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Abstract 

The simplified molecular-input line-entry system (SMILES) is the most prevalent molecular representation used in AI-
based chemical applications. However, there are innate limitations associated with the internal structure of SMILES 
representations. In this context, this study exploits the resolution and robustness of unique molecular representa-
tions, i.e., SMILES and SELFIES (SELF-referencIng Embedded strings), reconstructed from a set of structural fingerprints, 
which are proposed and used herein as vital representational tools for chemical and natural language processing 
(NLP) applications. This is achieved by restoring the connectivity information lost during fingerprint transformation 
with high accuracy. Notably, the results reveal that seemingly irreversible molecule-to-fingerprint conversion is feasi-
ble. More specifically, four structural fingerprints, extended connectivity, topological torsion, atom pairs, and atomic 
environments can be used as inputs and outputs of chemical NLP applications. Therefore, this comprehensive study 
addresses the major limitation of structural fingerprints that precludes their use in NLP models. Our findings will facili-
tate the development of text- or fingerprint-based chemoinformatic models for generative and translational tasks.
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Introduction
The Simplified Molecular-Input Line-Entry System 
(SMILES)  [1] is the most widely used linear represen-
tation for describing chemical structures. In SMILES, 
several simple rules are used to convert a chemical struc-
ture into a character string. This allows multiple unique 
SMILES strings to be used to represent molecules. Since 
its inception, SMILES has undergone various exten-
sions  [2–5], and among them, canonicalization algo-
rithms, the integration of isotopism and the addition of 

stereochemical information (isomeric SMILES) are major 
milestones [6–9].

Although the simplified line notation of SMILES 
is superior to other one-dimensional representa-
tion schemes such as the Wiswesser Line Notation 
(WLN) [10], SYBYL line notation (SLN) [11], and Inter-
national Chemical Identifier (InChI)  [12], its internal 
structure leads to several problems when used in natural 
language processing (NLP) algorithms [13–15]. SMILES-
based neural machine translation (NMT) models are 
prone to generate invalid SMILES strings [16, 17], which 
can be attributed to the fragile grammar (i.e., a strong 
dependence between tokens). Most notably, SMILES 
related issues seen in NMT models also occur in the most 
commonly used deep generative models such as vari-
ational autoencoders and generative adversarial networks 
that generate SMILES strings  [18–21]. Because these 
models formulate predictions for one character at a time, 
a single-character alteration often suffices to invalidate 
an entire SMILES string. In addition, novel valid SMILES 
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strings generated by AI-models are not guaranteed to be 
chemically valid.

To address the aforementioned problem, several 
attempts have been made to ensure the syntactic and 
chemical validity of the SMILES predictions   [22–27]. 
The challenges posed by the SMILES syntax have 
prompted the development of alternative syntaxes such 
as DeepSMILES  [28] and SELF-referencIng Embedded 
strings (SELFIES)  [29]. SELFIES is a new way of rep-
resenting molecules that is receiving increasing atten-
tion from the scientific community and is being actively 
developed. Unlike SMILES, SELFIES units are enclosed 
by square brackets where no cuts is allowed within dur-
ing tokenization, ensuring the generation of syntacti-
cally and semantically valid graphs. Multiple benchmarks 
have demonstrated that SELFIES outperforms alternative 
approaches in terms of validity and diversity of generated 
molecules.

The most commonly used NLP methods in chem-
istry are text generation and NMT. Particularly, these 
NLP methods aim to generate meaningful sequences 
from meaningful tokens. Therefore, tokenization is a 
pivotal preprocessing step in many NLP tasks. SMILES 
strings are meaningful as a whole, and any tokenization 
procedure must dissect these strings arbitrarily. From a 
chemist’s perspective, the atom-wise or character-wise 
tokenization of SMILES strings does not produce fully 
interpretable tokens. This is because many characters in 
SMILES strings correspond to topological characteris-
tics, such as the digits in ring opening and closures, or 
parenthesis enclosing branches, that do not correspond 
to physical entities. In addition, most SMILES tokens 
are indistinguishable owing to their repetitiveness and 
simplicity. Considering that the primary design purpose 
of SMILES is to serve as a universal exchange format, it 
is understandable that interpretable insights cannot be 
derived from tokenization.

