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Abstract 

Drug–drug interaction (DDI) often causes serious adverse reactions and thus results in inestimable economic and 
social loss. Currently, comprehensive DDI evaluation has become a major challenge in pharmaceutical research due to 
the time-consuming and costly process of the experimental assessment and it is of high necessity to develop effec‑
tive in silico methods to predict and evaluate DDIs accurately and efficiently. In this study, based on a large number 
of substrates and inhibitors related to five important CYP450 isozymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6 and 
CYP3A4), a series of high-performance predictive models for metabolic DDIs were constructed by two machine learn‑
ing methods (random forest and XGBoost) and 4 different types of descriptors (MOE_2D, CATS, ECFP4 and MACCS). 
To reduce the uncertainty of individual models, the consensus method was applied to yield more reliable predictions. 
A series of evaluations illustrated that the consensus models were more reliable and robust for the DDI predictions of 
new drug combination. For the internal validation, the whole prediction accuracy and AUC value of the DDI models 
were around 0.8 and 0.9, respectively. When it was applied to the external datasets, the model accuracy was 0.793 
and 0.795 for multi-level validation and external validation, respectively. Furthermore, we also compared our model 
with some recently published tools and then applied the final model to predict FDA-approved drugs and proposed 
54,013 possible drug pairs with potential DDIs. In summary, we developed a powerful DDI predictive model from the 
perspective of the CYP450 enzyme family and it will help a lot in the future drug development and clinical pharmacy 
research.
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Introduction
With the increasing complexity of clinical diseases and 
the rapid development of pharmaceutical industry in 
recent years, multi-drug combination has become a com-
mon and promising treatment option for doctors and 
pharmacists. However, in addition to effectively treat-
ing diseases, drug combinations also greatly increase the 
risk induced by drug interactions. Clinically, if a drug is 
co-administered with another or more drugs, drug–drug 
interactions (DDIs) may occur, which may affect the effi-
cacy or/and safety of this drug [1]. Therefore, in-depth 
understanding of DDIs is of high importance for enhanc-
ing synergistic effects of drugs and reducing adverse drug 
reactions [2]. A survey between 2010 and 2011 showed 
that 67% of older Americans were using five or more dif-
ferent medications at the same time, including prescrip-
tion, over-the-counter and health supplements, etc. [3]. 
The ideal result of drug combination is to improve the 
treatment effect, but in fact, numerous adverse reactions 
or even serious side effects were caused by drug combi-
nation, which makes DDIs be a major problem in medical 
process. In China, more than 100,000 people die due to 
severe adverse reactions every year, making it the fourth 
leading cause of deaths. Among these, unpredictable 
DDIs contribute to about 30% of the reported adverse 
drug reactions [4, 5]. In addition, serious adverse reac-
tion caused by DDI is also one of the main reasons for the 
drug withdrawal. Therefore, how to detect the possible 
adverse effects caused by DDIs as early as possible before 
the clinical use is an important topic in clinical practice.

DDIs can be divided into two categories according to 
their mechanisms: pharmacodynamics-based DDI and 
pharmacokinetics-based DDI. The former usually occurs 

