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Abstract 

Background:  Reaction networks (RNs) comprise a set X of species and a set R of reactions Y → Y
′ , each converting 

a multiset of educts Y ⊆ X  into a multiset Y ′ ⊆ X  of products. RNs are equivalent to directed hypergraphs. However, 
not all RNs necessarily admit a chemical interpretation. Instead, they might contradict fundamental principles of 
physics such as the conservation of energy and mass or the reversibility of chemical reactions. The consequences of 
these necessary conditions for the stoichiometric matrix S ∈ R

X×R have been discussed extensively in the chemical 
literature. Here, we provide sufficient conditions for S that guarantee the interpretation of RNs in terms of balanced 
sum formulas and structural formulas, respectively.

Results:  Chemically plausible RNs allow neither a perpetuum mobile, i.e., a “futile cycle” of reactions with non-
vanishing energy production, nor the creation or annihilation of mass. Such RNs are said to be thermodynamically 
sound and conservative. For finite RNs, both conditions can be expressed equivalently as properties of the stoichio-
metric matrix S . The first condition is vacuous for reversible networks, but it excludes irreversible futile cycles and—in 
a stricter sense—futile cycles that even contain an irreversible reaction. The second condition is equivalent to the 
existence of a strictly positive reaction invariant. It is also sufficient for the existence of a realization in terms of sum 
formulas, obeying conservation of “atoms”. In particular, these realizations can be chosen such that any two species 
have distinct sum formulas, unless S implies that they are “obligatory isomers”. In terms of structural formulas, every 
compound is a labeled multigraph, in essence a Lewis formula, and reactions comprise only a rearrangement of 
bonds such that the total bond order is preserved. In particular, for every conservative RN, there exists a Lewis realiza-
tion, in which any two compounds are realized by pairwisely distinct multigraphs. Finally, we show that, in general, 
there are infinitely many realizations for a given conservative RN.

Conclusions:  “Chemical” RNs are directed hypergraphs with a stoichiometric matrix S whose left kernel contains 
a strictly positive vector and whose right kernel does not contain a futile cycle involving an irreversible reaction. 
This simple characterization also provides a concise specification of random models for chemical RNs that addition-
ally constrain S by rank, sparsity, or distribution of the non-zero entries. Furthermore, it suggests several interesting 
avenues for future research, in particular, concerning alternative representations of reaction networks and infinite 
chemical universes.

Keywords:  Chemical reaction network, Directed hypergraph, Stoichiometric matrix, Futile cycle, Perpetuum mobile, 
Energy conservation, Mass conservation, Reaction invariants, Null spaces, Sum formula, Multigraph, Lewis formula
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Background
Most authors will agree that a chemical reaction net-
work consists of a set X of chemical species or com-
pounds and a set R of chemical reactions, each 
describing the transformation of some (multi)set of 
educts into a (multi)set of products. Depending on the 
application, this basic construction may be augmented 
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by assigning properties such as mass, energy, sum for-
mulas, or structural formulas to the compounds. Simi-
larly, reactions may be associated with rate constants, 
equilibrium constants, and so on. A formal theory of 
reaction networks (RN) describes a reaction on a given 
set of compounds X as a stoichiometric relation, i.e., as 
a pair of formal sums of chemical species x ∈ X :

The left-hand side in Eq. (1) lists the educts and the 
right-hand side gives the products of the reaction. The 
stoichiometric coefficients s−xr ∈ N0 and s+xr ∈ N0 denote 
the number of species x ∈ X that are consumed (on the 
left-hand side) or produced (on the right-hand side) 
by the reaction r, respectively. A species x ∈ X is an 
educt in reaction r if s−xr > 0 and a product if s+xr > 0 . If 
s+xr = s−xr = 0 , then species x does not take part in reaction 
r and is suppressed in the conventional chemical notation. 
The formal sums 

∑

x∈X s−xr x and 
∑

x∈X s+xr x form the com-
plexes of educts r− and products r+ of the reaction r. We 
denote the set of reactions under considerations by R and 
call the pair (X ,R ) a reaction network (RN). Throughout 
this contribution we will assume that both X and R are 
non-empty and finite. Excluding explicit catalysis, that 
is, forbidding s−xr s+xr > 0 , it suffices to consider the stoi-
chiometric matrix S ∈ N

X×R

0  . Its entries Sxr = s+xr − s−xr 
describe the net production or consumption of species 
x in reaction r. In many practical applications, e.g. in the 
context of metabolic networks, RNs are embedded in an 
open system. In that manner, the consumption of nutri-
ents and the production of waste can be modeled. We will 
return to this point only after discussing chemical RNs in 
isolation, i.e., as closed systems.

Several graph representations have been considered 
as (simplified) models of a RN, see [1] for a recent sum-
mary. In contrast to the pair (X ,R) , they do not always 
completely represent the RN.

The S-graph (species graph, compound graph, or sub-
strate network in the context of metabolic networks) 
has the species as its vertices. A (directed) edge con-
nects x to y if the RN contains a reaction that has x as 
an educt and y as a product [2, 3]. The corresponding 
construction in the kinetic setting is the interaction 
graph with undirected edges whenever ∂[x]/∂[y] �≡ 0 , 
which are usually annotated by the sign of the deriva-
tive [4]. S-graphs have also proved to be useful in 
approximation algorithms for the minimal seed set 
problem [5], which asks for the smallest set of sub-
strates that can generate all metabolites. Complemen-
tarily, reaction graphs model reactions as nodes, while 
edges denote shared molecules [6].

(1)
∑

x∈X

s−xr x →

∑

x∈X

s+xr x.

The complex-reaction graph simply has the complexes 
C (the left- and right-hand sides of the reactions) as its 
vertex set and the reactions R as its edge set. That is, 
two complexes r− and r+ are connected by a directed 
edge if there is a reaction r = (r−, r+) ∈ R . Its inci-
dence matrix Z ∈ R

C×R (with entries Zcr = −1 if c = r− , 
Zcr = 1 if c = r+ , and Zcr = 0 otherwise) is linked to the 
stochiometric matrix via S = YZ , where the entries of 
the (stoichiometric) complex matrix Y ∈ R

X×C are the 
corresponding stochiometric coefficients. The complex-
reaction graph plays a key role in the analysis of chemi-
cal reaction networks with mass-action kinetics and 
arbitrary rate constants, as studied in classical “chemi-
cal reaction network theory” (CRNT) [7–9]. It gives rise 
to notions such as “complex balancing” and “deficiency”, 
which allow the formulation of strong (global) stability 
results, see e.g. [10, 11].

SR-graphs (Species-reaction networks) are bipartite 
graphs with different types of nodes for chemical species 
and reactions, respectively [12, 13]. As such, they can be 
endowed with additional annotations or extended with 
multiple edges to represent stoichiometric coefficients. 
In this extended form, they are faithful representa-
tions of chemical RNs. Alternatively, the edges are often 
annotated with the multiplicities of molecules, i.e., the 
stoichiometric coefficients; in this case, they completely 
specify the RN (X ,R) . Undirected SR-graphs have a close 
relationship to classical deficiency theory [7, 9] and form 
the starting point for a qualitative theory of chemical 
RN kinetics [14]). More detailed information on qualita-
tive kinetic behavior can be extracted from directed SR-
graphs [15]. Both the S- and the R-graph can be extracted 
unambigously from an SR-graph.

The bipartite SR-graphs can be interpreted as the 
König’s representation [16] of directed hypergraphs. The 
connection between hypergraph and graph represen-
tations is discussed in some more detail in [17]. While 
SR-graphs and directed hypergraphs can be transformed 
into each other, they carry a very different semantic. For 
instance, the notions of path and connectivity are very 
different for bipartite graphs and directed hypergraphs 
[18]. It has been argued, therefore that any graph repre-
sentation of chemical networks necessarily treats edges 
as independent entities and thus fails to correctly cap-
ture the nature of chemical reactions [19, 20]. In a simi-
lar vein, [21] adopts the hypergraph representation and 
models (bio)chemical pathways as integer hyperflows to 
ensure mass balance at each vertex. Not every pair of an 
S- and R-graph implies an SR-graph, and if they do, the 
result need not be unique [6].

Over the last decade, many authors, including one of 
us, have investigated metabolic networks from a statisti-
cal perspective and reached the conclusion that they are 
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distictly “non-random”, presumably as the consequence of 
four billion years of evolution. This conclusion is typically 
reached by first converting a RN into one of the graph 
representations mentioned above. The choice of graphs is 
largely motivated by a desire to place metabolic or other 
chemical RNs within the scheme of small world and 
scale free networks and to analyze the RNs with the well-
established tools of network science [19, 22]. Thus one 
concludes that graph-theoretical properties of metabolic 
networks are significantly different from the properties of 
randomly generated or randomized background models 
for chemical reaction networks [3, 23–25]. The insights 
gained from this “non-randomness” of metabolism, 
however, critically depend on what exactly the authors 
meant by “random”, that is, how the background models 
are defined. In particular, it is important to understand 
whether differences between chemical networks and the 
background are caused by the implementation of univer-
sal properties (that any “chemistry-like” RN must satisfy) 
or whether they arise from the intrinsic structure of par-
ticular chemical networks.

To this end, however, we first need a comprehensive 
conception of what constitutes a chemistry-like reac-
tion network. The different representations used in the 
literature highlight the fact that it is far from obvious 
which graphs or hypergraphs properly describe chemical 
RNs among a possibly much larger set of network mod-
els. There is a significant body of work in the literature 
that describes necessary conditions on the stoichiomet-
ric matrix S that derive from key properties of chemical 
RNs, such as the conservation of mass or atoms in each 
reaction [8, 26–30]. In contrast, we are interested here in 
sufficient conditions with the aim of providing a concise 
characterization of RNs (X ,R) and their stoichiometric 
matrices S that describe reaction system that can reason-
ably be considered as “chemistry-like”. This is of practi-
cal relevance in particular for the construction of artifical 
chemistry models [31–34] and random “chemistries”: It 
is still an open problem how random RNs can be con-
structed that can serve as fair, chemistry-like background 
models. We therefore start with a brief survey of random 
artificial chemistries and randomized RNs. As we shall 
see in the following section, oftentimes no explicit pro-
visions are made to include “chemical” constraints such 
as the conservation of matter and energy into the back-
ground models.

Beyond the practical importance for the generation of 
random chemistries, it is also of interest to ask whether 
and to what extent the stoichiometry of a RN constrains 
the underlying chemistry, i.e., the composition of com-
pounds and the type of reactions. Chemical reaction 
networks have been studied as a paradigm of computa-
tion that is quite different from, but theoretically equally 

powerful as Turing machines [35–38]. In the case of DNA 
based computing [39], the field has matured to the point 
that a compiler for translating chemical reaction net-
works into nucleic acid strand displacement systems has 
become available [40]. If chemical reaction networks are 
to be used as computing devices, a necessary intermedi-
ate step is to design reaction systems that implement a 
given stoichiometric matrix. Constraints on the chemis-
try imposed by the desired network stoichiometry itself 
thus become an issue in the design process, prompting us 
to ask whether there are chemical limitations to the real-
izability of RNs also beyond the constraints imposed by 
thermodynamics.

The main part of this contribution is the characteri-
zation of chemistry-like RNs. Starting from the princi-
ples of energy conservation and conservation of matter, 
we derive equivalent conditions on the stoichiometric 
matrix S . We then introduce realizability of RNs by sum 
formulas and structural formulas as a first step towards a 
formalization of chemistry-like networks, and show that 
conservation of matter is already sufficient to guaran-
tee the existence of such chemistry-like representations. 
Finally we discuss the consequences of the mathematical 
results for the construction of random RNs and address 
some open research questions.

