson’s r, 60% of benchmarks 
in terms of mean absolute error (MAE), and all external test sets for both Pearson’s r and MAE. We further analyze our 
performance and find that DeepDelta is particularly outperforming established approaches at predicting large dif-
ferences in molecular properties and can perform scaffold hopping. Furthermore, we derive mathematically funda-
mental computational tests of our models based on mathematical invariants and show that compliance to these tests 
correlates with overall model performance — providing an innovative, unsupervised, and easily computable measure 
of expected model performance and applicability. Taken together, DeepDelta provides an accurate approach to pre-
dict molecular property differences by directly training on molecular pairs and their property differences to further 
support fidelity and transparency in molecular optimization for drug development and the chemical sciences.
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Introduction
Drug design requires a balancing act between optimiz-
ing the on-target potency of a drug lead and maintain-
ing an appropriate absorption, distribution, metabolism, 
excretion, and toxicity (ADMET) profile [1]. To this end, 
lead series are extensively characterized experimentally 
to compare properties of compounds and identify the 
most promising candidates. Unfortunately, such charac-
terizations are laborious and expensive and can include 
complex in  vivo experiments [2]. Therefore, many such 
characterizations are often restricted to only a small 
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set of candidate compounds, which causes an incom-
plete understanding of the structure–activity  relation-
ship and risks the premature elimination of candidates 
with potentially beneficial properties. To accelerate and 
economize the characterization of compound properties 
while enabling the evaluation of larger sets of candidates, 
computational approaches are increasingly deployed in 
pharmaceutical development [1]. Molecular machine 
learning algorithms learn from large historic data to 
directly predict the absolute property values of a mol-
ecule from its chemical structure (Fig.  1a) and are now 
commonly utilized in both industry [3, 4] and academia 
[5, 6] to triage experimental testing. Such machine learn-
ing workflows are becoming increasingly accurate due to 

expanding availability of training data, growing computa-
tional power, and improvements in predictive algorithms 
[5]. However, molecular machine learning algorithms are 
not yet optimized to directly compare the properties of 
two molecular structures to inform compound optimiza-
tion and enable lead series prioritization through direct 
contrasting of expected molecular properties.

There are several related, powerful approaches to pre-
dict property differences between two molecules, but 
they have important shortcomings that limit their broad 
practical deployment. For example, one of the most pow-
erful approaches to predict property differences between 
two molecules is Free Energy Perturbations (FEP), with 
promising results in ab  initio molecular optimization. 

Fig. 1  Traditional and pairwise architectures. A Traditional molecular machine learning models take singular molecular inputs and predict absolute 
properties of molecules. Predicted property differences can be calculated by subtracting predicted values for two molecules. B Pairwise models 
train on differences in properties from pairs of molecules to directly predict property changes of molecular derivatizations. C Molecules are 
cross-merged to create pairs only after cross-validation splits to prevent the risk of data leakage during model evaluation. Therefore, every molecule 
in the dataset can only occur in pairs in the training or testing data, but not both
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However, FEP calculations are prohibitively complex and 
resource intensive, which hinders their broad deploy-
ment [7]. Although “DeltaDelta” neural networks have 
emerged to predict binding affinity differences for two 
molecules more rapidly than previous algorithms, their 
use of protein–ligand complexes as input requires costly 
structural biology [8, 9]. Conversely, Matched Molecu-
lar Pair (MMP) analysis allows the rapid anticipation of 
property differences but can only predict differences 
between close molecular derivatives, is limited to com-
mon molecular derivations, and can fail to account for 
important chemical context [10].

Here, we evaluate the potential of two state-of-the-art 
molecular machine learning algorithms, classic Random 
Forest models [11] and the message passing neural net-
work ChemProp [12], to predict ADMET property dif-
ferences between two molecular structures. We chose 
Random Forest to represent classical machine learning 
methods given its robust performance for molecular 
machine learning tasks [13–16] and chose ChemProp to 
represent deep learning methods as it leverages a hybrid 
representation of convolutions centered on bonds and 
exhibits strong predictive power for a range of molecu-
lar property benchmark datasets [12]. Both methods 
show mediocre resolution to correctly predict property 
differences, limiting their utility for molecular optimiza-
tion tasks. Motivated by this shortcoming, we propose 
DeepDelta, which directly learns property differences 
for pairs of molecules (Fig.  1b). DeepDelta shows sig-
nificantly improved performance in most (82% in terms 
of Pearson’s r and 73% in terms of MAE) of our bench-
marks that include cross-validation and external test set 
experiments. We analyze additional properties of Deep-
Delta from first mathematical principles, which enables 
us to derive accurate and rapidly calculable confidence 
measures that are predictive of the model’s performance. 