when two or more drugs acting on the same or similar 
receptor at the same time, which may result in stronger 
pharmacodynamic effects (additive or synergistic) or 
reduce the efficacy of drugs (antagonistic). The latter 
usually occurs when one drug changes the absorption, 
distribution, metabolism and excretion (ADME) of the 
co-administered drugs [6]. Currently, pharmacokinetic-
based DDIs have the highest clinical incidence, and 
involves various enzymes and transporters, among which 
cytochrome P450 (CYP450) is the most important phase 
I metabolism enzyme family for human, and has 57 func-
tional genes. It is reported that more than 2/3 of xenobi-
otics are metabolized by the CYP450 enzyme family, and 
80% of them are metabolized by five isozymes, namely 
CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 
[7]. Therefore, the CYP450 enzyme family, especially 
aforementioned five isozymes play a vital role in the drug 
metabolism. Clinically, the metabolic DDIs based on 
CYP450 isoenzymes are very common, and 70% of them 
are caused by enzyme inhibition. That is to say, one drug 
can change the metabolic characteristics of another drug 
by inhibiting a specific subtype of the CYP450 enzyme 
family, leading to adverse drug interactions. This type 
of DDIs extensively occurs in the clinical application of 
drugs, such as theophylline and ciprofloxacin (substrate 
and inhibitor of CYP1A2), warfarin and ibuprofen (sub-
strate and inhibitor of CYP2C9), phenytoin sodium and 
fluvoxamine (substrate and inhibitor of CYP2C19), ter-
fenadine and ketoconazole (substrate and inhibitor of 
CYP3A4), and so on. Considering these clinical phenom-
ena, we hold the opinion that it is crucial to evaluate drug 
metabolic interactions based on CYP450 enzyme family 
before the initiation of clinical drug combinations.
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Currently, there are two traditional approaches to study 
drug metabolic interactions based on CYP450: experi-
mental methods and computational methods. Experi-
mental methods mainly include some in vitro approaches 
such as the primary hepatocyte culture method, the 
liver microsomal method, the liver biopsy method and 
the gene recombination method; the in  vivo methods 
mainly refer to animal experiments and the probe drug 
method. However, all the aforementioned methods are 
time-consuming and need extensive investment. With 
the development of artificial intelligence (AI) and accu-
mulation of experimental data, computational approach 
has become an important way to study DDIs. Currently, 
computational DDI studies can be divided into two cate-
gories: network-based and quantitative structure–activity 
relationships (QSAR)-based. Network-based approaches 
aim to analyze the targets and pathways affected by side 
effect-related drugs. With the development of network 
medicine, scientific approaches to analyze and predict 
DDIs at the molecular level have emerged. For example, 
in 2011, Murat Iskar et al. have realized the prediction of 
drug interactions by integrating molecular and pharma-
cological data of drug pairs. Further analysis confirmed 
that among the top ranked predictions, 69% could be sup-
ported by literatures [8]. Takarabe et al. have also devel-
oped a drug interaction retrieval system in the KEGG 
DRUG database, which may be used for both searching 
against known drug interactions and predicting poten-
tial interactions [9]. In 2013, Huang et  al. constructed a 
protein–protein interaction network based on 1249 FDA-
approved drugs including 1289 targets and 4776 relations 
[10]. In this study, researchers collected and integrated 
the pharmacokinetic and clinical characteristics of the 
drugs, so that the predictive ability of the model was bet-
ter than those of the models using a single type of data. 
Additionally, Guimera et  al. also used the large-scale 
unsupervised network reasoning method to speculate 
potential drug interactions [11]. In 2017, Takeda et  al. 
studied the effect of two-dimensional similarity on drug 
interactions based on the network of pharmacokinetics 
and pharmacodynamics, and they finally built a logistic 
regression model to effectively predict drug interactions 
[12, 13]. QSAR-based approaches aim to establish QSAR 
models for DDIs. For example, Vilar et  al. established a 
model based on structural similarity using the MACCS 
and interaction profile fingerprints (IPF) to predict drug 
interactions with the sensitivity of 0.68 and the specific-
ity of 0.96 [14, 15]. Most recently, Dmitriev et al. applied 
the Prediction of Activity Spectra for Substances (PASS) 
software and Pairs of Substances Multilevel Neighbor-
hoods of Atoms (PoSMNA) descriptors to build a series 
of QSAR models for DDIs mediated by the seven most 
important P450 cytochromes and obtained satisfactory 

results [16]. However, there are several issues that could 
be improved, such as no profound mechanism discussion, 
smaller modeling dataset and inadequate external valida-
tion. In addition to the above studies, Percha and Tari 
also employed the text mining method in 2010 and 2012 
respectively to establish the prediction models of drug 
interactions, and the prediction accuracy reached about 
80% [17, 18]. In 2015, Zhang et al. built a drug interaction 
predictive model based on clinical side effects integrated 
from drug labeling and FDA adverse reaction reporting 
system. They predicted drug interactions among 1626 
compounds and predicted 145,068 drug interactions to 
help clinicians avoid high-risk drug combinations when 
prescribing [19].

To sum up, although a lot of work have been done for 
predicting drug interactions and some have focused on 
metabolic DDI [20–24], they still have obvious short-
comings: (1) many suppositions about DDI predic-
tion were based on multiple different assumptions, and 
thus multiple uncertainties greatly reduce the accuracy 
and reliability of the predictive models; (2) Most of the 
reported studies did not involve a specific DDI mech-
anism and thus the intrinsic rules were still unknown; 
(3) DDI researches related CYP450 lacked profound 
mechanism discussion and adequate modeling dataset 
and external validation. Based on this phenomenon, we 
took metabolic DDI, which is very important in drug–
drug interactions, as the pointcut for our study. In this 
paper, a simple and specific mechanism was proposed 
for subsequent in-depth DDI prediction research and 
mechanism discussion. Not only that, a series of rela-
tively larger datasets, two state-of-art machine learning 
methods and a systematic external validation procedure 
were prepared for model building and validation. Fur-
thermore, related DDI mechanism discussion based on 
scaffold analysis and comparison with recent published 
models were carried out to reveal the intrinsic rules of 
DDI and test the robustness of our models. Detailed 
steps were described as follows: Firstly, we manually 
collected the substrates and inhibitors for five impor-
tant CYP450 isozymes and checked them carefully for 
further modeling. Secondly, we constructed the pre-
dictive models based on different types of descriptors 
and machine learning algorithms, and then developed 
a consensus model with satisfactory predictive ability. 
Thirdly, we further evaluated the predictive ability of the 
consensus DDI model using the external datasets and 
multi-level validation. Fourthly, the scaffold analysis and 
comparison with recent published models were carried 
out to prove the reliability and effectiveness of our mod-
els. Finally, we applied our DDI model to FDA-approved 
drugs in order to provide some clues to help clinicians 
avoid high-risk drug combinations in prescribing.
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Research hypothesis
Generally, when patients take two drugs at the same time 
and both drugs interact with the same CYP450 isozyme 
(substrate or inhibitor), metabolic interactions may 
occur. As shown in Table 1, we can draw the conclusion 
that if two drugs are substrates and inhibitors of the same 
CYP450 isozyme respectively, they may cause changes 
in plasma concentrations to different degrees when used 
together. Based on this phenomenon, we proposed the 
research hypothesis for this study: If two drugs are sub-
strates and inhibitors of the same CYP450 isozyme, met-
abolic drug interactions will occur when the two drugs 
are combined. Based on this hypothesis, we will con-
struct several DDI prediction models for five important 
CYP450 isozymes and aim to develop a more accurate 
and rapid assessment approach for metabolic DDIs that 
can better serve drug discovery and help clinicians avoid 
high-risk drug combinations in prescribing.