A brief survey of random and randomized chemical 
RNs
Chemical reaction networks are specified either as a set 
of chemical reactions or as a system of differential equa-
tions describing its kinetics. Graphical models have been 
extracted from both.

Simple graph models of RNs
S-graphs have been used to explore statistical properties 
of large RNs. In this line of research, empirical S-graphs 
are compared to the “usual” random networks models 
such as Erdős Renyí (ER) random graphs, Small World 
networks in the sense of Watts and Strogatz [41], or the 
Álbert-Barabasi model of preferential attachment. Gen-
erative models for random graphs with given degree 
distributions were introduced in [42]. Not surprisingly, 
chemical reaction networks do not very well conform to 
either one of them. As noted early on, however, R-graphs 
of metabolic networks at least qualitatively fit the small 
world paradigm [22]. More sophisticated analyses 
detected evidence for modularity and hierarchical organ-
ization in metabolic networks [43], using random graph 
models with the same degree distributions as contrasts. 
Arita noted, however, that S-graphs are poor representa-
tions of biochemical pathways and proposed an analysis 
in terms of atom traces, concluding that “the metabolic 
world [of E. coli] is not small in terms of biosynthesis 
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and degradation” [44]. The motivation to focus on atom 
maps comes from the insight that two compounds that 
are linked by reactions are only related by the chemical 
transformation if they share at least one atom.

A versatile generator for bipartite graphs that can han-
dle joint degree distributions is described in [45]. Sur-
prisingly, bipartite random graph models apparently have 
not been used to model chemistry. Instead of generative 
models such as the ER graph or the preferential attach-
ment model, null models are often specified in terms of 
rewiring, that is, edit operations on the graph. Rewiring 
rules define a Markov Process on a set of graphs that can 
produce samples of randomized networks. The key idea 
is to specify the rewiring procedure in such a way that 
it preserves graph properties that are perceived to be 
important [46, 47]. For example, the degrees of all ver-
tices in a digraph are preserved when a pair of directed 
edges x1y1 and x2y2 is replaced by x1y2 and x2y1 as long 
as x1 and x2 have the same out-degree while y1 and y2 
have the same in-degree. Randomization procedures for 
bipartite graphs have become available in the context of 
ecological networks [48] or trade networks [49]. To our 
knowledge they have not been used for SR graphs.

Random (directed) hypergraphs
In [50] a hypergraph is defined as a multiset of hyper-
edges, each of which in turn is a multiset of vertices. In 
this setting, a random hypergraph is specified by the 
probabilities pk to include a hyperedge e with cardinal-
ity |e| = k . Similar models for undirected hypergraphs are 
used e.g. in [51]. In a directed hypergraph, every hyper-
edge is defined as the pair (e−, e+) consisting of the mul-
tisets e− and e+ . The construction of [50] thus naturally 
generalizes to directed hypergraphs specified by picking 
e with probability p|e−|,|e+| . In the context of chemistry 
this amounts to picking educt and product sets for reac-
tions with probabilities depending on their cardinality. 
This type of random (directed) hypergraph models are 
the obvious generalizations of the Erdős Renyí (di)graphs. 
A certain class of random directed hypergraphs with 
|e−| = 2 and |e+| = 1 for all hyperedges e is considered in 
[52].

Hypergraphs are also amenable to rewiring procedures 
that ensures the preservation of certain local or global 
properties. For instance [17] proposes a scheme that 
preserves the number and cardinality of the hyperedges 
(replacing a randomly selected (e−, e+) with a randomly 
selected pair of disjoint subsets (e′−, e′+) with |e−| = |e′−| 
and |e+| = |e′+| ). On this basis, the authors conclude that 
the hierarchical structure hypothesis proposed in [43] is 
not supported for metabolic networks when a cluster-
ing coefficient is defined for directed hypergraphs. [17] 
also compares S- and R-graphs of metabolic networks 

with ensembles of S- and R-graphs derived from rand-
omized directed hypergraphs and cast further doubt on 
previously reported scaling results. Randomization pro-
cedures for hypergraphs that preserve local clustering 
are described in [53]. An approach that uses a chemical 
graph rewriting model to ensure soundness of reactions 
is described in the MSc thesis [54].

In [25] networks are constructed in a stepwise proce-
dure starting with directed graphs whose arcs are then 
re-interpreted as directed hyperarcs by combining mul-
tiple arcs. This process is guided by matching the degree 
distribution of the implied S-graph.

Reaction universes: random subhypergraphs
Instead of generating a random RN directly from a sta-
tistical model or rewiring a given one, one can also start 
from a reaction universe RU, that is, a RN that contains 
all species of interest and all known or inferred reactions 
between them. Without losing generality we can think 
of the RU as a directed hypergraph in the sense of [50], 
where the multi-set formalism accounts for the stoichi-
ometric coefficients. In contrast to the generative and 
rewiring approaches the a priori specification of an RU 
ensures a high level of chemical realism and RNs can now 
be sampled by randomly selecting subsets of directed 
hyperedges, that is, chemical reactions. If the RU already 
ensures conservation of matter or energy, these proper-
ties are inherited by the sub-networks. In order to gener-
ate random metabolic networks, reactions can be drawn 
from databases such as KEGG or EcoCyc [55, 56]. Such 
selections of reactions are sometimes called “metabolic 
genotypes” since the available reactions are associated 
with enzymes, whose presence or absence is determined 
by an organism’s genome [55]. In some studies, addi-
tional constraints such as the production of biomass are 
exploited and networks are sampled e.g. by combining 
Flux-Balance Analysis (FBA) and a Markov Chain Monte 
Carlo (MCMC) approach [55, 57].

A characterization of chemistry‑like reaction 
networks
In this section, we start from reaction networks that are 
specified as abstract stoichiometric relations, Eq. (1), and 
identify minimal constraints necessary to avoid blatantly 
unphysical behavior.

Notation and peliminaries
Let X be a finite set and let R be a pair of formal sums 
of elements of X with non-negative integer coefficients 
according to Eq. (1). Then we call the pair (X ,R) a reac-
tion network (RN). Equivalently, a RN is a directed, 
integer-weighted hypergraph with directed edges 
(r−, r+) such that x ∈ r− with weight s−xr > 0 and x ∈ r+ 
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with weight s+xr > 0 . The weights s−xr and s+xr are usu-
ally called the stoichiometric coefficients. We set s−xr = 0 
and s+xr = 0 if x /∈ r− and x /∈ r− , respectively. We delib-
erately dropped the qualifier chemical here since, as we 
shall see, not every RN (X ,R) makes sense as a model of 
a chemical system. In fact, the aim of this contribution is 
to characterize the set of RNs that make sense as models 
of chemistry.

Such directed hypergraphs are most conveniently 
drawn as (bipartite) König multigraphs, with distinct 
types of vertices representing compounds x ∈ X and 
reactions r ∈ R , respectively. Stoichiometric coefficients 
larger than one appear as multiple edges. See the exam-
ple in Fig. 1.

For each reaction r ∈ R , we define its support as 
supp (r) = {x | s−xr + s+xr > 0} ; that is, x ∈ supp (r) if 
it appears as an educt, a product, or a catalyst in r. The 
stoichiometric matrix of (X ,R) is S ∈ N

X×R

0  with entries 
Sxr = s+xr − s−xr.

We distinguish proper reactions r, for which there is 
both x ∈ X with Sxr < 0 and y ∈ X with Syr > 0 , import 

reactions for which Sxr ≥ 0 for all x ∈ X , and export reac-
tions for which Sxr ≤ 0 for all x ∈ X . We write ∅ for the 
empty formula, hence ∅ −→ A and B −→ ∅ designate the 
import of A and the export of B, respectively. Note that this 
definition also allows catalyzed import and export reac-
tions, e.g., C −→ C + A or B + C −→ C.

In thermodynamics, a system is closed if it does not 
exchange matter with its environment, but may exchange 
energy in the form of work or heat [60]. For a RN, this rules 
out import and export reactions.

Definition 1  A RN (X ,R) is closed if all reactions r ∈ R 
are proper.

Given an arbitrary RN (X ,R) , there is a unique inclusion-
maximal closed RN contained in (X ,R) , namely (X ,R p) 
with

We will refer to (X ,R p) as the proper part of (X ,R).

(2)R
p
= {r ∈ R | r is proper}.

Fig. 1  Representation of a RN as König multigraph of the corresponding directed hypergraph. Round vertices (with chemical structures shown 
inside) designate compounds x ∈ X  , while reactions r ∈ R are shown as square vertices. Stoichometric coefficients are indicated by the number of 
edges from x to r for s−xr > 0 and r to x for s+xr > 0 , respectively. A flow (an overall reaction) is given by non-negative integer multiples of individual 
reactions. Here the coefficients vr are indicated in the square nodes for each reaction r. The flow shown here defines Oró’s [58] route from HCN to 
adenine (marked by red triangles) and corresponds to the net reaction 5HCN −→ H5C5N5 . Figure adapted from [59]
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For every reaction r, one can define a reverse reaction 
r that is obtained from r by exchanging the role of prod-
ucts and educts. That is, r is the reverse of r iff, for all 
x ∈ X , it holds that

While thermodynamics dictates that every reaction is 
reversible in principle (albeit possibly with an extremely 
low reaction rate), it is a matter of modeling whether suf-
ficiently slow reactions are included in the reaction set R.

Chemical reactions can be composed and aggregated 
into “overall reactions”. In the literature on metabolic net-
works, pathways are of this form. An overall reaction con-
sists of multiple reactions that collectively convert a set of 
educts into a set of products. It can be represented as a for-
mal sum of reactions 

∑

r∈R vr r , where the vector of multi-
plicities v ∈ N

R

0  has non-negative integer entries. Thereby, 
[Sv]x determines the net consumption or production of 
compound x in the overall reaction specified by v.

A vector v ∈ N
R

0  can be interpreted as an integer hyper-
flow in the following sense: If x is neither an educt nor 
a product of the overall reaction specified by  v , then 
[Sv]x =

∑

r(s
+
xr − s−xr)vr = 0 , i.e., every unit of x that is 

produced by some reaction r with vr > 0 is consumed by 
another reaction r′ with vr′ > 0.

The effect of an overall reaction can be represented 
via formal sums of species in two ways: as composite 
reactions,

or as net reactions,

Here we use the notation [c]+ = c if c > 0 and [c]+ = 0 
for c ≤ 0 . In Eq. (5), intermediates, i.e., formal catalysts 
are cancelled. Hence, the net consumption (or produc-
tion) of a species x is 

∑

r∈R [(s−xr − s+xr)vr]+ = −[Sv]x if 
[Sv]x < 0 (or 

∑

r∈R [(s+xr − s−xr)vr]+ = [Sv]x if [Sv]x > 0).
Fig. 1 shows the RN of Oro’s prebiotic adenine synthe-

sis from HCN and the integer hyperflow v corresponding 
to the net reaction “5 HCN −→ adenine” as an example.

While a restriction to integer hyperflows v ∈ N
R

0  is 
necessary in many applications, see e.g. [21] for a detailed 
discussion, it appears mathematically more convenient 

(3)s−xr = s+xr and s+xr = s−xr .

(4)
�

x∈X





�

r∈R

s−xrvr



x −→

�

x∈X





�

r∈R

s+xrvr



x,

(5)

�

x∈X





�

r∈R

�

(s−xr − s
+
xr)vr

�

+



x −→

�

x∈X





�

r∈R

�

(s+xr − s
−
xr
)vr

�

+



x.

to use the more general setting of fluxes v ∈ R
R

≥ as in the 
analysis of metabolic pathways. To emphasize the con-
nection with the body of literature on network (hyper)
flows we will uniformly speak of flows.