In contrast to existing molecular comparison approaches 
such as FEP and MMP, our DeepDelta approach can 
rapidly predict property differences between millions of 
chemically unrelated molecular pairs while accounting 
for molecular context without requiring complex ab ini-
tio calculations or protein–ligand complexes. Taken 
together, we believe that DeepDelta and extensions 
thereof will enable more accurate and holistic prioritiza-
tion of drug lead series and thereby enable computation 
to support drug development more productively.

Methods
Datasets
We extracted 10 publicly available datasets of various 
ADMET properties [18–26] primarily from the Thera-
peutics Data Commons [27] (Table  1). Invalid SMILES 
were removed from all datasets except for “Hemolytic 
Toxicity”, in which incorrectly notated amine groups were 
manually corrected based on original literature sources. 
Datapoints originally annotated as “>” or “<” instead 
of “=” were removed. We log-transformed all datasets 
except for the “FreeSolv dataset”, in which negative values 
prohibit log-transformation. For the renal clearance data-
set, we incremented all annotated values by one to avoid 
values of zero during log-transformation. Distributions 
of transformed values for all datasets are shown in Addi-
tional file 1: Fig. S1.

External test sets were collected from primary litera-
ture sources [28, 29] using the ChEMBL database [30] 
to identify suitable publications. All invalid SMILES 
were removed. All datapoints annotated as “>” or “<” 
instead of “=” were removed. Datapoints in the external 
datasets that were also present in the training data were 
identified and removed based on Tanimoto similarity 
using Morgan circular fingerprints (radius 2, 2048 bits, 
RDKit version 2022.09.5 [31], threshold of 1.0 to remove 

Table 1  Benchmarking datasets

Description of the 10 benchmarking datasets

Index Property Size Units References

1 Fraction Unbound, Brain 253 Log(fu,brain) [23]

2 Renal Clearance 636 Log(CLr) [25]

3 Free Solvation 642 Experimental Hydration Free Energy in Water [20]

4 Microsomal Clearance 731 Log(mL/min/kg cleared) [24]

5 Hemolytic Toxicity 828 Log(HD50) [18]

6 Hepatic Clearance 881 Log(mL/min/kg cleared) [24]

7 Caco2 910 Log(Papp) [19]

8 Aqueous Solubility 1128 LogS [26]

9 Volume of Distribution at Steady 
State

1130 Log(Body/Blood Concentration in L/kg) [21]

10 Half-Life 1321 Log(Half-Life in Hours) [22]
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identical molecules). Datapoint values in the external test 
sets were log-transformed to match training data while 
removing any datapoints with an initial value of 0.

Model architecture and implementation
To develop DeepDelta, we used the same underly-
ing D-MPNN architecture as ChemProp given its effi-
cient computation and its competitive performance on 
molecular data [12]. Furthermore, by building on this 
architecture, our results become easily comparable to 
the ChemProp implementation and allow us to directly 
quantify the benefit of our molecular pairing approach. 
Two molecules form an input pair for DeepDelta, while 
ChemProp processes a single molecule to predict abso-
lute property values that are then subtracted to calculate 
property differences between two molecules. By training 
on input pairs and their property differences, DeepDelta 
directly learns and predicts property changes instead of 
requiring manual subtraction of predicted properties 
to approximate property changes. For ChemProp and 
DeepDelta, molecules were described using atom and 
bond features as previously implemented [12]. In short, 
molecular graphs are converted into a latent represen-
tation by passing through a D-MPNN. For DeepDelta, 
this is done separately for each molecule and the latent 
representations of both molecules are subsequently con-
catenated. The concatenated embedding is then passed 
through a second neural network for property predic-
tion that consists of linear feed forward layers [32]. Both 
deep learning models were implemented for regression 
with default parameters and aggregation = ‘sum’ using 
the PyTorch deep learning framework. For the traditional 
ChemProp implementation, number_of_molecules = 1 
while for DeepDelta number_of_molecules = 2 to allow 
for processing of multiple inputs [32]. We optimized the 
number of epochs for every model and set epochs = 5 for 
DeepDelta and epochs = 50 for ChemProp (Additional 
file 1: Fig. S2).

