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Abstract 

Metabolomics by gas chromatography/mass spectrometry (GC/MS) provides a standardized and reliable platform 
for understanding small molecule biology. Since 2005, the West Coast Metabolomics Center at the University of Cali-
fornia at Davis has collated GC/MS metabolomics data from over 156,000 samples and 2000 studies into the stand-
ardized BinBase database. We believe that the observations from these samples will provide meaningful insight 
to biologists and that our data treatment and webtool will provide insight to others who seek to standardize disparate 
metabolomics studies. We here developed an easy-to-use query interface, BinDiscover, to enable intuitive, rapid 
hypothesis generation for biologists based on these metabolomic samples. BinDiscover creates observation sum-
maries and graphics across a broad range of species, organs, diseases, and compounds. Throughout the components 
of BinDiscover, we emphasize the use of ontologies to aggregate large groups of samples based on the proximity 
of their metadata within these ontologies. This adjacency allows for the simultaneous exploration of entire categories 
such as “rodents”, “digestive tract”, or “amino acids”. The ontologies are particularly relevant for BinDiscover’s ontologi-
cally grouped differential analysis, which, like other components of BinDiscover, creates clear graphs and summary 
statistics across compounds and biological metadata. We exemplify BinDiscover’s extensive applicability in three 
showcases across biological domains.
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Introduction
Metabolomics databases can serve a variety of purposes. 
Some databases compile spectral libraries into reposito-
ries that users can download and incorporate into their 
identification workflows. Examples include MassBank 
of North America (https://​massb​ank.​us) [1] or Global 
Natural Products Social Molecular Networking (GNPS) 
[2]. Other examples include study-centric databases that 

store the metadata and observations of user-submitted 
studies, including the Metabolomics Workbench [3], 
MetaboLights, and ReDU [3–5] databases. Others, such 
as the Human Metabolite Database (HMDB) [6], can be 
loosely described as information compilers, as they syn-
thesize information from a range of sources. Finally, but 
not exhaustively, are compilation databases, that aggre-
gate multiple, smaller, databases. A recent example of 
this is the COCONUT (COlleCtion of Open Natural 
ProdUcTs) database for natural products [7]. One of the 
most tantalizing research directions in metabolomics is 
harmonizing the archipelago of datasets in order to cre-
ate a critical mass of synergistic data that can be used 
to achieve broad understanding of biology [8]. Within 
the MetabolomicsWorkbench database, users can query 
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metabolite-centric comparisons with Venn diagrams 
and metabolite ratios data tables. While such queries are 
easily performed for individual compounds, navigating 
interfaces for bulk queries across different study designs 
is best performed via application programming inter-
faces (APIs) that require computational expertise. HMDB 
compiles information from disparate sources. HMDB and 
related databases from the same laboratory are reliable 
because the information is manually curated in painstak-
ing efforts. For both HMDB and MetabolomicsWork-
bench queries, meta-analysis on bulk metabolite queries 
suffers because it is a retrospective attempt to harmo-
nize compound-centric information sets across multiple 
biological study designs. Too much biological metadata 
is lost in translating either text sources (as in HMDB) 
or cryptic and unstructured sample/treatment nam-
ing schemes (as used during MetabolomicsWorkbench 
uploads). At least for compound names, Metabolomics-
Workbench employs a database-internal naming scheme, 
RefMet. However, neither confidence levels for com-
pound annotations nor concentration values are known 
for MetabolomicsWorkbench, due to the complexity and 
variety of instrument conditions.

Within individual laboratories, data may be more har-
monized due to use of a specific type of instrumentation 
under defined protocols. Here, tools like meta-XCMS [9] 
or Amanida [10] allow for the generation of results that 
come from multiple studies. However, such tools expect 
a specific input data format, and such data files are not 
homogeneous even within a laboratory when different 
individuals process metabolomics raw data. Hence, even 
on a laboratory level, gathering data in a systematic way 
to render compiled results accessible to meta-analyses 
tools is not straightforward. Hence, classic meta-analysis 
is performed on a higher abstract level such as pathways 
or reducing to sets of synonymous names [11], instead of 
queries of bulk metabolite tables.

We recognize the challenge of aggregating results 
derived across labs and methods. We therefore posit that 
standardization of protocols is key to useful cross-study 
comparisons and queries, for both study metadata and 
data acquisition processes. Here, standard operating pro-
cedures are more mature in GC–MS metabolomics com-
pared to LC–MS/MS. At UC Davis, we operate a unified, 
automated workflow to process metabolomics data since 
2005, called BinBase. We here took a snapshot of all data 
processed until winter 2021 to enable large scale, multi-
study meta analyses to investigate the data. We term this 
tool BinDiscover. It is a webtool to enable users to per-
form meta-analysis within minutes to extract data trends 
and propose hypotheses. Rather than simply comparing 
two types of metadata (e.g. two different species with the 
same organ), we assigned all metadata into ontologies to 

empower broad comparisons such as phylo organizations 
or ontologically grouped differential analysis (OGDA). 
OGDA queries transform broad questions into sets of 
smaller categories and then combine statistical result 
outputs into graphs.