Despite the challenges mentioned above, SMILES rep-
resentation plays a prominent role in chemical language 
modeling because they are preferred over the genera-
tion of a set of fingerprint features (incomplete descrip-
tion of a molecule), as the latter would require extensive 
database searches to identify matches and is therefore 
not desired. There are currently few studies in the litera-
ture using fingerprints as model outputs. In the field of 
molecular generation, Kadurin et  al.  [30] first proposed 
the use of an adversarial autoencoder to generate novel 
compounds for cancer treatment. They used MACCS 
keys (166-bit long binary vectors) as the input–output 
data structure, together with the inhibition concentration 
of the molecules. The model was trained on cancer cell 
line assay data, and the generated fingerprints were used 
to screen compounds on PubChem to identify candidate 

molecules with anticancer properties. In the field of reac-
tion route planning, our previous works have shown that 
fragmental and topological descriptors can be effectively 
used as the input–output data structure in end-to-end 
NMT pipelines [31, 32].

Furthermore, interpretability necessitates the exist-
ence of meaningful tokens because NLP models tend to 
learn the relationships between these tokens. Thus, the 
interpretability of an individual token is highly desirable. 
However, the chemical interpretability of conventional 
NLP methods is hampered as SMILES representations 
are not fully interpretable from a chemical perspective. 
Indeed, SMILES is a highly efficient system for capturing 
information about molecular structures, and issues arise 
only when SMILES are tokenized. This contradicts the 
recent statement by Tu et al. [33], who propounded that 
SMILES is inefficient in capturing structural information 
because SMILES augmentation can provide additional 
performance gains  [34]. As an alternative to SMILES 
representations, molecular fingerprints and substruc-
tural keys can be employed. They are designed to cap-
ture chemical features, concepts, or structural patterns, 
yielding an interpretable set of tokens suitable for NLP 
applications.

Several studies have recently explored the conversion 
of the extended-connectivity fingerprint ECFP  [35] to 
SMILES representation. Within the context of data shar-
ing and confidentiality, Le et al. [36] suggested the Neu-
ralDecipher model. The model deduces the molecular 
structure of compounds using a two-step process involv-
ing a feedforward neural network model that predicts a 
compact vector representation of the compounds given 
their ECFP, and a pre-trained model that converts this 
representation into SMILES. NeuralDecipher showed 
a success rate of 69%. Kwon et al.  [37] proposed a data-
driven evolutionary molecular design methodology using 
a genetic algorithm, a recurrent neural network (RNN), 
and a deep neural network to evolve ECFP vectors of seed 
molecules and reconstruct chemically valid molecular 
structures in SMILES format. The model showed a suc-
cess rate of 62.4%. Cofala and Kramer also used a genetic 
algorithm to demonstrate the ability to reconstruct mol-
ecules similar to the specified target or even the original 
molecule from ECFP representations [38]. Their method 
also showed a reconstruction rate of 58% ∼ 68%. Over-
all, these studies show the potential for using ECFPs as 
a starting point for generating molecular structures in 
SMILES representation, either through direct prediction 
or through genetic algorithms and evolutionary design 
techniques.