For any vector v ∈ R
R , we write v ≥ 0 if v is non-neg-

ative, v > 0 if v is non-negative and non-zero, that is, at 
least one entry is positive, and v ≫ 0 if all entries of v are 
positive. Analogously, we write v ≤ 0 , v < 0 , and v ≪ 0 . 
In particular, a vector v ∈ R

R is called a flow if v ≥ 0.
A non-trivial flow satisfies v > 0 , i.e., v  = 0 . Two flows 

v1 and v2 are called parallel if they describe the same net 
reaction. In particular, we therefore have Sv1 = Sv2 for 
parallel flows.

Futile cycles in a RN are non-trivial flows for which 
educts and products coincide and thus the net reaction 
is empty.

Definition 2  A flow v > 0 is a futile cycle if Sv = 0.

We use the term futile cycle in the strict sense to 
describe the concurrent activity of multiple reactions 
(or pathways) having no net effect other than the dis-
sipation of energy. In the literature on metabolic net-
works often a less restrictive concept is used that allows 
certain compounds (usually co-factors, ATP/ADP, 
redox equivalents, or solvents) to differ between prod-
ucts and educts, see e.g. [61–64]. In this setting, the net 
reaction of concurrent glycolysis and gluconeogenesis, 
namely the hydrolysis of ATP, is viewed as energy dis-
sipation rather than a chemical reaction. In our setting, 
ATP+H2O −→ ADP+ P−i +H+ , is a net reaction like 
any other, and hence a futile cycle would only arise if 
recycling of ATP, i.e., ADP + P−i +H+

−→ ATP+H2O , 
was included as well.

If a RN has a futile cycle, it also has an integer futile 
cycle v ∈ N

R

0  , since S has integer entries and thus its ker-
nel has a rational basis, which can be scaled with the least 
common denominator to have integer entries.

A pair (X ′,R ′) is a subnetwork of (X ,R) if X ′ ⊆ X , 
R

′ ⊆ R , and supp (r) ⊆ X ′ implies r ∈ R
′ . We say that a 

property P of a RN is hereditary if “ (X ,R) has P” implies 
that every subnetwork “ (X ′,R ′) has P”.

Chemical reactions are subject to thermodynamic 
constraints that are a direct consequence of the con-
servation of energy, the conservation of mass, and the 
reversibility of chemical reactions. In the context of 
chemistry, conservation of mass is of course a con-
sequence of the conservation of atoms throughout a 
chemical reaction. In the following sections, we investi-
gate how these physical principles constrain RNs. Since 
we have introduced RNs in terms of abstract molecules 
and reactions, Eq.  (1), we express the necessary condi-
tions in terms of the stoichiometric matrix S , which fully 
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captures only the proper part of the RN. Throughout this 
work, therefore, we assume that (X ,R) is a closed RN, 
unless explicitly stated otherwise.

Thermodynamic constraints
Reaction energies and perpetuum mobiles
Every chemical reaction r is associated with a change in 
the Gibbs free energy of educts and products. We there-
fore introduce a vector of reaction (Gibbs free) energies 
g ∈ R

R and write (X ,R, g) for a RN endowed with reac-
tion energies. The reaction energy for an overall reaction 
is the total energy of the individual reactions involved. In 
terms of v ∈ R

R , it can be expressed as

where �·, ·� denotes the scalar product on RR.
Futile cycles may act as a chemical version of a per-

petuum mobile. This is the case whenever a flow v > 0 
with zero formal net reaction, Sv = 0 , increases or 
decreases energy, i.e., if �g, v� �= 0.

Definition 3  Let (X ,R, g) be a RN with reaction ener-
gies. A flow v > 0 is a perpetuum mobile if Sv = 0 and 
�g, v� �= 0.

The classical concept of a perpetuum mobile decreases 
its energy, 〈g, v〉 < 0 , thereby “creating” energy for its 
environment. An “anti” perpetuum mobile with 〈g, v〉 > 0 
would “annihilate” energy. Either situation violates energy 
conservation and thus cannot be allowed in a chemical 
RN. Obviously, there is no perpetuum mobile if (X ,R) 
does not admit a futile cycle.

In fact, thermodynamics dictates that Gibbs free energy 
is a state function. Two parallel flows v1 and v2 therefore 
must have the same associated net reaction energies. 
That is, Sv1 = Sv2 implies �g, v1� = �g, v2� . Equivalently, 
any vector v = v1 − v2 ∈ R

R with Sv = 0 must satisfy 
�g, v� = 0 . That is, g ∈ (ker S)⊥.

Definition 4  Let (X ,R, g) be a RN with reaction ener-
gies. Then (X ,R, g) is thermodynamic if v ∈ R

R and 
Sv = 0 imply �g, v� = 0 , that is, if g ∈ (ker S)⊥.

Let (X ,R, g) be thermodynamic, (X ′,R ′) be a subnet-
work of (X ,R) , and g′ be the restriction of g to R ′ . Then 
v′ ∈ R

R
′ corresponds to v ∈ R

R with supp (v) ⊆ R
′ , 

and thus v′ ∈ R
R

′ and S′v′ = 0 imply Sv = 0 and fur-
ther �g′, v′� = �g, v� = 0 . Hence (X ′,R ′, g′) is again 
thermodynamic.

We note that the reaction energies of a reaction r and 
its reverse r necessarily cancel:

(6)
∑

r∈R

grvr = g⊤v = �g, v�,

Lemma 5  If r and r are reverse reactions in a thermo-
dynamic network (X ,R, g) , then gr = −gr.

Proof  If r and r are reverse reactions, then v with 
vr = vr = 1 (and vr′ = 0 otherwise) satisfies Sv = 0 . Thus 
�g, v� = gr + gr = 0 . � �

Digression: molecular energies and Hess’ Law
Every molecular species x ∈ X has an associated Gibbs 
free energy of formation. For notational simplicity, we 
write Gx instead of the commonly used symbol Gf (x) . The 
corresponding vector of molecular energies is denoted 
by G ∈ R

X . Molecular energies and reactions energies 
g ∈ R

R are related by Hess’ law: For every reaction r ∈ R , 
it holds that

In matrix form, the relationship between reaction ener-
gies g and molecular energies G amounts to

Proposition 6  Let (X ,R) be a RN and g ∈ R
R be a 

vector of reaction energies. Then (X ,R, g) is thermody-
namic if and only if there is a vector of molecular energies 
G ∈ R

X satisfying Hess’ law, Eq. (7).

Proof  By Definition  4, (X ,R, g) is thermodynamic if 
g ∈ (ker S)⊥ = im S⊤ , that is, if there is G such that 
g = S⊤G , satisfying Hess’s law. � �

Note that the vector of molecular energies G is not 
uniquely determined by g in general.

Reversible and irreversible networks
To begin with, we consider purely reversible or irrevers-
ible RNs.

Definition 7  A RN (X ,R) is reversible if r ∈ R implies 
r ∈ R and irreversible if r ∈ R implies r /∈ R.

In reversible networks, general vectors v ∈ R
R have 

corresponding flows ṽ ≥ 0 with the same net reactions 
and, in the case of thermodynamic networks, with the 
same energies.

Lemma 8  Let (X ,R, g) be a reversible RN (with reaction 
energies), and let v ∈ R

R be a vector. Then there is a flow 

gr =
∑

x∈X

Gx(s
+
xr − s−xr) =

∑

x∈X

Gx Sxr .

(7)g = S⊤G.
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ṽ ≥ 0 such that Sṽ = Sv . If (X ,R, g) is thermodynamic, 
then further �g, ṽ� = �g, v�.

Proof  If v ≥ 0 , there is nothing to show. Other-
wise, there are two flows v1 ≥ 0 and v2 > 0 such that 
v = v1 − v2 . Since (X ,R) is reversible, each reaction 
r ∈ R has a reverse r , and we define the reverse flow 
v̄2 > 0 such that v̄2r = v2

r
 . By construction, it satisfies 

Sv̄2 = −Sv2.

Now consider the flow ṽ = v1 + v̄2 > 0 . It satisfies

If the network is thermodynamic, then the reverse flow 
satisfies �g, v̄2� = −�g, v2� , by Lemma 5. Hence,

�g, ṽ� = �g, v1 + v̄2� = �g, v1 − v2� = �g, v� .�  �

By definition, a thermodynamic network cannot con-
tain a perpetuum mobile. Conversely, by the result below, 
if a reversible network is not thermodynamic, then it 
contains a perpetuum mobile.

Proposition 9  Let (X ,R, g) be a reversible RN with 
reaction energies. Then, the following two statements are 
equivalent: 

	(i)	 (X ,R, g) is thermodynamic.
	(ii)	 (X ,R, g) contains no perpetuum mobile.

Proof  Suppose (X ,R, g) is not thermodynamic. That is, 
there is v ∈ R

R with Sv = 0 and �v, g� �= 0 . By Lemma  8, 
there is ṽ ≥ 0 with Sṽ = 0 and �ṽ, g� �= 0 , that is, a per-
petuum mobile.�  �

The exclusion of a perpetuum mobile is not sufficient in 
non-reversible systems.

Example 10  Consider the following RN (with reaction 
energies g):

It contains one futile cycle,

A
1
−→B

1
−→A , v = (1, 1, 0, 0)⊤ with �g, v� = 0,

Sṽ = S(v1 + v̄2) = S(v1 − v2) = Sv.

(8)

but no perpetuum mobile. However, it contains two par-
allel flows with different energies,

A
1
−→B

2
−→C , v = (1, 0, 1, 0)⊤ with �g, v� = −2,

A
3
−→C , v = (0, 0, 0, 1)⊤ with �g, v� = −1.

Hence, the RN (with reaction energies g ) is not ther-
modynamic. By setting g3 = −2 , it can be made 
thermodynamic.

Many RN models are non-reversible, i.e., they contain 
irreversible reactions whose reverse reactions are so slow 
that they are neglected. From a thermodynamic per-
spective, irreversible reactions r must be exergonic, i.e., 
gr < 0 . We first consider the extreme case that all reac-
tions r ∈ R are irreversible.

Proposition 11  Let (X ,R, g) be an irreversible RN with 
reaction energies. Then, every futile cycle is a perpetuum 
mobile. Hence, if (X ,R, g) is thermodynamic, then there 
are no futile cycles.

Proof  Consider a futile cycle, that is, a flow v > 0 with 
Sv = 0 . Since all reactions are exergonic, vr > 0 implies 
gr < 0 and further 〈g, v〉 < 0 , that is, v is a perpetuum 
mobile. Now, if there is a futile cycle and hence a per-
petuum mobile, then the network is not thermodynamic. 
� �

Thermodynamic soundness
We next ask whether a RN (X ,R) can always be endowed 
with a vector of reaction energies g such that (X ,R, g) is 
thermodynamic.

Definition 12  A RN (X ,R) is thermodynamically 
sound if there is a vector of reaction energies g such that 
(X ,R, g) is a thermodynamic network.

We note that thermodynamic soundness is a heredi-
tary property of RNs, since we have seen above that if 
(X ,R, g) is a thermodynamic network so are all its sub-
networks (X ′,R ′, g′).

Again, we first consider purely reversible or irreversible 
RNs.

Proposition 13  Every reversible RN is thermodynami-
cally sound.
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Proof  Since S  = 0 (the zero matrix), obviously 
(ker S)⊥ = im S⊤ �= {0} (the zero vector), and hence 
there is a non-zero g ∈ (ker S)⊥ .�  �

Theorem  14  An irreversible RN is thermodynamically 
sound if and only if there are no futile cycles.