Methods
The BinDiscover database draws spectral and compound 
information from the GC-Binbase database [12–14]. GC-
Binbase uses a bucket sort approach, where new peaks 
from the chromatographic runs of samples are either 
matched to previously annotated groupings or identified 
as new compounds. This bucket sort is algorithmic, with 
a retention index tolerance of 2000 Fiehn RI units based 
on fatty acid methyl ester internal standards (FAME), 
accounting for approximately 2 s absolute retention time 
windows, and matching unique ions that are determined 
during the MS deconvolution process. Weighted dot 
product similarity scores are used to match new experi-
mental data against Bins in GC-BinBase using differ-
ent signal purity and signal intensity thresholds [14]. All 
compound annotations have been manually conducted 
and curated over the past 20 years. Additional details 
such as automatic recognition of ‘isomeric interfer-
ences’, ‘peak purity’, ‘peak apex ions’, ‘unique ion’, ‘signal/
noise’ and further parameters indicating data quality are 
used within GC-BinBase as output by the vendor’s Chro-
maTOF software that was used for MS-deconvolution 
[12–14]. Spectra presented in BinDiscover are consen-
sus spectra that constantly improve spectra quality for all 
individual mass spectra that are assigned to a Bin (a mass 
spectrum with a specific unique ion and a specific reten-
tion index).

For generating the BinDiscover database, all analyses 
were conducted using custom python scripts that are 
available in Github (see “Data availability”). We heavily 
employed statistics routines from SciPy and the network 
analysis framework from NetworkX. Development was 
performed locally before full-data transformation on a 
64 core, 128-GB RAM Amazon Web Services (AWS) vir-
tual machine. The BinDiscover output database is depos-
ited on a Postgres database managed by AWS. The API 
employed the Flask library and the frontend relied heav-
ily on Plotly/Dash. The API and frontend were container-
ized with docker and deployed on AWS Elastic Beanstalk.

Results
BinBase is an automatic data processing database for GC–
TOF mass spectrometry
At the UC Davis West Coast Metabolomics Center, 
primary metabolites are studied for 18 years using 
identical workflows for data acquisition and data pro-
cessing using gas chromatography-time of flight mass 
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spectrometry (GC–TOF MS). At current, five GC–TOF 
MS instruments are in operation. Standard operating 
procedures have been published extensively and have 
been locked and remained unchanged since 2005. Data 
were aligned by a set of fatty acid methyl ester internal 
standards, forming a stable retention index. Co-eluting 
mass spectra were deconvoluted and automatically de-
noised by the instruments’ software. This software also 
provided a range of metadata on the quality of data 
reports, from peak purity to isomeric interferences, 
absolute and relative ion intensities, and unique ions 
that best described the presence of specific metabo-
lites within the proximity of other compounds. All this 
metadata was utilized by a multi-level filtering algo-
rithm to generate a comprehensive database for both 
known and unidentified metabolites, called BinBase. To 
query biological metadata for cross-study analyses, we 
downloaded all data from BinBase in December 2021. 
This data comprised 156,174 samples that were pro-
cessed into 18,290 Bins, i.e. unique mass spectra at spe-
cific retention times that used specified quantification 

ions. Bins included 773 identified metabolites, 39 
known chemical artifacts (like polysiloxanes that origi-
nate during the GC–TOF MS process) and 15,843 spec-
tra that were not annotated as specific chemicals. The 
remaining bins were accounted for by, over the course 
of 17 years of use, algorithmic artifacts that led to mul-
tiple bins which were merged into single metabolite 
values during data exports. Some Bins are associated 
with the same biological metabolite due to incomplete 
chemical trimethylsilylation, as has been reported 
before. We generated a workflow to investigate the bio-
logical associations for each Bin, called BinDiscover. A 
simplified workflow is shown in Fig.  1. GC–TOF MS 
Compound identifications were performed within the 
BinBase administrative graphical user interface (GUI) 
(BinView) using both mass spectral spectral similarity 
and retention index difference between library spectra 
and calculated retention times. For compound iden-
tification, the FiehnLib library [12] was used in con-
junction with MassBank.us and NIST20 spectra [15]. 
Kovats retention index values (based on alkane elution 

Fig. 1  Overall workflow for BinDiscover database queries. a BinBase records observations from 156,174 metabolomic samples run on a GC–TOF 
mass spectrometer from 2005 to 2021. Corresponding biological metadata were curated and the resulting annotation table formed the basis 
of the exploratory webtool BinDiscover. b BinDiscover associates metabolite intensities across species, organs, and diseases. Established ontologies 
are used to order biological metadata for queries. For metabolites, we used the ClassyFire ontology to enable compound class-level queries. 
c Biological metadata are associated with all samples and are represented and can be queried via different ontology levels, such as “digestive 
system” or “bacteria”. Species, organ and disease ontologies are highlighted by colors
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order) were automatically normalized to Fiehn reten-
tion indices that are based on fatty acid methyl ester 
(FAME) elution order.

Wrangling and transforming metabolomic and biological 
metadata
Each Bin is associated with biological information with 
respect to all studies when it was positively detected. Bio-
logical metadata were curated as detailed below, mapping 
sample metadata to established ontologies. We used three 
ontologies: (1) the National Center for Biotechnology 
Information (NCBI) taxonomy for species [16, 17], (2) the 
Medical Subject Headings (MeSH) taxonomy for organs 
and diseases [18], and the ClassyFire ontology for com-
pounds [19]. In total, we used and input of 1696 metadata 
combinations, defined as specific organ/species/disease 
triad. Across all samples, a total of 55,261,308 observed 
metabolites were associated with Bins, along with the 
full spectra and intensities of the quantification ions for 
each specific Bin. Each sample in BinBase is associated 
with information on the corresponding biological study 
that was conducted. Studies included both published and 
unpublished experiments, as data were gathered for both 
in-house academic purposes over the past 18 years, as 
well as for extramural fee-for-service projects. Biological 
metadata was entered into the small version of SetupX, 
called miniX [13]. Clients entered minimal information 
such as species, organs, short abstracts and sample labels 
that contained text for specific aspect of study designs. 
Since there is no universal algorithm to capture all details 
of biological designs in coherent and machine readable 
forms, the biological metadata necessarily remained het-
erogeneous. We therefore had to curate biological meta-
data and transform and normalize ion intensities.