Materials and methods
Data collection
Modeling data
Positive dataset we collected the positive dataset (the 
substrates or inhibitors of five CYP450 isoenzymes) from 
three sources: Firstly, we searched for the human UniProt 
ID of the five CYP450 isoenzymes in the UniProt data-
base and then found the “Drug relation” module in the 
DrugBank database according to their UniProt ID. After 
that, we manually collected the substrates and inhibi-
tors of five isozymes. After checking the structures, we 
reserved the drug compounds with specific information. 
Secondly, we further manually collected the substrate and 
inhibitor data of five isozymes in the “CYP-Drug interac-
tion” module of the SuperCYP database, and reserved 
human data with chemical structures. Thirdly, we 
searched the bioassay record “AID 1851” in the PubChem 
database and downloaded the original inhibitor data-
set, which contained heterogeneous information about 
the inhibition test for five important CYP450 enzymes 
(CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4). We 
preserved several types of important information for 
our following study and then five new datasets including 
PUBCHEM_CID and Activity Outcome (label “active”) 

for each enzyme were created. Corresponding chemi-
cal structures (SMILES) were obtained from PubChem 
database based on their PUBCHEM_CID. The SMILES 
structures of these molecules were checked one by one 
to ensure their correctness and solvent or saline ions 
adhering to the molecules were removed automatically 
by MOE software. So far, five well-organized inhibitor 
datasets including drug structures were prepared. Simi-
larly, for these inhibitor data collected from DrugBank 
and SuperCYP, only structure information was carried. If 
there were conflicting labels for one molecule while com-
bining data from different sources, we will comfirm it 
again. Molecules that can be ensured are preserved, and 
those that can’t are discarded. After removing the dupli-
cates in the above three datasets, we obtained the sub-
strate and inhibitor datasets with the positive data.

Negative dataset Since the substrates collected from 
the DrugBank and SuperCYP databases are all positive 
compounds. To obtain the corresponding negative com-
pounds, we borrowed a negative set generation method 
reported by Yap and Chen in 2005 [25]: firstly, we col-
lected all the drugs in the DrugBank database and deleted 
the drugs without chemical structures, rare elements 
and large molecules (molecular weight > 1000  Da). And 
then, we can randomly select some compounds equal to 
the number of compounds in the positive set to form a 
negative set, but do not include the compounds in the 
positive set. To avoid the uncertainty of random gen-
eration, 10 negative sets were randomly generated for 
each isoenzyme substrate by the above method. As for 
the enzyme inhibitor, the corresponding negative data-
sets were collected from the bioassay record “AID 1851” 
in the PubChem database. The detailed information of 
modeling data can be seen in Additional files 1 and 2.

Validation data
According to the Organization for Economic Co-oper-
ation and Development (OECD) principles, not only 
the internal validation is needed to verify the reliability 
and predictive ability of models, but also the external 
validation [26]. Therefore, after internal validation, the 
chosen models should be further validated by the exter-
nal dataset to explain their practical predictive ability 

Table 1  Changes of the plasma concentration when two drugs are combined

Cp: the drug concentration in plasma

Drug 1/2 Inhibitor Substrate Both

Inhibitor Affect other drugs metabolized by the 
isozyme

Cp of Drug 1 will increase Cp of Drug 1 will increase

Substrate Cp of Drug 2 will increase If bind the same active site, Cp of Drug 1, 2 will 
increase

Cp of Drug 1, 2 will increase

Both Cp of Drug 2 will increase Cp of Drug 1, 2 will increase Cp of Drug 1, 2 will increase
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and generalization ability. Therefore, we proposed the 
multi-level dataset and external dataset to accomplish 
this task. The specific data collection process is as 
follows:

Multi-level validation set Based on the definition of 
DDI in DrugBank: reactions, disturbances or side effects 
occur when drugs are used in combination, we collected 
previously reported DDI drug pairs from DrugBank, 
Physician’s Desk Reference, e-Therapeutics, Medicines 
Complete and Epocrates RX. All drug pairs were divided 
into CYP-related drug pairs and possible CYP-related 
drug pairs according to their annotation. After discarding 
the drugs without structural information, the remaining 
drugs were used as the multi-level validation dataset.