Proof  By Gordan’s Theorem (which is in turn a special 
case of Minty’s Lemma [65], see Appendix B in [66]): 
Either there is a negative g ∈ (ker S)⊥ or there is a non-
zero, non-positive v ∈ ker S . That is, either there is g ≪ 0 
with g ∈ (ker S)⊥ (the network is thermodyn. sound) or 
there is v < 0 with v ∈ ker S ; equivalently, there is a futile 
cycle v > 0 .�  �

It is not always obvious from the specification of an 
artificial chemistry model whether or not it is thermody-
namically sound. As an example, we consider the artifi-
cial chemistry proposed in [67]. It considers only binary 
reactions (two educts) that produce two products, aim-
ing to ensure conservation of particle numbers. In one 
variant, the networks only contains irreversible and thus 
exergonic reactions. It may produce, for instance, the fol-
lowing set of reactions:

Their sum corresponds to the flow v = (1, 1, 1, 1)⊤ ≥ 0 
and yields the exergonic composite reaction

that is, Sv = 0 . Thus the model admits a futile cycle com-
posed entirely of exergonic reactions and hence a per-
petuum mobile. Thus it is not thermodynamically sound.

Mixed networks
In many applications, RNs contain both reversible and 
irreversible reactions,  . There are two 
interpretations of such models: 

(a)	 In the (lax) sense used above, reversible reactions 
can be associated with arbitrary energies, while 
irreversible reactions are considered exergonic. 
That is, the reaction energies must satisfy gr < 0 for 
r ∈ Rirr.

(b)	 In a strict sense, the reaction energies assigned to 
irreversible reactions are much more negative than 
the reaction energies of the reversible ones. After 

(9)

A + B −→ C+ D,

A + C −→ E+ B,

B+ D −→ F+ A,

E+ F −→ A + B.

2A + 2B+ C+ D+ E+ F −→ 2A + 2B+ C+ D+ E+ F,

scaling, one requires |gr | ≤ 1 (that is, −1 ≤ gr ≤ 1 ) 
for r ∈ Rrev and |gr | ≥ γ (that is, gr ≤ −γ ) for 
r ∈ Rirr and (large) γ > 1 . The intuition is that 
reactions r with gr ≥ γ can be neglected.

The following example shows that thermodynamic 
soundness differs in the lax and strict senses.

Example 15  Consider the following RN (with reaction 
energies g):

for some g > 0 . It contains two futile cycles:

A
1
−→B

1
−→A , v = (1, 1, 0, 0)⊤ with �g, v� = 0,

A
1
−→B

2
−→C

3
−→A , v = (1, 0, 1, 1)⊤ , �g, v� = 1− 2g.

By setting g = 1/2 , the RN can be made thermodynamic. 
(Then the second futile cycle is not a perpetuum mobile.)

However, the RN in (10) cannot be seen as the limit of a 
thermodynamic, reversible network (A ↔ B ↔ C ↔ A) 
for large g. Thereby, one considers small g1, g1 and large 
negative g2, g3 (and hence large positive g2, g3 , that is, 
negligible reverse reactions 2, 3 ). Any such (limit of a) 
reversible RN contains a perpetuum mobile (the second 
futile cycle); equivalently, it is not thermodynamic.

Definition 16  A mixed network  is 
thermodynamically sound if there are reaction energies 
g such that (X ,R, g) is thermodynamic and gr < 0 for 
r ∈ Rirr.

 is strictly thermodynamically sound 
if, for all γ > 1 , there are reaction energies g such that 
(X ,R, g) is thermodynamic, |gr | ≤ 1 for r ∈ Rrev , and 
gr < 0 with |gr | ≥ γ for r ∈ Rirr.

The scaling condition can also be written in the form

A more detailed justification for strict thermodynamic 
soundness in mixed networks will be given in the next 
subsection when considering open RNs. Here, we focus 
on the relationship of thermodynamic soundness and 
futile cycles.

(10)

(11)min
r∈Rirr

|gr | ≥ γ max
r∈Rrev

|gr | for all γ > 1.
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Theorem  17  A mixed RN  is thermo-
dynamically sound if and only if there is no irreversible 
futile cycle.

Proof  By a “sign vector version” of Minty’s Lemma: 
Either there is g ∈ (ker S)⊥ with gr < 0 for r ∈ Rirr (the 
network is thermodynamically sound) or there is a non-
zero v ∈ ker S with vr ≤ 0 for r ∈ Rirr and vr = 0 for 
r ∈ Rrev ; equivalently, there is a futile cycle v > 0 with 
supp (v) ⊆ Rirr . � �

Theorem  18  A mixed RN  is strictly 
thermodynamically sound if and only if no futile cycle 
contains an irreversible reaction.

Proof  By Minty’s Lemma: Let γ > 1 . Either there 
is g ∈ (ker S)⊥ with gr ∈ [−1, 1] for r ∈ Rrev and 
gr ∈ (−∞,−γ ] for r ∈ Rirr or there is v ∈ ker S with

Thereby, a sum of intervals is defined in the obvious way, 
yielding an interval which is positive if each of its ele-
ments is positive. Via v → −v , the interval condition (12) 
is equivalent to: there is v ∈ ker S with

As necessary conditions, we find (i) vr∗ > 0 for some 
r∗ ∈ Rirr and (ii) vr ≥ 0 for all r ∈ Rirr . By Lemma 8, (iii) 
there is an equivalent flow with vr ≥ 0 for r ∈ Rrev . That 
is, there is a futile cycle v > 0 involving an irreversible 
reaction. For γ large enough, the necessary conditions are 
also sufficient for the interval condition (13). � �

We may characterize strict thermodynamic soundness 
for mixed networks also in geometric terms:

Corollary 19  Let  , 
Lrev = im Srev , and Cirr = cone Sirr. Then, (X ,R) is 
strictly thermodynamically sound if and only if it is ther-
modynamically sound and Lrev ∩ Cirr = {0}.

Figure  2 illustrates the concepts of futile cycles and 
(strict) thermodynamical soundness in a metabolically 
relevant example.

Open (mixed) networks
Opening the RN, i.e., adding transport reactions 
alters the representation of reaction energies. We 
now have to consider chemical potentials involving 

(12)
∑

r∈Rrev

vr [−1, 1] +
∑

r∈Rirr

vr (−∞,−γ ] > 0.

(13)
∑

r∈Rrev

vr [−1, 1] +
∑

r∈Rirr

vr [γ ,∞) > 0.

concentrations, i.e., we replace the (Gibbs free) ener-
gies Gx by Gx + RT ln[x] , where [x] is the activity of 
x, which approximately coincides with the concentra-
tions. A reaction r then proceeds in the forward direc-
tion whenenver the chemical potential of the products 
is smaller than the chemical potential of the educts, i.e., 
if

This condition can be rewritten in terms of the reaction 
(Gibbs free) energies and (the logarithm of ) the “reaction 
quotient”, see e.g. [68]:

(14)

∑

x

s+xr(Gx + RT ln[x]) <
∑

x

s−xr(Gx + RT ln[x]) .

Fig. 2  Substrate cycle. Reaction network (top) as a complex-reaction 
graph, involving substrate S, product P, enzymes E, F, and complexes 
ES, FP, and stoichiometric matrix S (middle). In addition to the futile 
cycles (1, 1, 0, 0, 0, 0)⊤ and (0, 0, 0, 1, 1, 0)⊤ , corresponding to the 
two (pairs of ) reversible reactions, there is a non-trivial futile cycle 
v = (1, 0, 1, 1, 0, 1)⊤ , involving both reversible and irreversible 
reactions. (Note that this futile cycle is not an actual cycle of the 
graph.) As a result, the network is thermodynamically sound, but 
not strictly thermodynamically sound. In a metabolically relevant 
example from glycolysis/gluconeogenesis, the compounds are 
S = fructose-6-phosphate, P = fructose-1,6-bisphosphate, E = 
phosphofructokinase 1, and F = fructose-1,6-bisphosphatase, and 
reactions 2 and 4 involve additional compounds (bottom). As a 
consequence, there is no non-trivial futile cycle (in the strict sense of 
this work). In fact, the vector v above then represents the net reaction 
ATP+ H2O → ADP+ Pi . Still, it is called a futile cycle or substrate 
cycle in the literature on metabolic networks. (In our approach, 
reactions producing/consuming the additional compounds Pi must 
be added to the network to obtain a futile cycle. Such a futile cycle 
involves the active reactions in v , and hence the extended network 
cannot be strictly thermodynamically sound.)



Page 11 of 24Müller et al. Journal of Cheminformatics           (2022) 14:63 	

The activities [x] for x ∈ X therefore define an upper 
bound on the reaction energy gr . In an open system, 
(internal) concentrations may be buffered as fixed values 
or are implictly determined by given influxes or external 
concentrations [69]. Given a specification of the envi-
ronment, i.e., of the transport fluxes and/or buffered 
concentrations, the upper bound in Eq. (15) can have 
an arbitrary value. Thus, if an irreversible reaction in R 
is meant to proceed forward for all conditions, it must 
be possible to choose gr < 0 arbitrarily small, i.e., |gr | 
arbitrarily large. This amounts to requiring that (X ,R p) 
is strictly thermodynamically sound. In many studies of 
reaction networks, one requires that a reaction proceeds 
forward in a given situation, but allows that it proceeds 
backward in other situations. In this (lax) interpretation 
of irreversibility it is sufficient to require that (X ,R p) is 
thermodynamically sound, but not necessarily strictly 
thermodynamically sound.

In Def.  16, we introduce (strict) thermodynamical 
soundness in terms of reaction energies, and in Thms. 17 
and 18, we characterize it in terms of futile cycles. In a 
corresponding approach [70, 71], “extended” detailed bal-
ance is required for (closed) RNs with irreversible reac-
tions at thermodynamic equilibrium. Thereby, activities 
[x], rate constants k+, k− and equilibrium constants K are 
explicitly used to formulate Wegscheider conditions for 
non-reversible RNs that are limits of reversible systems. 
The characterization of such systems in [70] is equivalent 
to our results.

Reversible completion
As models of chemistry, non-reversible networks are 
abstractions that are obtained from reversible thermody-
namics networks by omitting the reverse of reactions that 
mostly flow into one direction.

Definition 20  Let (X ,R, g) be a thermody-
namic RN with  . The revers-
ible completion of (X ,R, g) is the RN (X ,R ∗, g∗) with 

 and g∗r = gr for 
 and g∗r = −gr for r ∈ Rirr.

Lemma 21  If (X ,R, g) is a thermodynamic RN, then its 
reversible completion (X ,R ∗, g∗) is also a thermodynamic 
RN.

Proof  Let r ∈ R
∗ be the reverse reaction of r ∈ Rirr . By 

Prop. 6, for every r ∈ R there is a vector G ∈ R
X satisfy-

ing Hess’ law. It suffices to show that G still satisfies Hess’ 

(15)gr < −RT
∑

x∈X

sxr ln[x] law for (X ,R ∗) . By the definition of r , its reaction energy 
is g∗r =

∑

x∈X Gx(s
+

xr − s−xr) =
∑

x∈X Gx(s
−
xr − s+xr) = −gr , 

as required by Def. 20. Thus (X ,R ∗, g∗) is also thermody-
namic.�  �

The following result is an immediate consequence of 
Lemma 21.

Proposition 22  If the RN (X ,R) is thermodynami-
cally sound, then its reversible completion is also ther-
modynamically sound, and the reaction energies g can be 
choosen such that gr < 0 < gr  for all r ∈ Rirr.

Mass conservation and cornucopias/abysses
Thermodynamic soundness is not sufficient to ensure 
chemical realism. As an example, consider the random 
kinetics model introduced in [72]. It assigns (a ran-
domly chosen) energy G(x) to each x ∈ X  . Each reac-
tion r is defined by randomly picking a set of educts 
e−r  and products e+r  . A possible instance of this model 
comprises four compounds with molecular energies 
G(A) = −5 , G(B) = −5 , G(C) = −10 , and G(X) = −2 , 
and two reactions

The first reaction is exergonic with g1 = −2 and the sec-
ond has reaction energy g2 = 0 . The composite reaction, 
obtained as their sum, is A + B → A + B+ X . Ignor-
ing the effective catalysts A and B, the corresponding 
net reaction is ∅ → X . In this universe, therefore, it is 
possible to spontaneosly create mass in a sequence of 
exergonic reactions. Reverting the signs of the energies 
reverts the two reactions and thus yields an exergonic 
reaction that makes X disappear.