The first step was to remove technical variance that 
arose from using four GC–TOF mass spectrometers 
and varying instrument conditions over the last 17 
years. Across all studies, the exact same concentra-
tions of FAME internal standards were used, offering 
us the opportunity to use FAME retention index mark-
ers as a surrogate value for instrument performance for 
each specific sample. Hence, we normalized metabolite 
intensities in each sample by the sum of the FAME ion 
intensities. We validated that FAME intensities showed 
correlations greater than 0.8 across all samples, demon-
strating that they also reflected differences in GC–MS 
injection conditions. Next, we automatically identified 
problematic samples and excluded those from BinDis-
cover. To do this, we removed samples with poor FAME 
patterns, as defined as extremely high or low FAME 
intensity values. In addition, we removed entire biologi-
cal metadata triads if they showed more than 20% failed 
FAME samples (Additional file  3: Fig. S1), or if there 

were fewer than 10 samples in total for a specific bio-
logical metadata triad class. This data wrangling ensured 
that outliers did not have outsized effects on average 
metabolite intensities for any specific biological class. 
In this way, we balanced maximizing metadata coverage 
and maintaining statistical reliability. The distribution of 
sample counts is shown in Fig. 2. Next, we curated and 
combined metadata combinations to map metadata to 
established ontologies and to correct for misspellings. 
Metadata were manually entered into miniX over the last 
17 years, leading to an array of metadata combinations 
for ‘homo sapiens’, ’homo sapien’, ‘Human’, ‘human’, spell-
ings with extra spaces or tabs, and different synonyms 
for either species or organs. All strings were transformed 
into formal ontology entries, accounting for the largest 
reduction of metadata combinations. Overall, 515 meta-
data combinations remained, concomitant with a 23.3% 
reduction of specimen to a total number of 119,783 
samples. The next type of data wrangling accounted 
for correcting intensity values for unique bins. Here, 
we first combined bins that were best represented by a 
single unique metabolite. Such double bins arose over 
the course of 17 years because of multiple derivatiza-
tion forms (with or without trimethylsilylation of amino 
groups) or because of incorrect retention time index cal-
culations due to overloaded chromatograms. To obtain a 
single intensity for each compound for each sample, we 
preferentially drew intensities from the most-populated 
bin. If that bin was not detected, we scaled the intensity 
of the next-most-populated bin according to the aver-
age intensity ratio between the two bins. Overall, we 
retained 16,616 bins to be associated with the metadata 
combinations (773 metabolites with known chemical 
structure, and 15,843 unknowns).

Fig. 2   Sample count for all combinations of biological metadata 
triads. Triads with fewer than 10 samples (red) were removed 
to increase statistical reliability
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Lastly, we had to impute missing values. Here, we con-
sidered four scenarios (Additional file  3: Fig. S2). (1) A 
specific bin might be truly absent from a sample, and 
perhaps even from a full metadata combination. Indeed, 
most bins were absent from most biological specimens, 
for biological reasons. However, when calculating inten-
sity ratios of bins between organs or species, ratio fold-
changes become infinite when compounds are absent 
from one organ or species but present in the other. (2) 
On the other hand, a bin might be absent is a sample due 
to random errors, such as thresholds in peak detection 
algorithms. For example, as reported before, our BinBase 
algorithm uses conservative thresholds for spectral qual-
ity based on signal intensity. If a peak failed weighted dot-
score similarity thresholds of 700, that bin would not be 
declared to be found in that sample, and missed in the 
BinBase database. Manual investigations or recursive 
backfilling might find such peak, but those approaches 
are not tractable. We call such peaks missing at random 
(MAR), while truly missing compounds (for biologi-
cal reasons) can be thought of as missing not at random 
(MNAR). (3) Most peaks are not found 100% of all sam-
ples in a specific metadata combination, or 0% detected, 
i.e. always absent, but somewhere in-between. Imputing 
the minimum intensities for missing data has been shown 
to work well for MAR metabolomics data using vectors 
of samples or vectors of features [20]. However, if a bin 
is largely absent for a specific metadata combination (i.e. 
very rarely detected), a single outlier could grossly inflate 
the overall distribution. Therefore, we imputed the per-
centage of presence, multiplied by the minimum value of 
detected peaks (bins) for each metadata combination. In 
this way, if nearly all samples have annotations, then we 
simply impute the minimum. If nearly all samples lack 
annotations, then we impute a small number that is close 
to the noise level and will conserve the semi-quantitative 
fold change. This approach also provides a solution to the 
uncommon, but challenging case of ~ 50% present, where 
the data neither clearly represent MAR nor MNAR cases. 
(4) Lastly, if a bin is completely absent, there is no min-
imum value. In this case, we imputed a value such that 
the average for any 0% MDC will appear on the left edge 
of the average distribution for that compound across all 
metadata combinations (such that differential analysis 
would show an increase from the 0% case). Hence, for all 
bins and all metadata combination, a value is given, often 
as a small noise term. After normalizing, imputing, and 
curating distributions for all bins and all metadata com-
binations, we calculated derivatives of the bin intensities 
to empower comparisons and queries of metabolome-
wide metadata combinations. Here, we calculated the 
averages, medians, and ratios of intensity values and 
stored the resulting dataset in a PostgreSQL BinDiscover 

database. We also computed the Welch t-test on pairs 
of log-transformed pairs of distributions. We chose log-
transformed data here instead of directly using Welch 
t tests due to the known phenomenon of typically non-
Gaussian distributions of metabolite values. The results 
of fold-change and significance calculations were stored, 
rather than the underlying distributions, in order to dra-
matically speed-up the return of query results in real-
time for user queries.