For Random Forest and Light Gradient Boosting 
Machine (LightGBM, Microsoft) models, molecules were 
described using radial chemical fingerprints (Morgan 
circular fingerprint, radius 2, 2048 bits, rdkit.org). The 
Random Forest regression machine learning models with 
500 trees were implemented with default parameters 
in scikit-learn. The LightGBM was implemented with 
a subsample frequency of 0.1 to further improve run-
ning time on large datasets (LGBMsub) and otherwise 
default parameters, except for in the “Fraction Unbound, 
Brain” dataset, where we used min_child_samples = 5 
due to the small size of the original dataset. For tradi-
tional implementations of Random Forest and LGBMsub, 
each molecule was processed individually (i.e., predic-
tions are made solely based on the fingerprint of a single 

molecule), and property differences are calculated by 
making two separate predictions (one for each molecule) 
and these predictions are subsequently subtracted to cal-
culate property differences between two molecules. For 
the delta version of LGBMsub, fingerprints for paired 
molecules were concatenated to form paired molecular 
representations to directly train on and predict prop-
erty changes. LightGBM models were implemented to 
evaluate pairwise methods applied to classic tree-based 
machine learning methods due to LGBMsub’s increased 
efficiency in handling large datasets compared to other 
tree-based methods [33].

Model evaluation
Models were evaluated using 5 × 10-fold cross-validation 
(sklearn), and performance was measured using Pearson’s 
r, MAE, and root mean squared error (RMSE). To prevent 
data leakage, training data was first split into train and 
test sets during cross-validation prior to cross-merging to 
create molecule pairings (Fig. 1c); i.e., every molecule will 
only be present in pairs made from either the training or 
the test set but not both. Through this method, all pos-
sible pairs within a set are made. Additionally, the order 
of molecules matters, preserving both the magnitude and 
direction of property changes. Plots of cross-validation 
results were made with matplotlib from cross-validation 
splits with a random state = 1. MMP analysis [17] was 
implemented in KNIME using nodes from the RDKit 
and Vernalis community extensions. SMILES were pre-
processed by de-salting, removing explicitly defined 
stereocenters and double bond geometries, canonical-
izing, and filtering duplicates. Following fragmentation, 
matched molecular pairs were identified and grouped 
together using the canonical SMILES. Scaffold analysis 
and comparisons of Tanimoto similarity, delta values, 
and predictive  errors were made with cross-validation 
splits with a random state = 1 and plotted with matplot-
lib. Analysis of additional properties of DeepDelta were 
made with cross-validation splits with a random state = 1. 
Paired t-tests were performed for comparison of the five 
repeats of our ten-fold cross-validation and the Kolmog-
orov–Smirnov test was performed to assess normality of 
all distributions prior to comparisons with paired t-tests. 
Overall comparisons of performance across bench-
marks were assessed using the non-parametric Wilcoxon 
signed-rank test. Code and data for all these calculations 
can be found at https://​github.​com/​Reker​Lab/​DeepD​elta.

Results
Performance of established approaches
We first investigated whether established classical 
machine learning (Random Forest using Morgan  cir-
cular fingerprints) [11] and graph-based deep learning 