We can again describe this situation in terms of flows. 
Recall that [Sv]x is the net production or consumption 
of species x. The spontaneous creation or annihilation 
of mass thus corresponds to flows v > 0 with Sv > 0 or 
Sv < 0 , respectively.

Definition 23  Let (X ,R) be a RN. A flow v > 0 is a cor-
nucopia if Sv > 0 and an abyss if Sv < 0.

Systems with cornucopias or abysses cannot be con-
sidered as closed systems. The proper part of chemical 
reaction networks therefore must be free of cornuco-
pias and abysses.

Since in a reversible network any vector v ∈ R
R 

can be transformed into an equivalent flow ṽ ≥ 0 

(16)A + B −→ C+ X, C −→ A + B.
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(with Sṽ = Sv ), cf.  Lemma  8, we have the following 
characterization.

Proposition 24  A reversible RN is free of cornucopias 
and abysses if and only if there is no vector v ∈ R

R such 
that Sv > 0.

In fact, mass conservation rules out cornucopias and 
abysses. More generally, a reaction invariant is a prop-
erty that does not change over the course of a chemi-
cal reaction [8, 27, 29]. Here, we are only interested 
in linear reaction invariants, also called conservation 
laws [73], that is, quantitative properties of molecules 
(such as mass) whose sum is the same for educts and 
products.

Definition 25  A linear reaction invariant or conser-
vation law is a non-zero vector m ∈ R

X that satisfies 
∑

x∈X mx s
+
xr =

∑

x∈X mx s
−
xr for all reactions r ∈ R , that 

is, m⊤S = 0.

Definition 26  A RN is conservative if it has a positive 
conservation law, that is, if there is m ∈ R

X such that 
m ≫ 0 and m⊤S = 0.

By definition, a conservative network is free of cornu-
copias and abysses. Conversely, by the result below, if a 
reversible network is not conservative, then it contains 
a cornucopia (and an abyss).

Theorem 27  A reversible RN (X ,R) is free of cornuco-
pias and abysses if and only if it is conservative.

Proof  By Stiemke’s Theorem (which is in turn a spe-
cial case of Minty’s Lemma): Either there is a non-
zero, non-negative n ∈ im S or there is a positive 
m ∈ ( im S)⊥ = ker S⊤ . That is, either there is v ∈ R

R 
with n = Sv > 0 (corresponding to a cornucopia ṽ > 0 ) 
or there is m ≫ 0 with S⊤m = 0 (as claimed).�  �

We therefore conclude that every closed chemical RN 
must have a positive reaction invariant. This is no longer 
true if the RN is embedded in an open system and mass 
exchange with the environment is allowed. By construc-
tion, each transport reaction violates at least one of the 
conservation laws of the closed system, since [m⊤S]r > 0 
if r is an import reaction and [m⊤S]r < 0 if it is an export 
reaction. As discussed e.g. in [73], opening a RN by 
adding import or export reactions, can only reduce the 
number of conservation laws and cannot introduce addi-
tional constraints. Nevertheless, a RN must be chemi-
cally meaningful when the import and export reactions 

are turned off. That is, its proper part (X ,R p) must be 
conservative to ensure that it has a chemical realization.

Realizations of reaction networks
Conservation of atoms and moieties
Molecules are composed of atoms, which are – by defi-
nition – preserved in every chemical reaction. For each 
atom type a, there is a conservation law that accounts for 
the number of atoms of type a in each compound x. More 
precisely, denote by Aax ∈ N0 the number of atoms of 
type a in molecule x, i.e., the coefficients in the chemical 
sum formula 

∑

aAax a for compound x. (Alternatively, 
we may think of sum formulas as multisets of atoms.) 
Conservation of atom a in reaction r therefore becomes

For all atoms and reactions and in matrix form, this con-
dition reads AS = 0 . Each row of the matrix A thus is a 
non-negative linear reaction invariant, i.e., a non-nega-
tive conservation law.

Conserved moieties are groups of atoms that remain 
intact in all reactions in which they appear [26, 28, 30]. Like 
atoms, they lead to non-negative integer conservation laws.

However, (the vectors representing) conserved atoms 
or moieties need not span the left kernel of the stoichi-
ometric matrix S and need not be linearly independent. 
To see this, consider the following two RNs comprising a 
single reaction. For

with S = (−1, 1, 1)⊤ , there are only two linearly inde-
pendent conservation laws, e.g. (1,  1,  0) and (1,  0,  1), 
corresponding to the moieties MgO and CO2, while the 
three vectors for the atomic composition AMg = (1, 1, 0) , 
AC = (1, 0, 1) , and AO = (3, 1, 2) are linearly dependent. 
On the other hand, as noted in [26],

with S = (−1,−1, 1, 1)⊤ has three conservation laws but 
only two atom types, which correspond to the conserva-
tion laws AC = (7, 0, 6, 1) and AH = (8, 2, 6, 4) . E.g. the 
phenyl-moiety Mph = (1, 0, 1, 0) or the methyl-moiety 
MCH4 = (1, 0, 0, 1) form the missing third, linearly inde-
pendent conservation law. The latter example also shows 
that atom conservation relations are not necessarily sup-
port-minimal among the non-negative integer left-kernel 
vectors of S . In fact, also (0, 1, 1, 0) and (0, 1, 0, 1) are left-
kernel vectors of S , the chemical interpretation of which 
is less obvious.

(17)
∑

x

AaxSxr = 0.

(18)MgCO3 −→ MgO+ CO2

(19)C6H5CH3 +H2 −→ C6H6 + CH4
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These examples show that key chemical properties 
such as atom conservation or conservation of moieties 
are not encoded in the stoichiometric matrix S . In other 
words, two RNs can be isomorphic as hypergraphs 
but describe reactions between sets of compounds 
that are not isomorphic in terms of their sum formu-
las. For example, S = (−1,−1, 1, 1)⊤ is realized by the 
hydroalkylation of toluene in Eq.  (19), but also by the 
inorganic reaction

having four atom conservation laws, AMg = (1, 0, 1, 0) , 
AO = (1, 4, 4, 1) , AH = (0, 2, 0, 2) , AS = (0, 1, 1, 0) , and 
three moiety convervation laws, e.g. MMgO = (1, 0, 1, 0) , 
MH2O = (0, 1, 0, 1) , and MSO3 = (0, 1, 1, 0).

“Semi-positive” conservation laws [26, 74] of a RN are 
the non-zero elements of the polyhedral cone

the non-negative left-kernel of S . Thereby, K (S) is an 
s-cone as defined in [75], given by a subspace (here: 
ker S⊤ ) and non-negativity conditions. Since the s-cone 
K (S) is contained in the non-negative orthant, its 
extreme (non-decomposable) vectors agree with its 
support-minimal vectors. Further, since S is an integer 
matrix, all extreme vectors of K (S) are positive real mul-
tiples of integer vectors.

All potential moiety conservation laws (MCLs) [76] 
for a given stoichiometric matrix S (but unknown 
atomic composition) are non-zero, integer elements of 
K (S) , i.e., elements of the set

Clearly, K(S) contains the integer extreme vectors of 
K (S) . Ultimately, one is interested in minimal MCLs, i.e., 
minimal elements of K(S) , cf. [77]. (Minimal vectors are 
called maximal in [74].)

Definition 28  A vector y ∈ K(S) is minimal if there is 
no y′ ∈ K(S) such that y′ < y.

In fact, integer minimality and integer non-decom-
posability are equivalent.

Proposition 29  Let y ∈ K(S) . The following statements 
are equivalent: 

1.	 y is minimal.
2.	 There are no two y′, y′′ ∈ K(S) such that 

y = c′y′ + c′′y′′ with c′, c′′ ∈ N.

(20)MgO+H2SO4 −→ MgSO4 +H2O,

(21)K (S) =
{

y ∈ R
X
| yS = 0, y ≥ 0

}

,

(22)K(S) =
{

y ∈ N
X
0 | yS = 0

}

\ {0}.

Proof  Suppose y′ < y . Then y = 1 · (y − y′)+ 1 · y′ . 
Conversely, suppose y = c′y′ + c′′y′′ . Then y′, y′′ < y . �

Most importantly, the minimal MCLs generate all 
MCLs.

Theorem 30  Every element of K(S) is a finite integer lin-
ear combination of minimal elements of K(S).

Proof  By Noetherian induction on the partial order  
< on NX

0  and Proposition 29. � �

Knowing all minimal MCLs allows to represent the 
compounds X of a RN (X ,R) in a minimal (most coarse-
grained) way.

Definition 31  The minimal moiety representation 
(short: mm-representation) of a conservative RN (X ,R) is 
the matrix M ∈ N

M×X
0  , where the rows of M are the min-

imal MCLs, and M is the corresponding set of abstract 
moieties.

For example, consider the abstract chemical reaction

with S = (−1,−1, 2)⊤ . There are three minimal MCLs 
denoted by the abstract moieties M = {X, Y, Z} : on the 
one hand, MX = (2, 0, 1) and MY = (0, 2, 1) , which are 
(minimal) extreme vectors of K (S) , on the other hand, 
MZ = (1, 1, 1) , which is minimal, but not extreme. Hence, 
the mm-representation is given by

and the reaction (23) can be represented as

By definition, imM⊤ ⊆ ker S⊤ . In fact, imM⊤ = ker S⊤ , 
and hence there is an obvious lower bound for the num-
ber of minimal MCLs.

Lemma 32  Let M ∈ N
M×X
0  be the mm-representation 

of a conservative RN (X ,R) with stoichiometric matrix S . 
Then, imM⊤ = ker S⊤ and hence |M| ≥ dim ker S⊤.

Proof  Since the left kernel of S and hence K (S) contain 
a positive vector, we have dimK (S) = dim ker S⊤=:d . 
Hence, (the extreme vectors of ) K (S) and therefore also 
(the corresponding minimal integer vectors of ) K(S) 

(23)A + B −→ 2C

(24)M =





2 0 1
0 2 1
1 1 1



 ,

(25)X2Z + Y2Z −→ 2XYZ.
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generate ker S⊤ , that is, imM⊤ = ker S⊤ . Hence, the 
number of minimal MCLs is greater equal d, that is, 
|M| ≥ dim ker S⊤ . � �

By instantiating the abstract moieties {X, Y, Z} with 
sum formulas (multisets of atoms), every chemical reali-
zation of the reaction can be obtained. In general, we 
define an instance as follows.

Definition 33  A sum formula instance (short: sf-
instance) of a RN (X ,R) with stoichiometric matrix S is 
a matrix A ∈ N

A×X
0  for some non-empty, finite set A of 

“atoms” such that 

	(i)	 each column of A is non-zero, and
	(ii)	 AS = 0.

Def.  33 in particular allows that A comprises a single 
row. By condition (i), this row vector is a strictly posi-
tive conservation law, which, as a linear combination of 
MCLs, may be chosen to be integer valued. Conversely, 
if (X ,R) admits an sf-instance, then the column-sum 
m = 1⊤A ∈ ker S⊤ is a strictly positive integer con-
servation law and thus in particular an sf-instance with 
|A| = 1 . Taken together, we have shown the following 
existence result.

Proposition 34  A RN (X ,R) admits an sf-instance if 
and only if it is conservative.