Ontologically grouped differential analysis
We here introduce ontologically grouped differential 
analysis (OGDA) to extract generalizations hidden within 
the complex data in Omics databases. In metabolomics 
as well as proteomics or genomics databases, studies per-
formed by biologists or biomedical scientists comprise 
complex study designs that ultimately can be described in 
biological metadata that are associated with each sample. 
We summarized the biological metadata that was avail-
able to us using Medical Subject Header (MeSH) ontolo-
gies, ClassyFire chemical ontologies and NCBI species 
ontologies. Hence, all sample metadata were tabularized 
into ontological sets. OGDA then exploits ontologies to 
select sets based on their taxonomic proximities. In this 
way, samples from many studies can be compared on dif-
ferent ontological hierarchies on a database-wide level. 
Hence, intractable lists of results get transformed into 
condensed lists to base further analysis.

To exemplify the power of this approach, we ran-
domly used three use cases involving queries on organ 
levels across species, queries across species, queries on 
a human disease level, and queries on metabolite lev-
els. Figure  3 demonstrates how ontologically grouped 
differential analyses calculations are performed. Here, 
a nutritional researcher might be interested in query-
ing the metabolomic differences between microbial cells 
(bacteria) and metabolites that are found in the human 
digestive tract. Hence, the example query would use the 
BinDiscover ontology triads [(Human, Digestive Tract, 
no Disease) vs. (Bacteria, Cells, no Disease)] on a very 
generic term level (Digestive Tract and Bacteria) that by 
themselves would not be found in the study metadata. 
Yet, such words and abstractions are commonly used and 
understood in the literature.

To process this request, BinDiscover transforms the 
given request into an equivalent request that utilizes all 
relevant and available samples within BinBase. The ontol-
ogy search yields all samples that associated with ‘Diges-
tive Tract’ or ‘Bacteria’ and obtains a set of all nodes 
that are ontologically related to the requested hierarchi-
cal level (“belongs to”). Details are given in Additional 
file 3: Table S1. Importantly, stool (human feces) does not 
belong to the MeSH ontology of digestive system, but to 
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the ontology “fluids and secretions”. Hence, human stool 
samples were not included in this specific query. We then 
summarize all samples and transform the higher ontol-
ogy level request into a list of related metadata combina-
tions. The metabolomes of all BinBase samples that are 
summarized to the query groups defined in this manner 
are then subjected to pairwise statistical analyses. For 
each pair, BinDiscover creates classic results of a list of 
Welch-test statistical p-values and corresponding fold-
changes between the two query sets. Therefore, if we 
have n combinations for one ontology sample set and m 
combinations for the comparator sample set, we yield 

n*m fold-changes and p values for each metabolite. The 
results can then be rethought of as an n*m fold change 
matrix and an n*m p-value matrix for every compound 
(Fig. 3c).

Next, BinDiscover simplifies these compound matrices 
to exactly one aggregated p-value and associated fold-
change for each compound. To extract overarching trends 
across the database, we conservatively estimate results 
for each compound across all n*m pairs. For example, if 
at least one bacterium showed significant higher levels of 
a metabolite than any human gut organ, but other bacte-
ria would not be significant, this metabolite would not be 

Fig. 3  Schema for ontologically grouped differential analysis. Example query human digestive tract versus bacterial metabolomes. a All BinBase 
samples with metadata that ontologically map to (Human, Digestive System without Disease) were compared to samples that mapped to (Bacteria 
Cells without Disease). b Such ontology-based summary queries yield a set of biological metadata combinations that are then subjected to pairwise 
differential analysis. c For each compound, pairwise differential analysis yields a matrix of p-values and a matrix of fold changes that can be 
conservatively described by the maximum p-value and minimum fold-change, respectively. Therefore, only one point is visualized per compound 
in downstream volcano plots
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summarized as an overall significant difference between 
bacterial metabolism and human gut samples. To main-
tain this level of conservative constraint, we therefore 
used the maximum p-value for each compound and the 
minimum fold change as boundaries. If statistical tests 
were overall significant, but n*m pairs showed both posi-
tive and negative fold-changes, BinDiscover represents 
the fold change as 0. For the example query shown in 
Fig. 3, we ultimately did not find any chemically identified 
bacterial metabolite that was significantly different and at 
higher levels than detected in human gut metabolomes. 
However, the query retrieved 15 significant metabolites 
that were found in increased levels in human digestive 
system organs (Additional file  3: Table  S2). These com-
pounds can be summarized into vitamins, lipids, sterols, 
and amino acid derivatives. These metabolites are indeed 
not known to be directly produced by bacteria but relate 
to human food metabolism in a broad sense, confirming 
the validity of BinDiscover queries to match classic infor-
mation that could be derived from scientific literature. 
When we conducted tests for the 773 structurally iden-
tified compounds, we obtained results in 26  s, at a rate 
of approximately 1  s per metadata combination query. 
When we repeated the analyses for 15,843 unknown 
compounds, BinDiscover retrieved results in 8  min and 
40  s, at a rate of 6.9  s per query. Overall, we found 74 
unknown compounds to be at significantly higher levels 
in bacteria, and 0 compounds in higher concentrations in 
human organs.