https://github.com/RekerLab/DeepDelta
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(ChemProp) [12] algorithms could be used to predict 
differences in ADMET properties between two molecu-
lar structures. For this, we split all our benchmark data-
sets randomly into training and testing sets following a 
cross-validation strategy. The models (Random Forest 
or ChemProp) were then trained on the training folds 
and used to predict the properties of the molecules in 
the testing fold. Instead of directly evaluating the pre-
dicted property values of the test set molecules against 
the annotated ground truth, as is usually done, we evalu-
ated the ability of our models to predict relative property 
differences between all possible pairs of molecules in the 
test set by subtracting their predicted property values and 
comparing these differences to the subtracted ground 
truth property values (Fig. 1a). In other words, absolute 
properties of individual molecules were predicted using 
individual molecular representations, and the predicted 
values were then subsequently subtracted to approxi-
mate molecular differences, meaning the models are not 
directly predicting property differences. We found over-
all mediocre performance of these established machine 
learning algorithms to predict property differences with 
median Pearson’s r values across all benchmarking data-
sets of 0.60 for ChemProp and 0.63 for the Random For-
est models (Fig. 2 and Table 2). This limited performance 
illuminates an opportunity for novel machine learn-
ing approaches tailored to predict property differences 
between molecules to improve our predictive power and 
resolution for molecular optimizations. Of note, we also 
explored the option of using MMP on these benchmark 
datasets, but standard MMP implementations [17] can 
only make predictions for 0.6% of the molecular pairs 
in our data, highlighting the necessity of a more broadly 
applicable approach.

DeepDelta improves performance
We hypothesized that a neural network specifically trained 
to predict property differences could potentially outper-
form established machine learning models on this task. 
To test this, we generated a new machine learning task in 
which every datapoint is composed of a pair of molecules 
and the objective variable is the difference in their proper-
ties (Fig. 1b). This data serves as input to a deep learning 
model that accepts two molecules as inputs and predicts 
the property difference between these molecules. This 
new approach, retrospectively tested on all our bench-
mark datasets using the same cross-validation scheme, 

significantly outperformed Random Forest and ChemProp 
on the level of the individual benchmarks (p = 0.006) and 
achieved a promising, higher median Pearson’s r of 0.72 
(Table  2). Through the combinatorial expansion of train-
ing data resulting from pairing, DeepDelta also converged 
more rapidly while implementations of deep models that 
process a single molecule to predict absolute property val-
ues typically require training for multiple epochs to con-
verge when used on small datasets (Additional file 1: Fig. 
S2). The rapid convergence and improved performance of 
the DeepDelta approach over the standard implementa-
tion of providing individual molecules to ChemProp high-
lights how this method can allow smaller datasets (< 1500 
datapoints) to be more effectively processed by deep learn-
ing methods that are more data hungry.

When comparing the performance of DeepDelta to 
ChemProp or Random Forest models on the level of 
individual benchmarks (Fig.  2), DeepDelta performed 
similar or better in 90% of the benchmarks when con-
sidering Pearson’s r. DeepDelta showed the most pro-
nounced improvement for the “Fraction Unbound, 
Brain” dataset with improvements of at least 0.17 accord-
ing to Pearson’s r and an MAE reduction of at least 0.07 
compared to other models. While improvements were 
less pronounced in other datasets, DeepDelta still sta-
tistically outcompeted ChemProp in 70% of datasets 
(p < 0.05) and Random Forest in 70% of datasets (p < 0.05) 
for Pearson’s r with no significant change compared to 
each control model for two of the remaining datasets. 
DeepDelta exhibited a moderate but significant average 
improvement in Pearson’s r across all datasets of 0.04 
(p = 0.006), with a maximum improvement of 0.22. Deep-
Delta also outcompeted 60% of the benchmarks in terms 
of MAE (Table  2) and exhibited a small, but significant 
average improvement in MAE across all datasets of 0.13 
(p = 0.04), with a maximum improvement of 1.063. It is 
worth noting that all applied models showed poor per-
formance (Pearson’s r < 0.5) on the three datasets related 
to clearance and only moderate predictivity for half-life, 
possibly driven by the complexity of predicting clearance 
from the molecular structure alone when provided with 
limited data that does not fully capture all the different 
elimination pathways for a specific tissue. In particular, 
“Hepatic Clearance” is the only benchmarking dataset 
where the DeepDelta approach is significantly outper-
formed by the other models in terms of Pearson’s r. In the 
future, we expect increasing amounts of data for specific 
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Fig. 2  Cross-validation results across benchmark datasets. Correlation plots for Random Forest, ChemProp, DeepDelta, LGBMsub, and Delta 
LGBMsub following 5 × 10-fold cross-validation. Datasets are sorted by size from smallest (top) to largest (bottom). Coloring is based on data density 
with the most densely populated regions shown in yellow, least dense regions in blue, and linear interpolation between these groups
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elimination pathways to enable better predictions for all 
models for such tasks and to particularly benefit Deep-
Delta to more accurately capture differences in elimina-
tion between two structures. Already, the competitive 
performance of our pairing approach compared to estab-
lished approaches highlights the ability of DeepDelta to 
improve performance of machine learning for current 
datasets of ADMET properties with large potential for 
further development.