The entry mx of m can be interpreted as the total num-
ber of atoms in compound x ∈ X . In [78], a RN is called 
primitive atomic if each reaction preserves the total num-
ber of atoms. Thus a RN is primitive atomic if and only if 
it is conservative, cf. [78].

Isomers and sum formula realizations
In order to gain a better understanding of sf-instances for a 
RN (X ,R) , we consider net reactions of the form X → Y in 
the reversible completion of (X ,R) . That is, we ask whether 
it is possible, in principle, to convert X into Y, irrespective 
of whether the conversion is thermodynamically favorable. 
From a chemical perspective, if such a net isomerization 
reaction exists, then X and Y must be compositional iso-
mers. These will play a key role in our discussion of realiza-
tions of (X ,R) in terms of sf-instances.

Before we proceed, we first give a more formal account 
of net isomerization reactions. Recall that a net reaction 
derives from an overall reaction, which in turn is speci-
fied by an integer hyperflow. Instead of working explicitly 

in the reversible completion, we may instead consider 
vectors v ∈ Z

R with negative entries vr < 0 , representing 
the reverse of irreversible reactions r ∈ R.

Definition 35  Let (X ,R) be a RN with stoi-
chiometric matrix S . A vector v ∈ Z

R , satisfying 
k:= − [Sv]x = [Sv]y ∈ N for some x, y ∈ X and [Sv]z = 0 
for all z ∈ X \ {x, y} , specifies a net isomerization reaction 
k x → k y . Two (distinct) compounds x, y ∈ X are obliga-
tory isomers if (X ,R) admits a net isomerization reaction 
k x → k y . We write x ⇋ y if x = y or x and y are obliga-
tory isomers.

Proposition 36  The binary relation x ⇋ y introduced 
in Def. 35 is an equivalence relation.

Proof  By definition, ⇋ is reflexive. If v specifies the 
net isomerization reaction k x → k y , then −v speci-
fies k y → k x , and thus ⇋ is symmetric. To verify tran-
sitivity, suppose x ⇋ y and y ⇋ z , i.e., there are vectors 
v1 and v2 that specify the net isomerization reactions 
p x → p y and q y → q z . Then v = qv1 + pv2 satisfies 
[Sv]x = −pq , [Sv]z = pq , [Sv]y = 0 , and [Sv]u = 0 for all 
u ∈ X \ {x, y, z} , and thus specifies the net isomerization 
reaction (pq) x → (pq) z . Thus, ⇋ is transitive. � �

The intuition is to define a sum formula realization 
of a RN as a matrix A that (i) is an sf-instance of the 
RN and (ii) assigns different atomic compositions to x 
and y whenever x �⇋ y , that is, whenever x and y are not 
isomers. In the following, we will see that such a defini-
tion both ensures chemical realism and leads to a useful 
mathematical description. The next result relates net 
isomerization reactions to the structure of ker S⊤ (and 
ultimately to compositional isomers as given by MCLs 
and sf-instances).

Theorem  37  Let (X ,R) be a RN with stoichiomet-
ric matrix S. Then x ⇋ y if and only if mx = my for all 
m ∈ ker S⊤.

Proof  First suppose x ⇋ y . Then either x = y (in 
which case the assertion is trivially true) or there is a net 
isomerization reaction k x → k y specified by the vec-
tor v . Let m ∈ ker S⊤ . By the definition of v , we have 
0 = m⊤Sv =

∑

z∈X
mz[Sv]z = mx[Sv]x +my[Sv]y = (mx

−my)[Sv]x and [Sv]x �= 0 . Hence, mx = my.

Now suppose mx = my for all m ∈ ker S⊤ and consider 
the vector w ∈ Z

X with wx = −1 , wy = 1 , and wz = 0 for 
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all z ∈ X \ {x, y} . Clearly, �m,w� = 0 for all m ∈ ker S⊤ , 
that is, w ∈ (ker S⊤)⊥ = im S . Thus there is v ∈ R

R such 
that w = Sv . Since S ∈ Z

X×R , the solution v of this linear 
equation is rational. Writing lcd (v) for the least common 
denomintor of the entries in v , we obtain the integer vec-
tor lcd (v) v ∈ Z

R , specifying the net isometrization reac-
tion lcd (v) x → lcd (v) y . By definition, x ⇋ y . � �

The proof of Thm. 37 also provides a simple algorithm to 
compute integer hyperflows v that specify net isomeriza-
tion reactions and to identify the obligatory isomers: For 
each pair x, y ∈ X , construct w with wx = −1 and wy = 1 
being the only non-zero entries and solve the linear equa-
tion Sv = w . We have x ⇋ y if and only if a solution exists, 
in which case the desired integer hyperflow is lcd (v) v.

We next show that obligatory isomers cannot be distin-
guished by sf-instances, and conversely, compounds that 
are not obligatory isomers are distinguished by certain 
sf-instances.

Theorem  38  Let (X ,R) be a RN with stoichio-
metric matrix S and A ∈ N

A×X
0  be an sf-instance. If 

imA⊤ = ker S⊤, then the following statements are 
equivalent: 

	(i)	 x, y ∈ X are obligatory isomers;
	(ii)	 Aax = Aay for all a ∈ A.

If imA⊤ ⊆ ker S⊤ , then (i) implies (ii).
Proof  Let x, y ∈ X be distinct. On the one hand, by The-
orem  37, statement (i) is equivalent to mx = my for all 
m ∈ ker S⊤ . On the other hand, statement (ii) is equivalent 
to mx = my for all m ∈ imA⊤ . If imA⊤ = ker S⊤ , then (i) 
and (ii) are equivalent. If imA⊤ ⊆ ker S⊤ , that is, if the rows 
of A are elements of ker S⊤ , then (i) implies (ii). � �

Any sf-instance A whose rows span ker S⊤ not only iden-
tifies obligatory isomers, but also assigns distinct sum for-
mulas to any distinct compounds x, y ∈ X that are not 
obligatory isomers. In this case, there is at least one row (cor-
responding to atom a) for which Aax  = Aay . This provides 
the formal justification for a mathematical definition of sum 
formula realizations.

Definition 39  A sum formula realization (short: sf-realiza-
tion) of a RN (X ,R) with stoichiometric matrix S is a matrix 
A ∈ N

A×X
0  for some non-empty, finite set A of “atoms” such 

that 

	(i)	 each column of A is non-zero and
	(ii)	 imA⊤ = ker S⊤.

As an illustration, consider the RN

depicted on the left side of Fig. 3. The RN can be instan-
tiated by the sum formulas U = A , V = B , W = C , 
X = AB , Y = AC , Z = ABC . The corresponding matrix A 
(middle right in Fig. 3) is not only an sf-instance, its rows 
also span ker S⊤ , and hence it is an sf-realization. (In 
fact, it is also the mm-representation.) A “reduced rep-
resentation” can be obtained by assuming that U, V, and 
W are compositional isomers corresponding to the same 
moiety D, that is, U = V = W = D . As a consequence, X 
and Y are also compositional isomers, X = Y = D2 , and 
further Z = D3 . The corresponding matrix A′ still defines 
an sf-instance, but its rows do not span ker S⊤ . Now con-
sider an extension of the RN in Eq. (26), by adding three 
isometrization reactions,

In the extended network given by Eq.  (26) and Eq.  (27), 
we have dim ker S⊤ = 1 , and thus there is a unique MCL. 
The reactions in Eq. (27) now enforce that U, V, and W are 
compositional isomers and thus correspond to the same 
moiety  D. This coincides with the “reduced representa-
tion” A′ for the RN in Eq. (26). The distinction is that, for 
the RN of Eq. (26), we may (but do not have to) assume 
that U, V, and W are isomers, whereas in the extended 
network, no other interpretation is possible.

Finally, we characterize RNs that admit an 
sf-realization.

Proposition 40  A RN (X ,R ) admits an sf-realization 
if and only if it is conservative.

Proof  Suppose (X ,R) admits an sf-realization, which, 
in particular, is an sf-instance. By Prop. 34, (X ,R) is con-
servative. Conversely, suppose (X ,R) is conservative. By 
definition, the mm-representation is an sf-instance, and 
by Lemma 32, it is an sf-realization.�  �

Obligatory isomers put some restriction on sf-
instances. Still, there is surprising freedom for sf-real-
izations. We say that two sf-realizations A and A′ are 
equivalent, A ∼ A′ , if there are integers p, q ∈ N such 
that pA = qA′ . One easily checks that ∼ is an equiva-
lence relation. If dim ker S⊤ = 1 , then all m ∈ dim ker S⊤ 
are multiples of the unique minimal MCL. All sum for-
mulas are then of the form Dk , and thus we can think 

(26)
U + V −→ X, U +W −→ Y,

X +W −→ Z, Y + V −→ Z,

(27)U −→ V, V −→ W, U −→ W.
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of compounds simply as integers k ∈ N . Every reaction 
thus can be written in the form 

∑

k s
−

krDk →
∑

k s
+

krDk 
with 

∑

k(s
+

kr − s−kr)k = 0 . An example of practical inter-
est is the rearrangement chemistry of carbohydrates, 
found in metabolic networks such as the pentose phos-
phate pathway (PPP) or the non-oxidative part of the 
Calvin-Benson-Bassham (CBB) cycle in the dark phase 
of photosynthesis. Carbohydrates may be seen as a “pol-
ymers” of formaldehyd units and can therefore be writ-
ten as Dk = (CH2O)k . The PPP interconverts pentoses 
(e.g. ribose) and hexoses (such as glucose), in an atom-
economic (no waste) rearrangement network possess-
ing the overall reaction 6(CH2O)5 ⇐⇒ 5(CH2O)6 . In 
a similar fashion five 3-phosphoglycerates are recon-
figured via carbohydrate chemistry into three ribulose-
5-phosphate which results in the overall reaction of 
5(CH2O)3 → 3(CH2O)5 if focusing on the sugar com-
ponent. Carbohydrate reaction chemistry is particularly 
well-suited for the implementation of isomerization net-
works, and the logic and structure of the design space 
of alternative networks implementing the same over-
all reaction has been explored using mathematical and 

computational models [21, 80]. Fig.  4 shows the RN of 
the prebiotic carbohydrate formation according to [79]. 
The analysis of the corresponding stoichiometric matrix, 
available as Additional file  1, shows that all Cn com-
pounds are obligatory isomers. Furthermore, their sum 
formulas are necessarily multiples of the C1 unit, which 
corresponds to formaldehyd in the formose reaction.

For dim ker S⊤ > 1 , there is an infinite set of sf-real-
izations that are pairwisely inequivalent. To see this, 
construct matrices At = (t1y

1, t2y
2, . . . , tky

k)⊤ from 
k = dim ker S⊤ > 1 linearly independent (minimal) MCLs 
yi and with t ∈ N

k . Clearly, every such matrix At is an sf-
realization. Furthermore, At ∼ At ′ if and only if there are 
p, q ∈ N such that pt = qt ′ . Hence At  ∼ At ′ if there are 
two distinct indices 1 ≤ i < j ≤ k such that ti/t ′i �= tj/t

′
j . 

Clearly, there is an infinite set T ⊆ N
k of integer vectors 

such that this inequality is satisfied for all distinct t, t ′ ∈ T  . 
For instance, one may choose distinct primes for all entries 
of t ∈ T  . Thus there are infinitely many pairwisely inequiv-
alent sf-realizations. Furthermore, the choice of the (mini-
mal) MCLs is not unique, in general, allowing additional 
freedom for sf-realizations. Finally, one may produce more 

Fig. 3  Reaction network (left) and stoichiometric matrix S (top right) showing reactions r1-r4 , Eq. (26), in gray and the isomerization reactions r5
-r7 , Eq. (27) in light red. For the basic system (gray) we have dim ker S⊤ = 3 . The three MCLs are shown below S . In the full system, r1-r7 , we have 
dim ker S⊤ = 1 with the unique MCL shown at the bottom right. In the full system U, V, and W form obligatory isomers of the monomer D. Similarly, 
X and Y are also obligatory isomers composed of two D units, while Z is a trimer of D units. The vector v = (−1, 0, 1, 0, 0, 1, 0) is represented by the 
composite reaction X+ (U+W)+ V → (U+ V)+ Y +W and specifies the net isometrization reaction X → Y
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complex sf-realizations by appending additional rows to A 
that are linear combinations of the basis vectors. Therefore 
we have the following result.