Case study 1—exploring food metabolomes
Metabolomics is a hypothesis generating tool. Databases 
must prove their usefulness by serving specific queries. 
We here provide four use cases to highlight how biolo-
gists or biomedical scientists might use the BinDiscover 
webtool. To enable rapid exploration of the metabolome 
data on differences between species, organs and diseases, 
users define ontologically grouped differential analysis on 
biological metadata, or explore data from a compound-
centric pool. The webtool relies on commonly accepted 
statistics and clear graphics to obtain rapid insights into 
major metabolic differences in biological comparisons 
(Fig. 4).

We first envisioned a nutritional researcher explor-
ing this tool. Food metabolomes and dietary biomarkers 
are increasingly recognized as important contributor to 
disease [21, 22]. As a starting point, a researcher might 
wonder why “an apple a day keeps the doctor away”? 
The user might choose to compare an apple to any other 
fruit, in this case a fig (Fig. 4a). Such a comparison is valid 
and produces a large amount of information comparing 
these two fruits. When hovering over the online graph 
(Fig.  4a), each dot represents an individual compound. 

Tagatose is highlighted here as the metabolite that 
showed the largest difference in apple over fig fruits. At 
this point, the user might want to increase the query and 
compare apple fruits to all fruits in the BinDiscover data-
base (currently 26 fruits). In this way, researchers find out 
which metabolites are uniquely increased, or decreased, 
in apples compared to all other fruits. Interestingly, this 
query still showed tagatose to be found in higher levels 
in apples than in other fruits (Fig. 4b), with notably fewer 
total metabolic differences compared to the differen-
tial analyses of the apple/fig pair. The online data tables 
that correspond to the visual charts show all differential 
metabolites and guide users to compound-specific follow 
up queries. Here, the envisioned nutritionist user would 
find a sunburst diagram and chemical metadata (Fig. 4c, 
d). The sunburst diagram shows that indeed, tagatose 
showed the highest intensity in apple fruits across all spe-
cies/organ/disease metadata combinations. Such finding 
may be interesting because tagatose, despite containing 
92% of the sweetness of sucrose, provides only approxi-
mately 1/3 of the calories compared to sucrose [23]. 
Moreover, tagatose does not increase insulin in patients 
with Type-2 diabetes [24]. Researchers might use this 
finding as starting point for additional research, e.g. apple 
genomic tools to increase tagatose contents in other 
fruits or even in apple cultivars.

Case study 2—cancer metabolism
Next, we envisioned a cancer biologist interested using 
BinDiscover. Here, we highlight how repeatedly utiliz-
ing the BinDiscover differential analysis tool empow-
ers isolating both identified and unknown compounds 
that distinguish cancer metabolic phenotypes from cor-
responding non-malignant analogs, and how different 
cancer cells and tissues would reveal specific alterations 
that are not prevalent in other cancers. Specifically, for 
proof of principle, we obtained three metadata combi-
nations for lung, liver and pancreas cancers, each com-
pared against their non-malignant counterparts. In each 
utilization, we obtained a set of compounds. By taking 
the intersection of the resultant sets, a cancer biologist 
may find compounds that are differentially regulated in 
all cancer types (Fig.  5a), and compounds that would 
be specific for each cancer type. We found 11 iden-
tified compounds that intersected with all cancers, 
such as increases in glutamine, dehydrated glutamine, 
n-acetylglutamate, and methylmalonic acid (Additional 
file  1: Data S1). These compounds can be associated 
with tricarboxylic acid (TCA) cycle activity, specifically 
for anaplerotic reactions supplanting carbon into the 
TCA cycle. For example, excess glutamine is known to 
be heavily used in cancerous cells in particular via glu-
tamine dehydrogenase to generate glutamic acid, which 
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is then converted to alpha-ketoglutarate [25]. Similarly, 
the branched-chain amino acid degradation product 
methylmalonic acid is converted to the TCA metabolite 
succinyl-CoA in an anaplerotic reaction, as cancer cells 
are deprived of mitochondrial acetyl-CoA due to lowered 
activity of pyruvate dehydrogenase. Another typical can-
cer biomarker found by this combined BinDiscover dif-
ferential analysis was increased pyrophosphate, which is 
associated with increased kinase activity and cell growth 
[26]. Additionally, we explored apparent compounds that 
might distinguish the three cancer types investigated 
here (Additional file 1: Data S1).