Tree‑based delta approach
To further evaluate whether our new paired machine 
learning task could also be solved by classical tree-based 
machine learning methods, we implemented Microsoft’s 
Light Gradient Boosting Machine (LightGBM) that we 
parametrized to subsample the training data for more 
efficient training on large datasets (LGBMsub). Analo-
gously to the training of DeepDelta, we provided the 
Delta LGBMsub models with a representation of both 
molecules by concatenating Morgan circular fingerprints 
of the two molecules and trained them on property dif-
ferences between the two molecules. Compared to the 
performance of the traditional LGBMsub models (i.e., 
trained on individual molecules and calculating pre-
dicted differences by subtracting predictions analogously 
to Fig.  1a), the paired Delta LGBMsub models showed 
significant improvement in Pearson’s r, MAE, and RMSE 
across all benchmark datasets during retrospective cross-
validations (Fig.  2, Table  2). These data suggest that the 
paired machine learning task can improve the perfor-
mance of classical machine learning algorithms when 
predicting property differences, but apparently to a lesser 
extent than the deep learning approach, as DeepDelta 
outperformed the paired Delta LGBMsub approach in 
all but one benchmark in terms of Pearson’s r (p < 0.05) 
and 60% of benchmarks in terms of MAE. The difference 
between the traditional LGBMsub and the paired Delta 
LGBMsub could be further reduced through parameter 
optimization and by reducing subsampling (Additional 
file 1: Table S1). These results indicate that the molecu-
lar pairing approach can also be beneficial to tree-based 
architectures but appears most promising for deep neu-
ral networks where the combinatorial data explosion 
leads to significant performance improvements during 
cross-validation.

Performance on external data
We next investigated the generalizability of our new 
DeepDelta models by testing their performance on exter-
nal test data. We sought external data for our three largest 
datasets, however, publicly available external datasets of 
appropriate size for “Half-life” overlapped with the train-
ing set or were derived through a different methodology 

(i.e., in vitro/in vivo animal assays instead of human clini-
cal data). Therefore, we focused our external evaluation 
on “Solubility” and “Volume of Distribution at Steady 
State”. When training our models on our complete train-
ing data for these benchmarks and predicting pairs made 
exclusively from compounds in the external validation 
test sets, DeepDelta outperformed both Random For-
est and ChemProp in all cases in terms of Pearson’s r, 
MAE, and RMSE and in accuracy, defined as the percent 
of predictions correctly predicting a positive or negative 
property change (Fig. 3). Similarly, the paired LGBMsub 
approach showed improvements across all metrics on the 
external test sets compared to the traditional LGBMsub 
(Additional file 1: Fig. S3) but did not outperform Deep-
Delta. Together, these results highlight the potential for 
DeepDelta to support molecular optimization by accu-
rately predicting effects on ADMET properties arising 
from chemical modifications even for compound pairs 
that originate from other datasets, suggesting that Deep-
Delta can effectively generalize and predict property dif-
ferences between molecules outside of the training data.

Mathematical invariants
Apart from being able to make accurate predictions for 
property differences between two molecules, the pairing 
approach will also result in additional properties of our 
machine learning models. Specifically, an accurate Deep-
Delta model should capture the following three proper-
ties: predict zero property differences when provided the 
exact same molecule for both inputs,

predict the inverse of the original prediction when swap-
ping the input molecules,

and preserve additivity for predicted differences between 
three molecules,

We analyzed our data to determine whether our Deep-
Delta models would adhere to these properties. For Eq. 1, 
we determined the MAE from 0 when DeepDelta pre-
dicted the change for pairs of the same molecule. For 
Eq. 2, we plotted predictions for all molecule pairs against 
the prediction of those pairs with their order reversed 
and determine their correlation (Pearson’s r). For Eq.  3, 
we determined the MAE from 0 for the additivity of 
predicted differences for all possible groupings of three 
molecules. Gratifyingly, we observed that the DeepDelta 
models accurately captured these properties with overall 