Because the construction of molecular fingerprints is a 
lossy procedure, the use of fingerprints leads to the gen-
eration of stand-alone interpretable tokens. Moreover, 
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fingerprints are well suited to the attention mechanism 
because attention is a permutation-invariant opera-
tion  [39]. Furthermore, attention-based models, such as 
transformers, can handle the unconnected features of 
fingerprints   [31, 32]. Thus, we assessed the efficiency 
of the back-conversion of fingerprints to molecules to 
overcome the significant limitations of structural finger-
prints that preclude their implementation in NLP mod-
els. For this purpose, we employed a translation-based 
system, namely the transformer architecture, to decode 
fingerprints accurately into lossless molecular represen-
tations. We aim to demonstrate that the reconstruction 
of molecules from molecular fingerprints is a practical 
and highly accurate approach for various chemical appli-
cations. Finally, we illustrate our approach using thirteen 
structural fingerprint examples, classified into five main 
categories. We show that certain fingerprints can be used 
directly in an NLP setting as alternatives to SMILES and 
SELFIES representations.

Results and discussion
Structural fingerprint representations
Structural fingerprints were obtained from RDKit  [40] 
implementations. They can be classified into five 
main groups, as reported in Table  1 along with the 

corresponding sequence lengths and vocabulary size 
information. We generated thirteen different finger-
prints for our analysis. Binary variants of the selected 
fingerprints were hashed to a fixed size of 2048, except 
for Avalon. Fingerprints were optimized based on their 
parameters to yield similar sequence lengths when nec-
essary. We omitted sparse versions of atom pairs and 
ECFP4 from this calculation because the vocabulary 
space covered, and thus the token size, was considerably 
large. 

1.	 Predefined substructure MACCS keys  [41] converts 
a molecule into a bit vector with a fixed size of 166, 
in which each bit records the presence of a feature 
obtained from a predefined dictionary of SMARTS 
patterns [42].

2.	 Paths and feature classes The Avalon enumerates 
paths and feature classes. We refer the reader to 
Gedeck et al. [43] for a thorough explanation of paths 
and feature classes covered.

3.	 Path-based The RDKit fingerprint is very similar to 
the Daylight fingerprint  [42]. Hashed branched and 
linear subgraphs of size 4 were used. In both cases, 
the minPath and maxPath parameters were set to 
two and four, respectively. The hashed variant of the 

Table 1  Translation-related statistics regarding the domain-specific datasets generated by the structural fingerprints used for the 
performance analysis, together with the targeted molecular representations, SMILES, and SELFIES

Abbreviations Description Dim Sequence length Token size

Ave. Max

Predefined substructures
 MACCS 166 50 107 160

Paths and feature classes
 Avalon Hashed 512 182 470 516

Path-based
 HashAP Atom pair - hashed 2048 92 273 1998

 RDK4 RDkit fingerprint - hashed 2048 83 288 2052

 RDK4-L RDK4 - with no branch 2048 58 209 2052

4-atom-paths
 TT Topological torsion sparse 32 124 54973

 HashTT TT - hashed 2048 31 118 2052

Circular
 AEs Morgan radius 1 sparse 29 65 54076

 ECFP0 Morgan radius 0 - hashed 2048 10 25 100

 ECFP2 Morgan radius 1 - hashed 2048 28 64 2052

 ECFP4 Morgan radius 2 - hashed 2048 47 103 2052

 FCFP2 Feature-class of ECFP2 2048 20 51 1576

 FCFP4 Feature-class of ECFP4 2048 36 86 2052

Unique Representation
 SMILES Tokenized atom-wise 51 125 109

 SELFIES Generic tokenization 44 127 205
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atom pair fingerprint encodes all pairs of atoms with 
their environments and their bond distances   [44]. 
Here, it was used with the following parameters: 
minLength=1, and maxLength=6.

4.	 4-atom-paths Topological torsion  [45] encodes 
sequences of four bonded atoms, so that the gener-
ated set of substructures has a local character. It was 
used along with its hashed variants.

5.	 Circular ECFPx [35] enumerates circular atom envi-
ronments, defined as topological neighborhood frag-
ments, up to a selected radius (x). The set of all circu-
lar fragments, that is atom environments, is denoted 
as AEs. Feature-class fingerprints FCFPx include 
pharmacophoric features as invariants.