For example, in pancreatic cancers we observed 
increased amounts of all four forms of tocopherol, also 
known as Vitamin E. Vitamin E has been proposed to 

be associated with decreased pancreatic cancer risk, 
in opposite to our findings [27]. We also noticed sev-
eral dipeptides to be increased specifically in pancreatic 
cancer studies, such as cystine, homocystine, and diala-
nine (Additional file  1: Data S1), indicating enhanced 
import of peptides as supplement nutrients or increased 
proteolysis. For lung cancer studies, we noted specific 
increased levels in alpha-keto acids such as 2-ketoiso-
caproic acid and 2-ketoisovaleric acid along with cor-
responding alpha-hydroxy acids like 2-hydroxyvaleric 
acid and 2-hydroxyglutaric acid (Additional file  1: 
Data S1). These compounds are usually associated with 
increased use of amino acid degradation. Lung can-
cer studies were also marked by elevated acetylations, 
including N-acetyl-glycine, -mannosamine, -serine, 

Fig. 4  Queries in BinDiscover give novel biological insights. a Comparing the metabolome of a specific organ across two different species, here: 
apple vs. fig fruits, yields many differences. b Comparing that specific organ (apple fruit) against the same organ of all species constrains overall 
differences to a few metabolites. c One differential apple metabolite, tagatose, was then queried and found to be the most abundant in apple fruits 
compared to all other species/organ combinations across the metabolome database. d Chemical information for tagatose is then given as mass 
spectrum, quantification mass, international chemical identifier, retention index and chemical class ontology
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-aspartate and -putrescine (Additional file  1: Data S1). 
The latter two compounds have previously been pro-
posed as biomarkers of lung cancer progression [28, 29]. 
For liver cancer, the most apparent specific trend that 
was absent in prostate- or lung cancer studies was the 
abundance of glycolytic intermediates galactose-6-phos-
phate, fructose-6-phosphate, fructose-1,6-bisphosphate, 
3-phosphoglycerate, 2-phosphoglycerate, and phospho-
enolpyruvate, along with the pentose phosphate cycle 
metabolite ribulose-5-phosphate, and generic sugar 
phosphates inositol-4-monophosphate and N-acetyl-
glucosamine-6-phosphate (Additional file  1: Data S1). 
An increased glycolytic flux is not only well-known for 
liver cells [30] but also a generic hallmark of cancer and, 
according to studies available in BinBase, much elevated 
in liver cancers compared to lung- or pancreatic cancers. 
Apart from classic known metabolites, chemists and 
metabolomic researchers might assist cancer researchers 
in finding novel clues towards metabolic dysregulation 
in cancer. Here, we found more than 1,500 unidentified 
compounds that were specific for the three cancer types, 
and 27 unknown compounds that were commonly dif-
ferentially regulated in all cases (Additional file  2: Data 

S2). The chemical metadata for a randomly chosen 
example from the 27 common dysregulated compounds, 
unknown 110,321, is shown in Fig. 5b. As BinBase gives 
both spectra, quantification ions and retention indices, 
other metabolomics researchers can readily use that 
information to target these unidentified cancer biomark-
ers in their studies. Secondly, spectra of novel biomark-
ers serve as starting point for compound identification. 
Compound 110,321 shows a range of even-numbered 
fragment ions such as m/z 144, 172, 174, which are typi-
cal of primary amines, plus high m/z ion clusters around 
m/z 274 and m/z 230 which also point to the presence of 
nitrogen moieties. The spectrum lacks m/z 117, a typical 
fragment for carboxylic acids and sugars. The retention 
indices reveal a compound that has a boiling point simi-
lar to other amino acids, and hence, compound 110,321 
can be classified as a primary amine with additional func-
tional groups such as a secondary amine. With chemical 
ionization/accurate mass spectrometry, the full structure 
would then become identifiable [31].

Case study 3—diversity of bacterial metabolism
A microbiologist might use BinDiscover to study bacterial 
metabolism across species, for example, as background 
for synthetic biology supplanting traditional synthetic 
routes [32]. Likewise, the gut microbiome is gaining 
focus as the source of many endogenous metabolites as 
well as the origin of phenotypes in pharmaceutical test-
ing [33]. The diversity of potential of bacterial metabolic 
function is of interest, and we therefore generated a clus-
tered heatmap as phylo-metabolomic tool in BinDiscover 
(Fig.  6). These phylo-metabolomic heatmaps utilize the 
chemotaxonomic presence of all detected metabolites (in 
columns) against the specified combination of taxa (in 
rows) using hierarchical clustering.

Such heatmaps can be used to delineate specific outlier 
species, as shown for highlighted section #1 in Fig. 6a for 
Methylomonas denitrificans which uses methane metab-
olism as its carbon source. A detailed BinDiscover com-
parison of this species against all other bacteria (Fig. 6b) 
revealed much elevated production of squalene [34] and 
inosine-5-phosphate concomitant with reduced ribose 
biosynthesis. Section #2 in Fig.  6a highlighted a cluster 
of compounds that were unique to Synechococcus elonga-
tus, a blue-green photosynthetic algae, that produces the 
pigment trans-phytol in addition to various alkanes that 
were absent in all other bacteria in BinDiscover. Section 
#3 contained ubiquitously present metabolites such as 
fatty acids, amino acids, and nucleic acids, which there-
fore did not contribute to bacterial classifications. Finally, 
Section #4 marked a section of metabolites that linked 
the human mouth bacterium Streptococcus mutans and 
the plant pathogen Pseudomonas syringae. Observed 

Fig. 5  Sequential queries extract unknown metabolites associated 
with cancer metabolism. a Integrating results from three 
BinDiscover queries comparing liver, lung and pancreas cancer 
studies with and without cancer yields three sets of compounds. 
Results are separated here between identified and unknown 
compounds. b BinDiscover gives spectra and chemical metadata 
to enable chemists to utilize unknown compounds in their own 
studies, either for targeting these compounds in their own studies 
or for compound identification. Here, unknown 110,321 is displayed.
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metabolites included tryptamine and indole-3-acetate, 
which have been included in publications studying the 
host-pathogen relationship [35, 36]. In general, the diver-
sity present in these bacterial metabolomes reflects the 
niches that are to be expected [37]. We focus on biologi-
cal concepts in the case studies presented here because 
we BinDiscover itself is intrinsically informatics-oriented. 
An additional case study that is more oriented toward 
cheminformatics where we showcase the relevance of 
unknown compounds is shown in Additional file 3: Fig. 
S4.