(1)DeepDelta(x, x) = 0

(2)DeepDelta
(

x, y
)

= −DeepDelta
(

y, x
)

(3)
DeepDelta

(

x, y
)

+ DeepDelta
(

y, z
)

= DeepDelta(x, z)
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low MAE (0.127 ± 0.042) for the same molecule predic-
tions (Eq.  1), strong anti-correlation (r = − 0.947 ± 0.044) 
for predictions with swapped inputs (Eq.  2), and over-
all low MAE (0.127 ± 0.043) for the additive differences 
(Eq.  3) (Additional file  1: Table  S2). Notably, for same 
molecule predictions (Eq.  1) and additive differences 
(Eq.  3), the average MAE was over 4 times lower than 
cross-validation MAE  —  indicating that DeepDelta can 
learn these invariants more effectively than it can learn 
property differences between molecules. Taken together, 
DeepDelta was able to accurately capture all three prop-
erties indicating it was able to learn basic principles of 
molecular changes.

Anticipating model performance
Although DeepDelta models trained on different data-
sets were overall compliant with the three properties of 
interest (i.e., Eqs. 1–3), the performance of specific Deep-
Delta models on these mathematically fundamental tasks 
varied between datasets. We hypothesized that stronger 
performance on these tasks might correlate with overall 

performance of the DeepDelta models and thereby pro-
vide a measure of model convergence and applicability 
to a specific dataset. We evaluated whether (1) the MAE 
of same molecule predictions could predict the MAE 
of cross-validation performance, (2) the Pearson’s r of 
the swapped inputs would be inversely correlated to the 
Pearson’s r of the cross-validation, and (3) the MAE of 
additive differences would correlate with the MAE of the 
cross-validations. We found that a model’s ability to cor-
rectly predict no change in property between the same 
molecules correlated strongly (r = 0.916) with overall 
cross-validation performance (Fig. 4) and that this corre-
lation was consistently stronger than that caused simply 
by the magnitude of variance found in the values across 
the datasets (r = 0.746) and was maintained when out-
lier datasets with variance greater than 1 were removed 
(Additional file 1: Fig. S4). Additionally, we observed that 
r values of the swapped inputs were inversely correlated 
with the r values from cross-validation (r = − 0.729, Addi-
tional file 1: Fig. S5) and the MAE values of additive dif-
ferences were strongly correlated with the MAE from 

Fig. 3  Model performance on external datasets. Correlation plots, Pearson’s r values, MAE, RMSE, and total percent of predictions correctly 
indicating a positive or negative change from the starting molecule (pie charts) for Random Forest, ChemProp, and DeepDelta models 
on cross-merged external test sets. Aqueous solubility is in units of logS and volume of distribution at steady state is in units of log(body/blood 
concentration in L/kg). Coloring is based on data density with the most densely populated regions shown in yellow, medium density shown 
in green, and least dense regions in blue and linear interpolation between these groups
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cross-validation (r = 0.918, Additional file  1: Fig. S6). 
Therefore, these mathematically fundamental calcula-
tions are indicative of the stability of the models and their 
overall performance. As these calculations can be per-
formed on unlabeled data, this approach could serve as 
an indicator of how well a model will extrapolate to new 
chemical spaces.

Predicting large property differences
To further characterize the performance of our Deep-
Delta models, we next investigated whether the per-
formance on individual predictions correlates with the 
magnitude of the observed property difference between 
the two molecules (Additional file  1: Fig. S7, Table  S3), 
i.e., whether it is easier for our models to correctly pre-
dict small property changes and harder for the models 
to accurately predict more drastic property differences. 
Across all datasets, DeepDelta predictions showed 
weak correlation between predictive error on individ-
ual datapoints and the absolute difference of properties 
between the two paired molecules (median Pearson’s r 
of 0.3), but this correlation was stronger for the estab-
lished ChemProp (median Pearson’s r of 0.5) and Ran-
dom Forest (median Pearson’s r of 0.6) models. On the 
level of individual datasets, the correlation for DeepDelta 
was smaller in 9/10 datasets compared to ChemProp 
(p = 0.01) and in 10/10 datasets compared to Random 
Forest (p = 0.002), indicating that DeepDelta is capable 
of more accurately predicting larger property changes 
between two molecules compared to established models 
in all but one case. To further support this claim, we ana-
lyzed the error when predicting only the highest 10% of 
delta values (i.e., we evaluated only the molecular pairs 