External validation set In this part, we collected 11 
commonly-used drugs that need therapeutic drug moni-
toring in pharmacy department of Xiangya hospital. 
And then, we searched their positive CYP450-related 
metabolic drug interactions in the “Interactions checker” 
module of the Drugs.com database. After completing 
their structural information, all drug pairs were prepared 
as the external validation dataset for further validation. 
To evaluate the predictive ability of our methodology for 
negative samples, we thought to find a reliable negative 
dataset from recent published literatures. Finally, 45,026 
reliable negative samples generated by DDI-PULearn 
were finally collected to further verify the strength of our 
consensus models. The detailed information of validation 
data can be seen in Additional file 3.

Data pretreatment and descriptor calculation
For all the compounds collected in section "Data collec-
tion", some pretreatment steps were applied to improve 
their quality and reliability: all compounds were stand-
ardized by the “wash” function of MOE (Molecular Oper-
ating Environment software, version 2019, Chemical 
Computing Group, Montreal, QC, Canada) to disconnect 
group metals in simple salts, keep only largest molecular 
fragments, deprotonate strong acids, protonate strong 
bases and add explicit hydrogens. After that, four types 
of descriptors were calculated using different chemin-
formatics tools: 206 two-dimensional descriptors (2D) 
and 166 MACCS fragments were calculated by the MOE 
software; 210 CATS descriptors and 1024 ECFP4 finger-
prints were calculated by ChemDes and PyBioMed [27]. 
For these descriptors, two pretreatments were performed 
to delete some uninformative descriptors before further 
descriptor selection: (1) delete those descriptors whose 
variances is 0 or approaches 0; (2) if the correlation coef-
ficient between two descriptors is higher than 0.95, only 

one was reserved. The chosen descriptors were prepared 
for further SAR modeling.

Modeling methods and performance evaluation
In this study, we chose two excellent machine learning 
approaches to construct the substrate and inhibitor QSAR 
models for five important CYP450 isozymes: random for-
est (RF) and the extreme gradient Boosting (XGBoost). 
RF is an ensemble of unpruned classification or regres-
sion trees created by using the bootstrap samples of the 
training data. Recent studies have showed that RF offers 
several striking features which make it very attractive for 
QSAR/QSPR studies including relatively high accuracy of 
prediction, built-in descriptor selection and a method for 
assessing the importance of each descriptor to the model 
[28, 29]. XGBoost belongs to the group of widely used tree 
learning algorithms and it has two major improvements: 
(a) speeding up the tree construction and (b) proposing 
a new distributed algorithm for tree searching. Based on 
its strengths, XGBoost has become a powerful machine 
learning tool widely used in data science competitions and 
industry and provides state-of-the-art results on many 
problems [30]. For some unbalanced datasets, the con-
structed models were also unbalanced if the general meth-
ods were applied. Therefore, the random sampling method 
was applied in each modeling process when the numbers of 
compounds in the positive and negative datasets differ too 
much and this process was repeated 100 times. After the 
comparison between models based on different methods 
and descriptors, a consensus model was finally obtained 
for further application based on these classification models. 
The exact hyperparameters of the used ML methods, the 
model selection method and the data splits method can be 
found in the supporting information SI6 (Additional file 6). 

To ensure the obtained DDI models have good generali-
zation ability for a new drug pair, Monte-Carlo cross vali-
dation was employed to evaluate the model performance. 
For each dataset, 80% compounds were randomly chosen 
to build models and the remaining 20% were used as the 
test set. This process was repeated 100 times and their 
average values were taken as the assessment indexes. Fur-
thermore, the multi-level datasets and the external dataset 
were also applied to validate the predictive ability of our 
models. Five common statistical parameters were used to 
evaluate the performances of QSAR models: sensitivity 
(SE), specificity (SP), accuracy (ACC), F value (F), an area 
under receiver operating characteristic curve (AUC). They 
are defined as follows:

SE =
TP

TP+ FN
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Results and discussion
CYP450 isozyme data analysis
As described in the data collection part, we collected the 
substrate and inhibitor datasets as many as possible for 
five important CYP450 isozymes, including CYP1A2, 
CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Their 
detailed information including the number of active 
and inactive compounds of substrates and inhibitors are 
listed in Table 2.