Model overview
In this study, we employed Transformer  [46], a model 
architecture with a multi-head attention mechanism for 
each unit. Transformer-based models can achieve highly 
successful translation quality compared to generic seq-
2-seq methods [13, 16, 17, 32], thanks to attention units 
allowing the model to learn global dependencies between 
inputs and outputs. In addition, the attention mecha-
nism eliminates the dependence on the order of the input 
sequence. Therefore, the models yield the same sequence 
of outputs regardless of the spatial connections between 
the tokens. This property of the attention mechanism 
renders Transformer-based models suitable for investi-
gating fingerprint-to-molecule conversion.

Translation-based algorithms require a large corpus 
of diverse translation pairs for an effective translation. 
For this purpose, we selected the ChEMBL [47] (2.08 M) 

dataset and extended it to include PubChem  [48] com-
pounds by maximizing the variety of atom-types based 
on the atomic environments. Atom-types refer to the 
features obtained by sparse ECFP of radius zero. This 
resulted in 5,050,000 small- and medium-sized molecules 
(those with 50 heavy atoms or less) that maximally rep-
resent available drug-like chemical space, considering 
that most current drugs are small organic molecules of 
natural or synthetic origin  [49]. Figure  1 illustrates the 
normalized molecular weight distribution of our train-
ing dataset, along with several drug and natural prod-
uct libraries. From this large pool, we randomly selected 
and separated 50,000 molecules for testing purposes. To 
obtain more realistic results, we used a challenging data-
set, which retains the stereochemical information. How-
ever, we note that most of fingerprints in RDKit do not 
account for stereochemistry.

Model performance
The conversion accuracy of each structural finger-
print into unique molecular representations, namely 
SMILES and SELFIES strings, is illustrated in Fig.  2. 
The SMILES conversion demonstrated more favorable 
results in terms of accuracy compared to the SELF-
IES conversion. In both translation attempts, the top-
performing molecular representation was ECFP4. The 
highest accuracy reached 93.1%, indicating that the 
model reflects an optimal level of fragment specific-
ity within a fixed-length vector. Alongside the per-
formance of ECFP4, TT, HashAP, and AEs yielded 
competitive accuracy, whereas the worst performance 
was observed in MACCS, omitting ECFP0. It should 
be noted that ECFP0 attempts to represent five million 
molecules using only 100 tokens so that the produced 
fragments are overly-general. ECFP0 did not function 
well in this translation task. Additionally, sparse ver-
sions perform better than hashed variants of the same 
fingerprint, as in the cases of the TT-HashTT and AEs-
ECFP2 pairs.

The performances of the structural fingerprints for 
the SMILES and SELFIES reconstruction showed dif-
ferent dynamics during training. Near-convergence was 
achieved at a lower number of steps for SMILES com-
pared to SELFIES (learning was quicker, as evident from 
the relative bar heights after 100 K steps; see Fig.  2). 
Accordingly, the SMILES grammatical structure can 
be easily learned, compensating for the fragility of the 
representation. On the other hand, the decrease in the 
overall accuracy and the necessity for a more significant 
step size to reach convergence of SELFIES indicated that 
the correlations between the fingerprints and SELFIES 
tokens were weaker than those between the fingerprints 
and SMILES tokens. The performance of Avalon in the 

Fig. 1  The normalized molecular weight distribution of our training 
dataset along with several drug and natural product libraries such 
as KEGG DRUG Database, DRUGBANK and Universal Natural Product 
Database (UNPD). The training dataset consisted of five million 
small- and medium-sized molecules of approximately 50 heavy 
atoms or less that maximally represent available drug-like chemical 
space
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SELFIES prediction differed from the general perfor-
mance trend, which may be due to its unusual cumulative 
distribution function (CDF).