Proposition 41  Let (X ,R) be a conservative RN with 
stoichiometric matrix S. If dim ker S⊤ > 1, then there are 
infinitely many in-equivalent sf-realizations of (X ,R).

Structural formula realizations
A structural formula represents a chemical species as a 
(connected) molecular graph, whose vertices are labeled 
by atom types and edges refer to chemical bonds. Lewis 
structures [81] are equivalent to vertex-labeled mul-
tigraphs in which each bonding electron pair is repre-
sented as an individual edge, and each non-bonding 
electron pair as a loop. In particular, double or triple 

Fig. 4  Reaction network of the formose reaction describing pre-biotic carbohydrate formation [79]. The RN is drawn here in a simplified form 
showing aldol and retro-aldol reactions (those with 1 educt and 2 products, and vice versa) without their reverse reactions. The stoichiometric 
matrix of the full network comprising all 38 reaction connecting the 29 compounds is provided as Addition file 1. Compounds are labeled by the 
number of carbon atoms. C1a (in the center) designates formaldehyd, C3c is dihydroxy acetone. The network was drawn an analyzed with MØD 
[21]. All compounds with the same number of carbons are obligatory isomers. Moreover, all sum formula representations are of the from An , with A 
denoting the moiety corresponding to the formaldehyd unit
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bonds are shown as two or three parallel edges. The educt 
and product complexes r− and r+ of a reaction r can then 
be represented as the disjoint unions of the educt and 
product graphs, respectively. A chemical reaction is a 
graph transformation that converts the educt graph into 
the product graph such that vertices and their labels are 
preserved [33, 82]. Only the bonds are rearranged. Since 
electrons are conserved, and each edge or loop accounts 
for two electrons, any reaction must preserve the sum 
of vertex degrees and thus the number of edges. Fig.  5 
shows an example.

This idea can be generalized to sf-realizations in which 
“atoms” are viewed as moieties. We may then interpret 
the vertices of a multigraph as “fragments” of species that 
are endowed with a certain number of “valencies” or “half 
bonds”. These must be “saturated” by binding to free valen-
cies of other moieties or they must be used to form internal 
bonds within a moiety. In graph theory, the degree of a ver-
tex is simply the number of incident edges. In chemistry, a 
related notion is the valency of an atom, i.e., the number of 
bonds (counting bond order) that can be formed by an atom. 
Each type of atom/moiety therefore has a fixed degree that 
we can think of as the number of halfbonds. Each of these 
may bind to other moieties or form a “loop”, i.e., match up 
with another halfbond of the same vertex. Correspondingly, 
the degree d(u) of a vertex u in a multigraph is defined as 
the number of edges that connect u with other vertices plus 
twice the number of loops. A reaction thus preserves elec-
trons if and only if its only effect is to rearrange the bonds 
in the multigraph. The valency val(a) of an atom of type a 
is most naturally interpreted as the number of electrons in 
the outer shell. Loops then correspond to non-bonding elec-
tron pairs. This notion of valency matches Frankland’s “ato-
micity” and conforms to the IUPAC terminology [83]. Much 
of the chemical literature, however, uses the term valency 
loosely for the number of bonds; it is then not an unambi-
gous property of an element or atom and changes with the 
oxidation state.

Definition 42  Let A be a non-empty, finite set, 
val : A → N be an arbitrary function, and 

∑

a∈A na a be 
a sum formula. A multigraph Ŵ = (V ,E,α) with loops 
and vertex coloring α : V → A is a corresponding struc-
tural formula if it satisfies the following conditions: 

	(i)	 Each vertex u ∈ V  corresponds to a moiety α(u) , in 
particular, |{u ∈ V : α(u) = a}| = na.

	(ii)	 d(u) = val(α(u)) for all u ∈ V  , i.e., the vertex 
degree of u is given by the corresponding moiety.

	(iii)	 Ŵ is connected.

The structural formulas specified in Def.  42 do not 
cover all Lewis structures. In particular, neither explicit 
charges nor unpaired electrons are covered. While 
these are important from a chemical perspective, we 
shall see below that such extensions are not needed for 
our purposes since the straightforward multigraphs in 
Def.  42 already provide sufficient freedom to obtain 
representations for all conservative RNs. Extensions 
to radicals and charges will be briefly considered in the 
Discussion section.

Definition 43  Let (X ,R) be a RN, A be a non-empty, 
finite set, and val : A → N be an arbitrary function. A 
Lewis instance is an assignment of vertex-colored multi-
graphs Ŵx = (Vx,Ex,αx) to all x ∈ X such that 

	(i)	 vertex degrees satisfy d(u) = val(αx(u)) , for all 
u ∈ Vx and x ∈ X , and

	(ii)	 the corresponding matrix A ∈ N
A×X
0  defined by 

Aax = |{u ∈ Vx : αx(u) = a}| is an sf-instance.

Furthermore, x  → Ŵx is a Lewis realization if A is an 
sf-realization.

Clearly, every Lewis realization has a corresponding sf-
realization. Given an sf-realization, we therefore ask when 
there is a corresponding Lewis realization. By Def. 42 and 43, 
we have the following result.

Lemma 44  A RN (X ,R) has a Lewis realization with corre-
sponding sf-realization A ∈ N

A×X
0  for some non-empty, finite 

set A, if and only if there is a function val : A → N such that 
for the sum formula 

∑

a∈A Aax a (for x ∈ X) there is a cor-
responding structural formula Ŵx.

Proof  For the ’if ’ part, let 
∑

x∈A Aax a be the sum formula 
for x ∈ X . By assumption, there exists a vertex-colored mul-
tigraph Ŵx = (Vx,Ex,αx) for x such that (i) vertex degrees 

Fig. 5  Multigraph representation for the reaction 
H2SO4 −→ SO3 + H2O . Atoms shown in color: H, black; O, red; S, 
yellow. Non-bonding electron pairs are represented by loops, double 
bonds by two parallel edges
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satisfy d(u) = val(αx(u)) and (ii) the corresponding matrix 
equals the sf-realization A . Analogously, for the ’only if ’ part. 
� �

The appeal of this characterization is that it does not use 
any properties of the RN (X ,R) , at all. In fact, it is easy to see 
that such a representation always exists.

Lemma 45  Let A be a nonempty, finite set and 
∑

a∈A na a 
be a sum formula. Then, there exists a corresponding struc-
tural formula with val(a) = 2 for all a ∈ A.

Proof  If the sum formula is given by na = 1 and na′ = 0 
for all a′ ∈ A \ {a} , i.e., if it is single moiety, then the cor-
responding structural formula is a single vertex with 
color a and a loop. Otherwise, arrange the |V | =

∑

a na 
vertices, of which exactly na are colored by a, in a cycle 
and connect the vertices along the cycle. Then every ver-
tex u satisfies d(u) = val(α(u)) = 2 and the graph is con-
nected. � �

The result extends to any constant function val(a) = 2k 
(with k ∈ N ) by adding k − 1 loops to each vertex. As an 
immediate consequence of Lem. 44 and 45, we have the 
following result.

Proposition 46  (X ,R) has a Lewis realization if and 
only if it has an sf-realization.

Using Prop. 40, we can characterize RNs that admit a 
Lewis realiztion.

Proposition 47  A RN (X ,R) admits a Lewis realization 
if and only if it is conservative.

Interestingly, the simple multigraphs in Def. 42 are suf-
ficient to represent all conservative RNs and thus (the 
proper part of ) all chemical networks. Radicals and other 
chemical species whose structures cannot be expressed 
in terms of electron pairs therefore do not add to the uni-
verse of chemically realistic RNs. For more details, see 
the Discussion section.

Like an sf-realization, a Lewis realization does not 
necessarily assign distinct multigraphs Ŵx and Ŵy to dis-
tinct compounds x and y. In the case of sf-realizations, 
obligatory isomers must have the same sum formula. In 
Lewis realizations, however, they need not have the same 
multigraph.

Proposition 48  For every conservative RN (X ,R) there 
exists an injective Lewis realization x  → Ŵx.

Proof  Sf-representations can be constructed to have an 
arbitrary number of atoms or moieties for each x ∈ X , 
that is, the vertex sets Vx of the corresponding multi-
graphs Ŵx can be chosen arbitrarily large. Set val(a) = 4 
for all a ∈ A and construct an initial Lewis representation 
of compounds as cycles, as in the proof of Lemma  44, 
but with an additional loop at each vertex. Consider two 
obligatory isomers x ⇋ y , and let the (adjacent) vertices 
u, v ∈ Vx be connected (by a single edge). Now replace 
the two loops at the corresponding vertices u, v ∈ Vy by 
two additional edges between u and v. If the equivalence 
class of obligatory isomers contains more than two com-
pounds, choose sets of pairs of disjoint positions along 
the cycles and replace pairs of loops by double edges. 
This yields circular matchings, familiar e.g. from the 
theory of RNA secondary structures [85, 86]. Setting 
n = |Vx| − 5 , one can construct crossing-free circular 

Fig. 6  Construction of non-isomorphic multigraphs with valency 4 in the proof of Prop. 48. The first three isomers are a cycle (with loops), a cycle 
with a single triple-bond indicating an “origin”, and a graph with an additional double bond. In the third graph, the asymmetric arrangement of the 
double and triple bonds implies an unambiguous ordering of the remaining vertices (numbered from 1 to n). Non-isomorphic graphs are obtained 
converting a pair of loops into a double bound. Since each vertex has at most one bond in addition to the cycle, the resulting graphs correspond to 
Kleitman’s “irreducible diagrams” [84]. If crossings of bonds are excluded, the resulting induced subgraphs with vertex set {1, . . . , n} are isomorphic 
to RNA secondary structures on sequences of n monomers. The number Sn of secondary structures grows asymptotically ∼ 2.6n [85]
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matchings on n vertices, whose number grows faster than 
2.6n , see also Fig.  6. Thus, if Vx is chosen large enough, 
an arbitrarily large set of obligatory isomers can be rep-
resented by non-isomorphic multigraphs. Note, finally, 
that the construction of non-isomorphic graphs does not 
depend on (the cardinality of ) the atom set A , and thus 
the construction is also applicable in the case |A| = 1 , i.e.,  
dim ker S⊤ = 1 . � �

The proof in particular shows that the number of ver-
tices required to accommodate the obligatory isomers 
grows only logarithmically in the size of the equivalence 
classes of obligatory isomers.

Discussion
Characterization of chemistry‑like reaction networks
In this contribution, we have characterized reaction net-
works that are chemistry-like in the sense that they are 
consistent with the conservation of energy and mass and 
allow an interpretation as transformations of chemical 
molecules. It is worth noting that we arrive at our results 
without invoking mass-action kinetics, which has been 
the focus of interest in chemical reaction network theory 
since the 1970s [7–9]. Instead, we found that basic argu-
ments from thermodynamics (without kinetic considera-
tions) are sufficient. The main results of this contribution 
can be summarized as follows: 

(i)	A closed RN (X ,R) is thermodynamically sound if 
and only if it does not contain an irreversible futile 
cycle. In particular, every reversible networks is 
thermodynamically sound. If irreversible reactions 
are meant to proceed in a given direction for all 
external conditions (after opening the RN by add-
ing transport reactions), then (X ,R) must be strictly 
thermodynamically sound. Equivalently, a futile 
cycle must not contain an irreversible reaction. An 
analogous result was obtained by [70] assuming 
mass-action kinetics.