To preliminarily study the complicated relation-
ship between general drugs and five important CYP450 
isozymes, we draw the pie charts and UpSet diagrams 
based on the metabolism information of the drugs col-
lected from the DrugBank and SuperCYP databases. The 
above pie diagram S-P shows the percentages of the com-
pounds metabolized by different numbers of enzymes 
and the UpSet diagram S-V represents the number of the 
compounds metabolized by different enzymes. Specifi-
cally, The UpSet diagrams in Fig.  1 were obtained from 
a web tool, UpSet (https://​upset.​app/). Different with 
the most common set visualization approach-Venn Dia-
grams, UpSet is well suited for the quantitative analysis of 
data with more than three sets. UpSet plots the intersec-
tions of a set as a matrix, as shown in the figure. The top 
half of this figure is a bar charts for the size of the inter-
sections and a common Venn diagram, which makes the 
size of intersections easy to compare. In the bottom half, 
each row corresponds to a set, and the number on the left 
show the size of the set. Each column corresponds to a 
possible intersection: the filled-in cells show which set is 
part of an intersection. From this figure, we can easily see 

SP =
TN

TN + FP

ACC =
TP+ TN

TP+ FP+ TN + FN

F =
2TP

2TP+ FP+ FN

the number of drugs in each intersection and involved 
isoenzymes and further analysis can be carried out.

From the S-P and S-V diagrams, we could see that 40% 
of the collected drugs are metabolized by multiple CYP 
isozymes, and 79% of them (251drugs) are metabolized 
by 2 or 3 metabolic enzymes. Additionally, we found that 
CYP3A4 is involved in the metabolic process of 80% of 
drugs (627 drugs) while CYP1A2 is only involved in the 
metabolism of 18% of drugs (142 drugs). Similarly, I-P 
shows the percentages of the compounds that inhibit dif-
ferent numbers of enzymes and I-V represents the num-
ber of the compounds that inhibit different enzymes. 
From these diagrams, we could also find some mean-
ingful things: 36% of drugs can inhibitor multiple CYP 
isozymes and 73% of them have inhibition effect on 2 or 
3 metabolic enzymes. Furthermore, we also found that 
CYP3A4 can be inhibited by 53% of drugs but CYP1A2 
can only be inhibited by 22% of drugs. Based on the 
above observation, we can draw a conclusion that there is 
an overlapping relationship between metabolic enzymes 
and common drugs when considering metabolism and 
inhibition process, which is also the reason why potential 
substrates or inhibitors are difficult to be predicted.

Predictive models based on different machine learning 
approaches
Parameter optimization
As we all know, appropriate parameter has a significant 
impact on the quality of obtained models and conse-
quently the parameter optimization is a necessary step 
for model building. Therefore, we have also performed 
the hyperparameter optimization before modeling pro-
cess. For the Random Forest (RF) and XGBoost, the grid 
search method and fivefold cross-validation were applied 
to optimize a best parameter set for each model. Spe-
cifically, for the RF, only one parameter, the number of 
decision trees (n_tree, from 500 to 2000, interval = 100) 
was optimized. For the XGBoost, the learning rate (Eta, 
from 0.01 to 0.3, interval = 0.02), the maximum depth of 
a tree (maximum depth, from 3 to 10, interval = 1), and 
the number of models to train in the boosting ensem-
ble (boosting rounds, from 500 to 3000, interval = 500) 
were optimized. The optimization results were as fol-
lows: ntry = 1000; Eta = 0.3; max_depth = 6; boosting 
rounds = 2000.

Predictive models based on random forest
In this part, we constructed the substrate and inhibi-
tor predictive models based on four types of descriptors 
using RF for five CYP450 enzymes, respectively. For the 
collected datasets, we totally obtained 5 × 4 × 10 sub-
strate predictive models and 5 × 4 inhibitor predictive 
models. Each modeling process was repeated for 100 

Table 2  The detailed information of the modeling datasets

Substrate Inhibitor

Active Inactive Active Inactive

CYP1A2 198 198 6089 6974

CYP2C9 259 259 4316 8361

CYP2C19 314 314 6027 7135

CYP2D6 357 357 2906 10,826

CYP3A4 792 792 5544 7446

https://upset.app/
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times and their average values were taken as the evalu-
ation parameter of the models. It is noteworthy that for 
the CYP2C9 and CYP2D6 inhibitor datasets (the num-
ber of the negative samples was much larger than that 
of the positive samples), the random sampling method 
was applied to obtain the balanced models. The whole 
statistic performance of the substrate and inhibitor mod-
els using different descriptors was shown in Fig. 2. From 
this figure, we can see that all the substrate models using 
the 2D descriptor perform better than the others. Based 
on this, we collected the accuracy values of the substrate 
models using the 2D descriptor for the 10 randomly-
generated negative datasets and listed them in Table  3. 
Finally, according to their internal validation results, 
the best models using RF for the substrates and inhibi-
tors were chosen and their detailed predictive ability was 
listed in Table 4.