Discussion
BinDiscover effectively enables rapid meta-analysis of 
metabolomics information with the objective of ease of 
use for biological scientists, focusing on both capability 
and breadth of metabolome coverage. However, post-hoc 
retrieval and harmonization of biological sample meta-
data were challenging. To our knowledge, there are scant 
examples of usable interfaces that correctly map biologi-
cal study designs, covering not only species and organs, 
but also treatments, time courses or disease phenotype 
dimensions of study designs. Hence, two of the most 

important issues concerning to sample metadata were 
the inconsistency of metadata terminology used when 
capturing biology study information in our miniX study 
design DB and the omission of fine-grained biological 
study design details. Inconsistent metadata terminology 
describes the informality by which samples were labeled 
by biologists who were sending studies to the UC Davis 
West Coast Metabolomics Center over the past 18 years. 
While for domain experts, a word such as “C57BL/6” 
might sufficiently describe a specific mouse wildtype, 
even for this classic example there are different laboratory 
strains such as B6J (or B6/J) for mice from the Jackson 
laboratory, and similar strain variants from other labora-
tories. The same is true across other biological domains, 
from cell types to fine grained descriptions of tissues and 
organs. Closely related to this omission of details was 
the difficulty to capture the essence of biological studies, 
such as the use of specific gene knockouts or drug treat-
ments. Information was sometimes delivered by biolo-
gists in text formats and through sample lists, but usually 
domain-specific acronyms were used that were intracta-
ble to compile retrospectively throughout the diversity of 
2000 different studies in our GC/MS database. It is worth 

Fig. 6  Comparison of the gas chromatography metabolomes of bacteria in BinDiscover. a A heatmap of all metabolites in BinDiscover 
against all available bacteria species. Matrix entry color is determined by percent presence of that metabolite in that species. Four regions 
of interest (1)–(4) are highlighted in green and discussed in the text. b A differential comparison of metabolomic abundances in bacteria species 
against the methane-metabolizing species Methylomonas denitrificans 
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mentioning that the case studies presented emphasize 
BinDiscover’s biological applications as a complement 
to its intrinsic nature as an informatics tool. Of course, 
BinDiscover has applications beyond those presented 
here, and we offer a cheminformatics-based discovery 
of unknown-unknowns in the GC/MS metabolome via 
Additional file 3: Fig. S4.

An alternative approach to programmatically capture 
study design details might use named-entity recognition 
combined with NoSQL/GraphDB records. An entity rec-
ognition system might start with a vocabulary of known 
ontologies, but would need to be capable to expand an 
internally consistent vocabulary to capture arbitrary 
descriptions. While a graph approach allows for robust 
and dynamic descriptions of samples and their relation-
ships, the named-entity recognition avoids problematic 
curation. Yet, a graph-based interface would present sig-
nificant complexities for users, especially biologists who 
are asked to submit their study information. Initial efforts 
led to frustrations and overwhelmed potential users. An 
alternative approach to capture study metadata is to pre-
define motifs of study designs and coerce study design 
details into those motifs. While many fine-grained study 
details (and, hence, sample metadata resolution) get lost 
in coarse motif-based GUI forms, such tools may dramat-
ically simplify the procedure for biological clients. While 
not comprehensive, reducing the burden on researchers 
can dramatically increase the likelihood that individuals 
will contribute these details when using metabolomics 
(or other -omics) services.

Importantly, ontologically grouped differential analysis 
offers important quantitative results that simple pres-
ence/absence analysis ignores. For example, sucrose is 
present and detected at low amounts by untargeted GC–
MS metabolomics in human blood. However, it would be 
wrong to conclude that sucrose is a major constituent in 
human samples, compared to plant samples. Here, semi-
quantitative assessments are possible in GC–MS based 
metabolomics for two reasons: (a) Electron ionization at 
70 eV is standardized in GC–MS for 60 years, and it does 
not suffer from suppression by co-eluting compounds, 
unlike electrospray processes used by LC–MS/MS. An 
exception to this rule is the vicinity of compounds that 
exceed peak saturation, e.g. urea in urine. (b) Extraction, 
derivatization, injection, detection and data processing 
methods at UC Davis have been standardized to assure 
that chromatograms were never overloaded (i.e. avoid-
ing peak saturations), but also never blank (ensuring that 
the most abundant peaks in specific samples were reach-
ing detector saturation). Hence, semi-quantification was 
assured by both data acquisition and data processing pro-
cedures, including using the exact same concentration of 
(fatty acid methyl ester) internal standards over the past 

18 years. Nevertheless, of course despite these precau-
tions, quantitative results must be interpreted with care. 
For example, comparisons across organs may include 
biofluids versus tissues, i.e. different units of biomass. In 
addition, different solvent extraction efficiencies across 
different tissues or biofluids may introduce bias. Finally, 
abundances can be underestimated when detector satura-
tion occurs during the coelution of very high abundance 
and very low abundance compounds. Hence, quantitative 
comparisons that yield large fold-change differences can 
be interpreted with higher confidence than small differ-
ences. Indeed, one of the goals of ontologically grouped 
differential analysis is to conservatively minimize the fold 
changes for each compound among the set of requested 
organs in order to increase confidence in these quantita-
tive findings. However, for biological metadata combi-
nations with few samples and few studies, quantitative 
comparisons are less robust than for differential analyses 
for which there were thousands of sample data available 
in BinBase.