The mean Tanimoto score ( Tc ) is important as it 
reflects the overall conversion quality. However, similar-
ity metrics generally have different scales for different 
types of fingerprints. Therefore, it is not ideal to rational-
ize a specific similarity value as a performance evaluation 
indicator for various fingerprints. A global comparison 
of all fingerprints within a fair framework is possible 
only when the similarity value corresponding to a refer-
ence significance score is presented. Considering this, 
we generated the CDFs of all fingerprints and obtained 
Tc values with a significance of 0.99. Figure  3 illustrates 
the mean Tc scores (vertical lines) within the training 
step interval [25K-500K] coupled with a fixed p-value of 
0.01 (horizontal lines). The small horizontal lines in the 
Figure 2 were determined for each fingerprint using the 
method proposed by Vogt and Bajorath [50] to model the 
distribution of similarity values for various fingerprints 
in RDKit. These lines represent Tanimoto coefficients for 
a p-value of 0.01, which allowed us to assess the level of 
learning.

Lower Tc values for the reference significance score, 
and higher mean Tc values at convergence were observed 
as characteristics of high-performing fingerprints 
(ECFP4, ECFP2, FCFP4, AEs, HashAP, TT and HashTT). 
As shown in Fig.  3, the ECFP4-SMILES conversion 
yielded the best overall result, with a mean Tc of 0.98. AEs 
was the next in terms of performance, having a mean Tc 
of 0.97. The performances of HashAP, TT, and HashTT 

were comparable to that of AEs, with mean Tc scores of 
0.96, 0.96, and 0.95, respectively. In contrast, the RDKit 
variants-SELFIES conversion performed poorly relative 
to the other path-based fingerprints.

Predictive performance is often susceptible to bias if 
the fingerprints representing the input sequences are 
used to compute the similarity score. To minimize the 
selection bias, multiple fingerprints were used, as listed 
in Table  1. The Tanimoto exactness of each model, the 
percentage of predictions under the condition that Tc 
equals unity, was computed across 15 different finger-
prints (by including explicit bit vector type of the ECFP2 
and ECFP4), and is presented as a matrix in Fig. 4. This 
approach was essential to our assessment as it decoupled 
the robustness of the models from the effectiveness and 
bias of the fingerprints. The enhanced prediction accura-
cies of MACCS, RDK4, RDK4-L, and ECFP2 fingerprints 
confirmed the fingerprint dependency of the results. Fig-
ure  4 highlights the high performance and robustness 
of the ECFP4-SMILES model. The true performance of 
each model averaged over 15 fingerprints is presented in 
Table 2. Ultimately, our top-performing models, such as 
ECFP4, TT and its hashed variant, HashAP, ECFP2 and 
AEs, performed similarly regardless of the choice of simi-
larity metric. An analysis of the fingerprint dependency 
of SELFIES is shown in the Additional File 1: Figure S2.

Breakdown of the top‑1 accuracy
A complete breakdown of the top-1 accuracy results over 
the 50 K test set for the top-performing structural finger-
prints is presented in Table 3, wherein the total accuracy 

Fig. 2  Conversion accuracy of each structural fingerprint to SMILES (left) and SELFIES (right) demonstrated using cumulative column-stacked 
bar plots along with the number of training steps, from 25K to 500K steps (right color map). The results are based on the Tanimoto exactness, 
the percentage of Tc = 1.0 reconstructions, computed periodically during training with a sparse form of an extended connectivity fingerprint 
(ECFP) of radius 1. Each bar represents the progress over the iterations for the given step intervals
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is given based on Tanimoto exactness. We further sepa-
rated the total accuracy into major components, using 
a simple string comparison. Here, we note that identi-
cal structures based on the Tanimoto metric can be cat-
egorized depending on whether they are sourced from 
identical strings, stereochemistry, canonicalization, or 
other characteristics, including chain length and symme-
try properties. The invalidity rates and mean Tanimoto 
scores are listed in Table 3.