According to Table  3, we can see that the predic-
tive performance of all the substrate models based on 
the 10 randomly-generated negative datasets were sat-
isfactory. For the CYP1A2 models, the ACC was in the 
range of 0.69 ~ 0.72; for CYP2C9, ACC was in the range 
of 0.71 ~ 0.75; for CYP2C19, the ACC was in the range 
of 0.73 ~ 0.77; for CYP2D6, the ACC was in the range of 
0.76 ~ 0.79, and for CYP3A4, the ACC was in the range of 
0.74 ~ 0.76. Therefore, we can draw a conclusion that the 
accuracies of the substrate models based on the 10 ran-
domly-generated negative sets are very close, indicating 
that the randomly selected negative sets have little influ-
ence on the overall accuracies of the models. Accord-
ing to Fig. 2 and Table 4, we can clearly see that: (1) for 
the most substrates and inhibitors of CYP450 enzymes 
(excluding CYP3A4 inhibitor), the QSAR models based 
on the 2D descriptors performed best for the internal 

Fig. 1  The distribution of the collected drugs and isozymes (S-P, S-V, I-P, and I-V represent the pie diagram of substrates, the UpSet diagram of 
substrates, the pie diagram of inhibitors, and the UpSet diagram of inhibitors, respectively)
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Fig. 2  The whole performance of the substrate and inhibitor models using different descriptors

Table 3  The accuracy values of the substrate models based on the 10 randomly-generated negative datasets

Bold value represents the accuracy of the best of the 10 randomly generated negative sets

Des 1A2_Sub 2C9_Sub 2C19_Sub 2D6_Sub 3A4_Sub

1 2D 0.70 ± 0.049 0.72 ± 0.042 0.74 ± 0.045 0.78 ± 0.031 0.75 ± 0.025

2 2D 0.69 ± 0.041 0.74 ± 0.041 0.73 ± 0.050 0.78 ± 0.028 0.77 ± 0.024
3 2D 0.71 ± 0.045 0.73 ± 0.041 0.75 ± 0.045 0.78 ± 0.031 0.76 ± 0.023