with the largest difference in property values of the test 
fold) and observed that DeepDelta exhibited the low-
est error for 10/10 datasets compared to Random Forest 
(p = 0.002) and ChemProp (p = 0.002). However, Deep-
Delta did exhibit the highest error rates for predicting the 
lowest 10% of delta values (p = 0.002). This might poten-
tially be driven by the loss function being less affected 
by errors on small property differences during model 
training, which could be improved in future model archi-
tectures specifically designed to predict small property 
differences. It is important to also note that these small 
property value differences lie well within experimental 
noise and variation and might therefore not be as reli-
able. Improved experimental resolution and automation 
should reduce noise and experimental error that may be 
common within the smallest molecular property devia-
tions. At the same time, we did not observe a strong cor-
relation between the chemical similarity of the molecules 
and the predictive error (Additional file  1: Fig. S8), and 
this trend mimicked the distribution between chemi-
cal similarity and the ground-truth difference between 
the paired molecules for the property of interest (Addi-
tional file 1: Fig. S9). This data highlights that DeepDelta 
outperforms established approaches particularly when 
predicting large property differences between distinct 
molecules, positioning it for challenging molecular opti-
mization where large property changes are necessary.

Scaffold‑hopping potential
We next tested whether our DeepDelta model could 
more accurately predict pairs with the same or with dif-
ferent molecular scaffolds. To this end, we separated 
molecular pairs in the test  fold into two groups (pairs 
with the same scaffold or pairs with different scaffolds) 
and evaluated the performance of the model trained on 
the training  folds on both groups. DeepDelta predicted 
properties for pairs with differing Murcko scaffolds with 
similar accuracy (p = 0.11) compared to pairs with the 
same scaffold (Additional file 1: Fig. S10, Table S4), indi-
cating this method is robust to major structural altera-
tions. Although ChemProp and Random Forest also 
showed good performance for molecules with differing 
scaffolds, DeepDelta outperformed both models when 
predicting molecular pairs with distinct scaffolds with a 
moderate but significant average improvement of 0.04 in 
terms of Pearson’s r (p = 0.004, Additional file 1: Table S4) 
and a small, but significant average improvement of 0.04 
in terms of MAE (p = 0.01, Additional file  1: Table  S4). 
On the level of individual datasets, DeepDelta shows 
improvement over ChemProp in 8/10 datasets and Ran-
dom Forest in 9/10 datasets in terms of Pearson’s r, alto-
gether indicating that DeepDelta has potential to guide 
molecular optimizations that involve scaffold hopping. 
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This better performance at scaffold hopping does not 
make DeepDelta worse at predicting changes between 
molecules sharing the same scaffold compared to Ran-
dom Forest or ChemProp, as DeepDelta showed statisti-
cally indistinguishable performance to these models both 
in terms Pearson’s r (p > 0.3) and MAE (p > 0.1), meaning 
DeepDelta presents itself as the model of choice to ena-
ble optimization of compounds within the same scaffold 
as well as to perform scaffold hoping.

Discussion and conclusion
We here conceived, implemented, validated, and char-
acterized DeepDelta, a novel deep machine learning 
approach that allows for direct training on and prediction 
of property differences between two molecules. Given 
the importance of ADMET property optimization for 
drug development [34], we here specifically tested our 
method for 10 established ADMET property bench-
marking datasets [18–27]. These are challenging tasks 
for molecular machine learning given the complexity of 
the modeled processes, which often involve intricate tis-
sue interactions of molecules, and the small dataset sizes, 
commonly derived from low-throughput in vivo experi-
ments [35]. Our approach, DeepDelta, outperforms the 
established, state-of-the-art molecular machine learning 
models ChemProp and Random Forest for predicting 
property differences between molecules in the major-
ity of our benchmarks (82% for Pearson’s r and 73% for 
MAE), including all external test datasets. DeepDelta 
represents, to the best of our knowledge, the first attempt 
to directly train machine learning models to predict 
molecular property differences.