A large fraction of our test set (i.e., ∼30%) incorpo-
rates stereochemistry, and the obtained results indicate 
that the models account for stereochemical information. 
However, they struggle to achieve an accurate picture of 
relative atom orientations. Indeed, for the best-perform-
ing fingerprint, ECFP4, the stereochemical errors equaled 
∼20%. Therefore, we examined the stereochemically-
inconsistent predictions by removing the stereochemical 
information to determine whether these predictions were 
string-exact relative to the ground truths. In most cases, 
the models treat reverse (or opposite) stereochemistry as 
cis/trans or clockwise/anti-clockwise. Moreover, predic-
tions featuring stereochemistry also existed even when 
the ground truths possessed no stereocenters, or vice 
versa.

Our dataset was not subjected to canonicalization 
before training to investigate the full capacity of the 
SMILES representation. Our models could produce 
noncanonical instances of ground-truth SMILES repre-
sentations, and the rates of predicting chemically equiv-
alent SMILES representations varied from 1.6 to 4.8%, 
depending on the fingerprint type. In addition, it should 

be noted that the Kekule forms play an important role 
in non-canonical predictions because switches in the 
Kekule representations can alter SMILES enumerations. 
SELFIES provided robust conversions regarding invalid-
ity rates, with no invalid cases, as expected. Furthermore, 
SMILES performed comparably well, with only   0.2-−

Fig. 3  Mean Tanimoto coefficients for each type of conversion along with the reference significance score to assess the actual performance 
of structural fingerprints. Horizontal lines represent the similarity values of each fingerprint corresponding to a p-value of 0.01. Vertical lines show 
the continuum, which starts at 25K step and ends with convergence

Fig. 4  Percentages of reconstructed SMILES strings from a source 
fingerprint (y-axis) with Tc = 1.0 , the Tanimoto exactness, computed 
with the respective fingerprints (x-axis). The consistent values 
across a row reflect the robustness and high quality of reconstructed 
SMILES strings, while significant variations of values represent 
the fingerprint bias in Tc calculation ECFP2∗ and ECFP4∗ represent 
explicit bit versions
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0.3% invalidity rates. Representative predictions display-
ing the changes in stereochemistry, kekule forms, and 
enumerations are provided in Additional File 1: Table S1.

Interpretability
Translation-based models require a detailed quantita-
tive study of the relationships between the translated 
pairs. To establish a thorough explanation of the model, 
we evaluated the correlated features obtained using the 
integrated gradients and attention weights, commonly 
used to explain the relationship between tokens (Fig. 5). 
As a form of gradient-based feature importance measure, 
integrated gradients reveal relevant features more reli-
ably than attention weights. Recent findings showed that 
attention weights are often uncorrelated with gradient-
based methods [51, 52]. Therefore, we recognized atten-
tion weights as a valuable supplementary tool to address 
the interpretability problem. Although the interpretation 
of attribution matrices for each combination is highly 
intricate, an explainable path exists between the AEs and 
the reconstruction of the SMILES string.

The matrices shown in Fig.  5 can be interpreted in 
two ways: First, the column-wise approach reflects the 
effect of an input feature on the prediction. Based on this 

approach, our results indicated that the high-attribution 
AEs at positions 9 and 11 were the most salient frag-
ments for predicting the SMILES substring of the nitro 
groups (Fig. 5b). In particular, the AE at position 11, with 
a radius of 0, made a decisive contribution specifically to 
the oxygen atoms of the nitro group because the nega-
tively charged oxygen is in resonance with the geminal 
oxygen. Second, the row-wise approach reflects salient 
input features attributed to a specific part of the predic-
tion. For example, the higher attention values in the row 
of chlorine atoms (Fig.  5c) highlight three atomic envi-
ronments, all containing chlorine, including the central 
atoms at radii 0 and 1.