4 2D 0.69 ± 0.045 0.72 ± 0.048 0.75 ± 0.046 0.78 ± 0.031 0.74 ± 0.020

5 2D 0.72 ± 0.047 0.76 ± 0.035 0.74 ± 0.047 0.77 ± 0.033 0.76 ± 0.019

6 2D 0.72 ± 0.042 0.71 ± 0.045 0.74 ± 0.049 0.78 ± 0.035 0.75 ± 0.023

7 2D 0.71 ± 0.036 0.74 ± 0.040 0.75 ± 0.045 0.78 ± 0.031 0.75 ± 0.024

8 2D 0.72 ± 0.050 0.73 ± 0.046 0.74 ± 0.051 0.77 ± 0.033 0.75 ± 0.020

9 2D 0.72 ± 0.041 0.73 ± 0.042 0.77 ± 0.040 0.79 ± 0.032 0.75 ± 0.022

10 2D 0.71 ± 0.046 0.72 ± 0.045 0.73 ± 0.043 0.78 ± 0.034 0.74 ± 0.020

Table 4  The detailed predictive ability of chosen QSAR models using RF

B* refers to the balanced model using the random sampling method

Des SE SP F ACC​ AUC​

1A2_Sub 2D 0.72 ± 0.067 0.73 ± 0.072 0.72 ± 0.051 0.72 ± 0.047 0.78 ± 0.045

2C9_Sub 2D 0.75 ± 0.060 0.77 ± 0.063 0.75 ± 0.037 0.76 ± 0.035 0.84 ± 0.038

2C19_Sub 2D 0.76 ± 0.063 0.79 ± 0.067 0.77 ± 0.043 0.77 ± 0.040 0.85 ± 0.038

2D6_Sub 2D 0.76 ± 0.046 0.82 ± 0.044 0.79 ± 0.033 0.79 ± 0.032 0.86 ± 0.029

3A4_Sub 2D 0.75 ± 0.038 0.79 ± 0.035 0.76 ± 0.026 0.77 ± 0.024 0.85 ± 0.020

1A2_In 2D 0.82 ± 0.010 0.87 ± 0.009 0.84 ± 0.007 0.85 ± 0.006 0.93 ± 0.005

2C9_In 2D 0.71 ± 0.017 0.90 ± 0.008 0.74 ± 0.011 0.83 ± 0.007 0.90 ± 0.005

2C9_In_B* 2D 0.83 ± 0.014 0.81 ± 0.013 0.82 ± 0.010 0.82 ± 0.008 0.89 ± 0.007

2C19_In 2D 0.81 ± 0.010 0.84 ± 0.008 0.81 ± 0.007 0.83 ± 0.006 0.89 ± 0.005

2D6_In 2D 0.46 ± 0.016 0.97 ± 0.017 0.59 ± 0.015 0.87 ± 0.011 0.87 ± 0.009

2D6_In_B* 2D 0.74 ± 0.018 0.83 ± 0.018 0.77 ± 0.014 0.79 ± 0.012 0.87 ± 0.011

3A4_In MACCS 0.73 ± 0.015 0.86 ± 0.009 0.76 ± 0.010 0.81 ± 0.008 0.89 ± 0.006
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validation; (2) for the substrate models, SE was in the 
range of 0.71 ~ 0.76, SP was in the range of 0.72 ~ 0.82, the 
accuracy was in the range of 0.72 ~ 0.79, and AUC was 
in the range of 0.78 ~ 0.86. Specifically, the whole per-
formances of the CYP2D6 models and CYP3A4 models 
were better than those of the other two models. Analysis 
of Fig. 1 and Table 2 illustrates that this may be because 
the collected data sets of CYP2D6 and CYP3A4 are larger 
and cover more chemical space than the other data sets; 
(3) for these inhibitor models, SEs of the final five models 
are around 0.80, SPs are around 0.85, the accuracy values 
are around 0.80, and the AUC values are around 0.90. For 
the CYP2C9 and CYP2D6 datasets, the balanced models 
performed much better than the unbalanced ones. The 
2C9 model is unbalanced: SE is 0.707 and SP is 0.896; 2C9 
balanced: SE is 0.828 and SP is 0.810; 2D6 unbalanced: SE 
is 0.458 and SP is 0.972; 2D6 balanced: SE is 0.736 and 
SP is 0.834. This change demonstrates that this resam-
pling method we proposed is very effective to correct the 
model bias and establish a practical balanced model. In 
whole, these models based on random forest are reliable 
and robust enough to predict whether a new compound 
is an inhibitor of the certain CYP450 isoenzymes.

Predictive models based on XGBoost and consensus method
As the same as the modeling processes in section 
"Parameter optimization", we chose another power-
ful machine learning approach, XGBoost, to construct 
substrate and inhibitor predictive models. Based on the 
aforementioned optimal descriptors and negative data-
sets. The detailed predictive results of the substrate and 
inhibitor models using XGBoost were listed in Table  5. 
According to Tables  4 and 5, we can obtain the follow-
ing information: (1) for the XGBoost models, SE was in 
the range of 0.72 ~ 0.84, SP was in the range of 0.69 ~ 0.86 
and ACC was in the range of 0.70 ~ 0.85; (2) compared 
with those predictive models using RF, most XGBoost 

models have similar or even better predictive ability, 
such as the substrate and inhibitor models for CYP2D6; 
(3) for all the models based on XGBoost, their SE val-
ues were larger than those for the models based on RF 
no matter their overall accuracy values; and on the con-
trary, their SP values were always smaller; (4) for the sub-
strate dataset of CYP3A4 isoenzyme, the XGBoost model 
using the MACCS descriptors performed best but the 
RF model using the 2D descriptors was the best, which 
demonstrates the selectivity of the modeling approach to 
descriptors.

Taking into consideration of the different predictive 
capacity and uncertainty of the models based on RF and 
XGBoost, the consensus modeling was applied to obtain 
well-performed predictive models. Consensus modeling 
can reduce model uncertainty by averaging the outputs 
from multiple models and can capture the relationship 
between chemical structures and the endpoint more 
efficiently than a single model. Thus, a series of con-
sensus models were developed by combining all RF and 
XGBoost models based on different types of descriptors. 
The comparison of the statistical parameters (SE, SP and 
ACC values) for the RF models, the XGBoost models 
and their consensus models can be seen in Fig. 3. From 
this figure, we can find the following facts: (1) for all the 
consensus predictive models, the SE was in the range of 
0.70 ~ 0.87, the SP was in the range of 0.75 ~ 0.89 and the 
ACC was in the range of 0.74 ~ 0.86. (2) On the whole, the 
predictive power of the consensus models was superior 
to that of individual models. Especially, for the CYP2C9, 
CYP2D6 substrate dataset and CYP2D6 inhibitor dataset, 
the ACC values of their consensus were obviously higher 
than those of the RF and XGBoost models. (3) For most 
datasets, the superiority of SE for the consensus model is 
more obvious than SP. To further prove the usefulness of 
our consensus method, we performed t-tests and calcu-
lated p-values for the results of the consensus models and 