DeepDelta appears particularly powerful when predict-
ing larger property changes (Additional file  1: Fig. S7) 
and can also predict differences between molecules with 
different scaffolds more effectively (Additional file 1: Fig. 
S10), indicating that DeepDelta might be particularly 
suitable to optimize compounds with drastic ADMET 
liabilities that might benefit from scaffold hopping into 
new compound classes. Competitive performance within 
the same scaffold class indicates that DeepDelta is equally 
applicable for more fine-grained optimization. DeepDelta 
benefits from directly learning property difference and 
data augmentation that increases training datapoints for 
deep neural networks while also cancelling systematic 
errors within datasets through pairing. However, pair-
wise methods like DeepDelta have increased computa-
tional costs for model training given the combinatorial 
expansion of training data sets. As such, we believe these 
methods are optimally suited for smaller datasets (< 1500 
datapoints) and provide the benefit of allowing these 
smaller datasets to be appropriately applied to data-hun-
gry deep learning models.

Several other molecular pairing approaches have been 
deployed for various purposes. For example, the pairwise 
difference regression (PADRE) approach trains machine 
learning models on pairs of feature vectors to improve 
the predictions of absolute property values and their 
uncertainty estimation [36]. PADRE similarly benefits 
for combinatorial expansion of data; however, PADRE 
predicts absolute values of unseen molecules like tradi-
tional methods instead of being tailored for prediction of 
property differences. Similarly, Lee and colleagues have 
used pairwise comparisons to allow for use of qualitative 
measurements with quantitative ones [37] and AstraZen-
eca has created workflows that utilize compound pairs to 
train Siamese neural networks to classify the bioactivity of 
small molecules [38]. These classification-based methods 
can allow for direct handling of truncated values through 
Boolean comparisons. In contrast, the regression-based 
DeepDelta provides a means of quantifying molecu-
lar differences. In computational chemistry, Δ-Machine 
Learning approaches aim to accelerate and improve 
quantum property computations by using machine learn-
ing to anticipate property differences to a baseline [39]. 
We believe that existing molecular pairing approaches 
deployed for other purposes [36–39] will be synergistic 
with our DeepDelta approach and have the potential to 
augment or replace standard molecular machine learning 
approaches for intricate optimization and discovery tasks, 
especially for complex properties and small datasets.

An intriguing property of DeepDelta is its ability to 
adhere to mathematical invariants, such as the prediction 
of zero changes when inputting the same molecule (Eq. 1), 
the expected inverse relationships when molecule order 
was inverted (Eq.  2), and the additivity of the predicted 
differences (Eq.  3)  —  all of which indicate the models 
were able to learn basic principles of molecular changes. 
Interestingly, the performance of the models on these 
tasks correlated strongly with overall cross-validation 
performance (Fig.  4), suggesting that such unsupervised 
calculations could be indicative of model performance 
and convergence and thereby allow for increased trans-
parency and determination of model applicability to spe-
cific datasets. For example, one could evaluate DeepDelta 
performance on the invariant calculations across a num-
ber of new datasets as a predictor of how the DeepDelta 
approach would likely perform on these datasets to prior-
itize the datasets on which to apply DeepDelta.

Taken together, we believe that DeepDelta and exten-
sions thereof will provide accurate and easily deploy-
able predictions to steer molecular optimization and 
compound prioritization. We have here shown its appli-
cability to ADMET property comparison, which is of par-
ticular importance to drug development to ensure safety 
and efficacy of medications but notoriously difficult to 
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predict given the complexity of the involved biological 
processes and the small datasets resulting from complex 
in  vivo experiments. DeepDelta may effectively guide 
molecular optimization by informing a project team on 
the most promising candidates to evaluate next or could 
be directly integrated into automated, robotic optimiza-
tion platforms to create safer and more effective drug 
leads through iterative design. Beyond drug develop-
ment, we expect DeepDelta to also benefit other tasks in 
biological and chemical sciences to de-risk material opti-
mization and selection.
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