Conclusion
Structural fingerprints were exploited as alternatives 
to unique molecular representations. We successfully 
rebuilt the molecules with a high level of precision, that 
is, >90% for the top-performing fingerprints. Conse-
quently, structural fingerprints can be used as strong rep-
resentational tools in chemistry-related NLP applications 
after restoring the connectivity information lost during 
fingerprint transformation. Therefore, our diverse selec-
tion of fingerprints provided an unbiased examination 

Table 2  Overall performance (%) of fingerprint decoders, computed as the average Tanimoto exactness score across 15 
fingerprintsOverall performance (%) of fingerprint decoders, computed as the average Tanimoto exactness score across 15 fingerprints

MACCS Avalon RDK4 RDK4L HashAP TT HashTT ECFP0 ECFP2 ECFP4 FCFP2 FCFP4 AEs

SMILES 39.6 67.3 65.2 51.6 85.1 86.6 84.6 1.9 80.8 93.6 20.3 71.7 81.3

SELFIES 31.2 46.6 56.7 44.1 72.6 79.5 76.4 1.6 73.6 86.2 16.3 64.7 75.0

Table 3  Detailed breakdown (%) of top-1 accuracy on 50 K test set for the top-performing structural fingerprints belonging to five 
sub-categories

Representation Components MACCS Avalon HashAP TT AEs ECFP4

SMILES Tc = 1.0 34.7 65.6 83.1 85.2 83.5 93.1

String exact 22.3 44.7 58.7 57.8 52.1 64.6

Stereo 8.2 14.9 19.2 19.2 18.0 21.2

Non-canonical 1.6 3.5 4.3 4.2 3.7 4.8

Others 2.6 2.6 0.8 4.0 9.6 2.5

Invalid 0.2 0.4 0.3 0.3 0.3 0.2

Tc 81.9 90.5 95.5 96.3 96.7 98.1

SELFIES Tc = 1.0 27.2 45.2 70.7 78.0 76.6 85.6

 String exact 17.7 31.3 50.9 54.0 49.1 60.5

 Stereo 5.9 9.3 15.2 16.7 19.9 18.5

 Non-canonical 1.5 2.8 4.0 4.1 3.6 4.7

 Others 2.2 1.7 0.6 3.3 8.0 1.9

Invalid No invalid predictions

Tc 77.8 81.5 90.7 93.9 94.4 95.1
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of the overall conversion performance. Our results indi-
cated that AEs, ECFP4, topological torsion, and atom-
pair fingerprints are ideal candidates for developing NLP 
tools with molecules.

In this study, a complete breakdown of the accuracy 
per fingerprint class is presented in detail. Such an anal-
ysis provides invaluable insights into the critical factors 
affecting the conversion process, such as stereochem-
istry, which was a noticeable limitation of the model 
proposed herein. As this model has struggled to treat 
stereochemistry, additional research is required to fully 
address this issue. Moreover, we assessed the interpreta-
bility of our conversion approach by evaluating the meth-
ods that compute and extract the most salient features 
for prediction. The attribution maps revealed that the 
model focused on the correct fragments for reconstruct-
ing the molecule. Finally, our findings could help improve 
the quality of outcomes by offering ways to develop more 
efficient chemical models in the fields of deep generative 
modelling and neural machine translation.

Method
Training
The Pytorch  [53] Distributed Data-Parallel Train-
ing (DDP) module was employed to train our models. 
Each model was trained with two GPUs up to a 500 K 
step, which denotes the number of times the optimizer 
updates the parameters of the model. The hyperparam-
eters of the models were set similar to ones used in the 
original Transformer publication  [46]. The encoder and 
decoder used a stack of six identical layers consisting of 
eight heads with a 512 dimensional multi-head attention 
mechanism, followed by a 2048 dimensional fully con-
nected feed-forward layer. In contrast, we used a normal-
ization layer before each sub-layer, and with the outputs 
of the encoder and decoder by following The Annotated 
Transformer [54]. A dropout layer, with a dropout rate of 
0.1, was applied to the output of each sub-layer to avoid 
overfitting.