Additionally, BinDiscover is built on top of a snap-
shot of BinBase data as they were in December 2021. 
As BinBase continues to expand, novel compounds get 
added. For example, in November 2022, we reliably 
detected the presence of carboxymethylcysteine (Addi-
tional file 3: Fig. S3) for the first time, in a study analyz-
ing bovine muscle tissues, treated with inhibitors against 
oxidative phosphorylation complexes. Compounds in 
BinBase (such as carboxymethylcysteine) might have 
been present infrequently or at low abundance before 
their successful induction into BinBase. To overcome 
such metadata incongruencies, BinDiscover focuses on 
high-level analyses of species and organ queries using 
ontological differential analysis, sunburst diagrams, and 
phylo-metabolomic trees. Users obtain the number of 
samples for each query and metadata combination with 
the notion that the estimation of median metabolite lev-
els gets more robust the more samples are included in 
comparisons. Even more specific metadata comparisons 
may provide insights into metabolic differences if users 
focus on compounds with sufficiently large fold changes.

BinDiscover aims at hypothesis-generating and data 
exploration. We are motivated to discover unexpected 
findings, and, contextually, are relatively unconcerned 
about false-positives (type I error). We do note that it 
would be common to reduce the error rate using the Ben-
jamini–Hochberg procedure or similar approaches, but 
rationally avoided this step because we were interested 
in increasing the recall of explorable findings. Likewise, 
we wanted to explore approaches for finding general-
ized groups of samples in parallel with exploring the 
data themselves, so we here introduce the ontologically 
grouped differential analysis. Similarly, we do not use 
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Fisher’s method to aggregate p-values when combining 
metadata combinations, because we compare completely 
different hypotheses in each pairwise comparison, using 
ontologically grouped differential analysis.

Future versions of BinDiscover may become incre-
mentally updated by data from new studies including 
from public contribution. A related tool, ADAP-KDB, 
perpetually retrieves and updates a user-explorable con-
sensus library of spectra from the MetabolomicsWork-
bench [38]. ADAP-KDB does not use static snapshots 
and focuses on a community-contributed source of data, 
but it is clearly spectrum-centric and assisted by the de-
facto standards in GC–MS. We hope that there will be 
community-wide efforts to further standardize standard 
operating procedures for metadata definitions, sample 
extraction, data acquisition, and data processing to con-
fidently include broader contributions from the commu-
nity into GC-Binbase.

It is critical that meta-analysis systems for metabo-
lomics focus on samples, not on studies. In this way, 
metadata of samples can be repurposed for new biologi-
cal comparisons, conducted from a library of analyzed 
samples. At current, meta-analysis often relies on com-
bining studies that had approximately the same intention, 
which dramatically reduces the ways in which data can 
be re-used. As a part of this grand unification of metabo-
lomics data, we hope that standardization in metabo-
lomics will improve. The inclusion of internal standard 
kits as matrix spikes into samples before extraction could 
serve as a check of instrument state as well as allow for 
semi-quantitative, on-the-fly calibrations that would dra-
matically improve the level of confidence in sample-to-
sample integration.

Conclusions
BinDiscover is a webtool based on a 156,000 sample 
GC–TOF database that has accumulated data since 
2005. We curated this dataset by removing samples that 
failed quality control checks, imputing missing values, 
and mapping the metadata as well as identified metab-
olites to established ontologies. We showed that our 
webtool enables rapid hypothesis generation and trend 
extraction in order to transform machine-sized data-
bases into human-sized, actionable simplifications. Our 
tool provides components that enable the examination 
of large swaths of data simultaneously as well as the 
ability to focus on individual compounds. We enable 
the comparison of multiple types of species and organs 
using chemotaxonomy trees and ontologically grouped 
differential analysis, but also the visualization of single 
compounds with sunburst diagrams or chemical meta-
data. One novel approach to data analysis, ontologically 
grouped differential analysis, uses external ontologies, 

such as the NCBI species taxonomy or MeSH hierar-
chy, to create groups of samples that match generic 
terms. The logic of ontologically grouped differential 
analysis can be applied to arbitrary metadata or fea-
tures, as long as a corresponding ontology exists, so we 
believe that it has applicability for other -omics as well. 
Hence, queries can be grouped along the ontology axes, 
for example, to compare “rodent blood” against “human 
blood” or similar broad groupings. Metabolomics is 
now mature enough to empower re-using data depos-
ited in large scale databases derived from standardized 
methods, with the explicit aim to perform meta-analy-
ses across disparate studies. We strongly emphasize the 
importance of metabolome standardization initiatives 
that are critically needed for cross-study and cross-
species data comparisons. Indeed, this type of sample-
centric data collection could form training sets for large 
scale phenotype-predicting machine learning models. 
We found that one of the most challenging aspects in 
the creation of this metanalysis tool was curating and 
harmonizing the swaths of metadata submitted by biol-
ogist clients. We envision working toward simplified, 
yet powerful metadata capture systems.
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