(ii)	 A RN (X ,R) is free of cornucopias and abysses if 
and only if it is conservative.

(iii)	Both thermodynamic soundness and conservativ-
ity are completely determined by the stoichiometric 
matrix S , i.e., they are unaffected by catalysts.

(iv)	A RN (X ,R) admits an sf-realization if and only if 
it is conservative. That is, conservative RNs admit 
assignments of sum formulas such that (i) atoms (or 
moieties) are conserved and (ii) two compounds are 
assigned the same sum formula if and only if they 
are obligatory isomers. Obligatory isomers, in turn, 
are completely determined by S.

(v)	 For every sf-realization of a RN (X ,R) there is also a 
Lewis-realization, i.e., an assignment of multigraphs 
to each compound such that reactions are exclu-
sively rearrangements of edges.

Such chemistry-like realizations, however, are by no 
means unique. In general, the same RN has infinitely 
many chemical realizations corresponding to different 
atomic compositions. The structure of the stoichiometric 
matrix S of a closed RN therefore implies surprisingly lit-
tle about the underlying chemistry.

Nevertheless there is interesting information that is inde-
pendent of the concrete realization. For example, Thm. 37 
can be reformulated as follows: The reversible completion 
of (X ,R) admits a net reaction of the form p x −→ q y with 
x, y ∈ X and p, q ∈ N if and only if qmx = pmy for every 
m ∈ ker S⊤ . This identifies “obligatory oligomers”, necessar-
ily composed of multiples of the same monomer.

Computational considerations
Somewhat surprisingly, the computational problems 
associated with recognizing “chemistry-like” RNs are not 
particularly difficult and can be solved by well-established 
methods. To see this, recall that (X ,R) is conservative iff 
there is a vector m ≫ 0 such that S⊤m = 0 and not ther-
modynamically sound iff there is a vector v > 0 such that 
Sv = 0 and vr > 0 for some r ∈ Rirr These linear pro-
gramming problems can be solved in O((|X | + |R |)2.37) 
time [87].

An integer (not necessarily non-negative) basis of ker S⊤ 
can be computed exactly in polynomial time, e.g. using the 
Smith normal form, see [88]. Chubanov’s algorithm finds 
exact rational solutions to systems of linear equations 
with a strict positivity constraint. Thus is can be employed 
to compute a strictly positive integer solution m ≫ 0 to 
S⊤m = 0 in polynomial time [89, 90]. As a consequence, 
an sf-realization can also be computed explicitly in polyno-
mial time. Each sum formula in turn can be converted into 
a graph with total effort bounded by maxx∈X

∑

aAxa · |X | , 
the maximal number of atoms that appear in a sum for-
mula times the number of molecules.

The equivalence relation ⇋ for obligatory isomers is 
determined by the existence of solutions to a linear equa-
tion of the form Sv = w and thus can also be computed in 
polynomial time, again bounded by the effort for matrix 
multiplication for each pair x, y ∈ X . A much more effi-
cient approach, however, is to compute a basis of ker S⊤ , 
from which ⇋ can be read off directly. This approach eas-
ily extends to “obligatory oligomers.”

Treating RNs as closed systems is too restrictive to 
describe metabolic networks. There, RNs are considered as 



Page 21 of 24Müller et al. Journal of Cheminformatics           (2022) 14:63 	

open systems that allow the inflow of nutrients and the out-
flow of waste products. Models of metabolism often impose 
a condition of viability. Traditionally, this is modeled as a sin-
gle export “reaction” rbm of the form 

∑

i αiCi → ∅ , known 
as the biomass function [91]. It comprises all relevant precur-
sor metabolites Ci (forming all relevant macromolecules) in 
their empirically determined proportions αi . Viability is then 
defined as the existence of a flow v > 0 with Sv = 0 and 
vbm > 0 . This linear programming problem can be tested 
efficiently by means of flux balance analysis (FBA) [92]. In 
contrast to (X ,R) being conservative and thermodynami-
cally sound, however, viability is a property of the metabolic 
model, not of the underlying representation of the chemistry.

Outlook to open problems
Construction of random chemistry‑like networks
The formal characterization of chemistry-like RNs 
developed here suggests several interesting questions 
for further research. In particular, our results define 
rather clearly how random chemistry-like RNs should be 
defined and thus poses the question whether there are 
efficient algorithms for their construction. Let us con-
sider the task of generating a random chemistry-like RN 
in a bit more detail. We first note that it suffices to gener-
ate a stoichiometric matrix S ∈ N

X×R

0  that is thermody-
namically sound and conservative. If explicit catalysts are 
desired, they can be added to a reaction without further 
restrictions. More precisely, given S , we obtain a network 
with the same stoichiometric matrix plus catalysts by 
setting

The “catalyst matrix” C may contain arbritrary integers 
cxr ≥ 0 . For the generation of a RN (X ,R) , therefore, it 
can be drawn independently of S.

The key task of generating (X ,R) is therefore the construc-
tion of an |X | × |R | integer matrix S that is conservative and 
thermodynamically sound. Both conditions amount to the 
(non)existence of vectors with certain sign patterns in ker S 
and ker S⊤ , respectively. In order to obtain a background 
model for a given chemical RN, one might also ask for a ran-
dom integer matrix that has a given left nullspace and is ther-
modynamically sound. In addition, one would probably like 
to (approximately) preserve the fraction of zero entries per 
row and column and the mean of the non-zero entries. To 
our knowledge, no efficient exact algorithms for this prob-
lem are known.

A potentially promising alternative is the independent gen-
eration of the complex matrix Y and the incidence matrix Z 
of the complex-reaction graph. Given a fixed conservative 

(28)
s−xr = cxr , s

+
xr = cxr + sxr if sxr ≥ 0,

s−xr = cxr − sxr , s
+
xr = cxr if sxr ≤ 0.

and thermodynamically sound RN, furthermore, one can 
make use of the heredity of thermodynamic soundness and 
conservativity and consider random subnetworks. This 
approach has been explored in particular for metabolic net-
works: The ensemble of viable metabolic networks in a given 
chemical RN can then be sampled by a random walk on the 
set of reactions [57] or a more sophisticated Markov-Chain-
Monte-Carlo procedure [55, 93].

Chemistry‑like realizations
The structural formulas constructed in Lemma  45 are 
not very “realistic’ from a chemical perspective. It is 
of interest, therefore, if one can construct chemically 
more appealing (multi-)graphs. As noted in the Intro-
duction, the problem of designing a “molecular imple-
mentation” of a prescribed stoichiometric matrix S is a 
key problem in utilizing chemical reaction networks as 
computing devices. From a mathematical point of view 
there seem to be only a few constraints: (i) If a moiety 
a appears in isolation, i.e., as a molecule x = 1a , then 
val(a) must be even, since it contains val(a)/2 loops. (ii) 
The case val(a) = 1 is only possible if there is no com-
pound composed exclusively of three or more copies of 
a or composed of more than two moieties with valency 
1. (iii) It is well known that the sum of degrees must be 
even for every multigraph, and connectedness implies 
∑

u
val(u) ≥ 2(|V | − 1) [94].

The problem of finding multigraph realizations is 
closely related to, but not the same as, the problem deter-
mining the realizability of degree sequences in graphs 
[95] or multigraphs [96]. As in graph theory, it seems to 
be of particular interest to study realizability by struc-
tural formula in the presence of additional constraints on 
admissible graphs. Complementary to constraints on the 

Fig. 7  A Lewis structure-like presentation of NO2 + NO −→ N2O3 
highlights that multigraphs with atom-type dependent degrees 
are not sufficient to represent all molecules of interest. To represent 
NO2, both an unpaired electron (shown as a semi-edge ending in a 
small black ball), an N atom with vertex degree 4 < val(N) = 5 and 
an oxygen atom with vertex degree 7 > val(O) = 6 are required. 
Similarly, NO is a neutral stable radical, with an unpaired electron at 
N. The product N2O3 has no unpaired electrons, but exhibits an O 
and an N atom with a deviant vertex degree and thus a net charge. 
Differences between nominal valency and actualy vertex degree are 
indicated by the charge symbols ⊕ and ⊖ . In general, the net charge 
at a vertex v is given by val (α(v))− deg(v)
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multigraphs that render them plausible chemical graphs, 
the “chemical implementation” of a given S also involves 
constraints on the admissible (types of ) reactions, i.e., the 
allowed rearrangements of edges in the multigraphs. It 
is much less clear how to formalize this aspect, although 
there seems to be a connection to graph grammar models 
of chemical reactions [97].

An advantage of considering the multigraphs specified 
in Def.  42 instead of the full range of Lewis structures 
is that a well-established mathematical theory is avail-
able. However, “multigraphs with semi-edges”, which 
are essentially equivalent to Lewis structures of radicals, 
have been studied occasionally in recent years [98, 99] 
and may be an appealing framework, in particular, when 
restricted realizations are considered. The example of 
nitrogen oxids in Fig.  7 shows, however, that unpaired 
electrons (as in the Lewis structure of NO) are not the 
only issue. A complete implementation of Lewis struc-
tures also requires local net charges val(α(v))− deg(v) 
at vertices v, as a semi-edge-like annotation distinct from 
unpaired electrons, see e.g. [100].

Infinite RNs
Throughout this contribution, we have assumed that (X ,R) 
is finite. In general, however, chemical universes are infi-
nite, at least in principle. The simplest example of infinite 
families are polymers. It is of interest, therefore, to develop 
a theory of infinite reaction networks. To this end, one could 
follow e.g. [101], where also infinite directed hypergraphs 
are considered, and further extend the literature on count-
ably infinite undirected hypergraphs, see e.g. [102, 103] and 
the references therein. Most previous work pre-supposed 
k-uniformity, i.e., hyper-edges of (small) finite cardinality, 
matching well with the situation in chemical RNs. Every sub-
RN of an infinite RN induced by a finite vertex set Y ⊂ X 
can be assumed to support only a finite number of reactions 
(directed hyperedges) RY ⊂ R . This amounts to assuming 
that a sub-RN induced by finite set of compounds Y is a finite 
RN. Every finite sub-RN of a “chemistry-like” infinite RN, 
furthermore, needs to be conservative and thermodynami-
cally sound. Infinite RNs will not be locally finite, in general, 
since every compound x ∈ X may have infinitely many reac-
tion partners, e.g., all members of a polymer family. Thus x 
may appear in an infinite number of reactions. These simple 
observations suggest infinite “chemistry-like” RNs are non-
trivial structures whose study may turn out to be a worth-
while mathematical endeavor.

Appendix: Mathematical notation
We consider matrices and vectors indexed by chemical 
species x ∈ X or chemical reactions r ∈ R . Hence, both 
species and reactions can be thought of as endowed with 
an arbitrary, but fixed order determining the order of 
rows and columns. Standard mathematical notation is 
used without further explanation in the main text. Nota-
tion that may be less familiar is summarized here: 

N positive integers

R real numbers

A
⊤ transpose of matrix A

kerA kernel of matrix A,

i.e., kerA = {x | Ax = 0}

imA image of matrix A,

i.e., imA = {y | y = Ax for some x}

coneA polyhedral cone induced by matrix A,

i.e., coneA = {y | y = Ax for some x ≥ 0}

x
⊤ row vector of column vector x

xi component of vector x ∈ R
I (with i ∈ I)

supp x support of vector x ∈ R
I,

i.e., supp x = {i ∈ I | xi �= 0}

dim V dimension of vector space V

V
⊥ orthogonal complement of vector space V,

i.e., V⊥ = {y | x⊤y = 0 for all x ∈ V}
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