Even though the attention mechanism is a permuta-
tion-invariant operation and fingerprint features are 
unconnected, we did not remove the positional encoding 
in our final models because a previous study [39] stated 
that it was preferable over non-positional encoding. 
We had tested this claim by training our models with-
out positional encoding. The results of our models with 
positional encoding showed slightly better performance 
(in a range of 0.2−0.9 percent) compared to those with-
out positional encoding, consistent with the previous 

Fig. 5  Correlated features of the a predicted SMILES 
given with atomic indices obtained by b integrated gradients and c 
attention weight matrices. The most salient fragments (atom indices 
attached to the central atoms for easy recognition) are interpreted 
column-wise and row-wise
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findings [39, 55] Though not significant, what considered 
at positional encoding was the default order of finger-
prints features, e.g., index-order for hashed fingerprints. 
In addition, a zero-redundancy optimizer (ZeRO)  [56] 
with the Adam algorithm was employed to optimize the 
parameters of the models. This was done to improve the 
training speed by eliminating memory redundancies dur-
ing data- and model-parallel training. A negative log-like-
lihood function was used as the loss function.

We set the number of tokens in one batch to 8000 per 
GPU. Owing to hardware limitations, this number could 
not be exceeded. For a fair comparison of the finger-
prints, the batch size was specified based on the aver-
age number of tokens in one batch, provided that the 
number of sentence pairs in one batch varied according 
to the fingerprint sequence length. To extend the perfor-
mance of the standard transformer implementation [46], 
we experimented with several learning-rate schedulers. 
In addition to testing stochastic gradient descent with 
warm restarts [57], we designed a decayed variant of the 
cyclic learning rate because the importance of scheduling 
is well emphasized by Karpov [58]. The behaviors of the 
schedulers are shown in Additional File 1: Figure S1. The 
cyclic learning scheduler was ultimately selected as the 
most appropriate scheduler because it provided a slightly 
superior performance compared to the other techniques. 
For the cyclic rate scheduler, the constant factor param-
eter and the warm-up step size were set to 5 and 5000, 
respectively. The learning rate decreased from 0.001 to 
3.9e− 12 at each 25 K step and increased to its maximum 
again.

Evaluation
Conversion efficiency was evaluated using Tanimoto 
similarity matching. Further breakdown of the results 
was achieved by introducing simple string matching. The 
widely used Tanimoto coefficient, which operated on the 
sparse Morgan fingerprint, was selected as the similar-
ity metric to represent the main results. Pairwise simi-
larities between the predictions and ground truths were 
computed at the end of each 25K step for each pair pre-
sent in the test set. Top-1 predictions were used to report 
the conversion accuracy, and the Python package ccbm-
lib [50] was employed to facilitate the generation of simi-
larity value distributions for all fingerprints.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00693-0.

Additional file 1: Figure S1. We tried four different learning rate 
schedulers. CylicLR in reference to Karpov et al., its decay variant that is 
designed in this study, the scheduler used in standard Transformer paper, 
and stochastic gradient descentwith warm restarts (SGDR). The cyclic 

learning scheduler was selected due to its slightly superior performance 
compared to the other techniques. The constant factor parameter and 
the warm-up step size were set to 5 and 5000, respectively. The learning 
rate decreased from 0.001 to 3.9e-12 at each 25K steps and jumped to its 
maximum again. Figure S2. Each cell shows the Tanimoto exactness (%) 
of selected fingerprint transformation to SELFIES (y-axis) computed at the 
respective fingerprint encodings. The consistency in color code reflects 
the robustness, while the jumps represent the effect of selection bias. 
ECFP2* and ECFP4* represent explicit bit versions. Table S1. Case 1:  
Ground Truth has stereo information but prediction has in reverse form. 
Case 2 : Ground Truth has stereo information but prediction does not. 
Case 3 : Ground Truth has no stereo information but prediction does. Case 
4 : Enumerations are different. Case 5 : Ground Truth is not in kekulized 
form but prediction is.
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