Table 5  The detailed predictive ability of the chosen QSAR models using XGBoost

Des SE SP F ACC​ AUC​

1A2_Sub 2D 0.72 ± 0.070 0.69 ± 0.073 0.71 ± 0.046 0.70 ± 0.040 0.77 ± 0.041

2C9_Sub 2D 0.79 ± 0.055 0.73 ± 0.072 0.76 ± 0.042 0.76 ± 0.039 0.83 ± 0.040

2C19_Sub 2D 0.76 ± 0.060 0.74 ± 0.070 0.75 ± 0.048 0.75 ± 0.043 0.82 ± 0.039

2D6_Sub 2D 0.80 ± 0.046 0.79 ± 0.044 0.79 ± 0.034 0.79 ± 0.030 0.86 ± 0.029

3A4_Sub MACCS 0.77 ± 0.034 0.76 ± 0.037 0.77 ± 0.023 0.77 ± 0.021 0.84 ± 0.018

1A2_In 2D 0.84 ± 0.011 0.87 ± 0.009 0.85 ± 0.007 0.86 ± 0.006 0.93 ± 0.004

2C9_In_B* 2D 0.83 ± 0.013 0.80 ± 0.014 0.82 ± 0.009 0.82 ± 0.009 0.89 ± 0.008

2C19_In 2D 0.82 ± 0.011 0.83 ± 0.010 0.81 ± 0.007 0.82 ± 0.006 0.89 ± 0.005

2D6_In_B* 2D 0.78 ± 0.018 0.81 ± 0.018 0.79 ± 0.013 0.80 ± 0.012 0.87 ± 0.009

3A4_In MACCS 0.76 ± 0.011 0.83 ± 0.010 0.77 ± 0.009 0.801 ± 0.007 0.88 ± 0.006
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the individual models. According to the calculated P val-
ues, we can see that not only the accuracy but also the SE 
and SP values between consensus and individual models 
were different significantly (P < 0.05). That is to say, these 
consensus models have better prediction capacity to 
identify potential DDIs based on five important CYP450 
isoenzymes and thus play a decisive role in the post mar-
keting pharmacovigilance and drug discovery process. 
According to the internal validation results of the predic-
tive models based on different methods, we can draw a 
conclusion that the consensus models perform better 
than the predictive models based on the RF and XGBoost 
methods. However, the preliminary conclusion was made 
only based on the results of the individual inhibitor and 
substrate models rather than the overall DDI models. 
Furthermore, considering the OECD principles for model 
validation, more comprehensive validation is needed to 
illustrate the practicability and generality of the consen-
sus models.

Multi‑level validation
To further evaluate the predictive ability of the consen-
sus DDI models based on the aforementioned machine 
learning approaches and large datasets, we additionally 
collected a multi-level dataset for the external valida-
tion. As described in the “data collection” part, we finally 

collected 1317 positive DDI pairs from several popular 
databases after deleting duplicates in the training set. 
To evaluate the reliability of the multi-level validation 
dataset, we calculated the Tanimoto similarity between 
the multi-level validation data and the training set com-
pound. ECFP4 fingerprint was applied to represent com-
pounds and the corresponding similarity coefficients 
were calculated. The results showed that the similarity 
coefficients between validation set and inhibitor train-
ing sets were smaller, generally in the range of 0.05 ~ 0.2. 
However, the ones between validation set and substrate 
training sets were larger, mostly in the range of 0.2 ~ 0.6. 
We suspected that this may be due to that the datasets 
for CYP inhibitors were much larger than those of CYP 
substrate. Overall, the multi-level validation dataset was 
eligible for the evaluation of DDI predictive models. All 
the drug pairs were divided into three levels accord-
ing to the following definition: For a DDI pair, drug 
A is the substrate of a specific enzyme C and drug B is 
the inhibitor: first level—A and B interact with the same 
enzyme; second level—A and B interact with the enzyme 
C; third level—A and B interact with the enzyme C and 
A is substrate, B is inhibitor. After data processing, the 
final consensus DDI models were applied to predict the 
potential DDIs for these drug pairs. The data details and 
the predictive results were listed in Table  6. According 

Fig. 3  The statistical results of the predictive RF and XGBoost models and the consensus method

Table 6  The detailed information of the result for the multi-level datasets

The numbers outside and inside the parentheses represent the actual and predictive numbers of DDIs respectively

Total CYP1A2 CYP2C9 CYP2C19 CYP2D6 CYP3A4 Accuracy

First level 1317 (1317) – – – – – 1.000

Second level 1310 (1308) 80 (80) 132 (131) 27 (27) 112 (112) 959 (958) 0.998

Third level 1194 (947) 80 (80) 128 (112) 27 (24) 111 (94) 848 (637) 0.793
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to this table, we can see that the consensus DDI model 
performed well in three-level validation with the accu-
racy of 1.000, 0.998 and 0.793 respectively. Except for the 
CYP3A4 dataset in the third level, the prediction accu-
racy of the model for other datasets is above 0.8. There-
fore, our consensus model also has reliable predictive 
power when applied for the external compounds.

The applicability domain (AD) evaluation is a guaran-
tee for QSAR models in predicting uncertain compounds 
accurately and reasonably. To estimate the AD of the DDI 
prediction model, we compared the Tanimoto similar-
ity of drugs that predicted wrong and those predicted 
right to the training set compounds. For the multi-level 
validation datasets, there were totally 16 and 14 pre-
dicted wrong drugs for the substrate and inhibitor mod-
els respectively. In this part, we evaluated the similarity 
between a drug and the training set by using the average 
Tanimoto similarity of the 10 compounds most similar to 
the drug in the training set. After analyzing the similar-
ity results of these drugs, we found that for the substrate 
predictive models, the Tanimoto similarity values of 
drugs with wrong predictions were less than 0.15, while 
the values of drugs with correct predictions were greater 
than 0.2. And similarly, for the inhibitor predictive mod-
els, the average similarity values of these wrong drugs 
were all below 0.03, while the values of predicted right 
drugs were larger than 0.05. From a statistical standpoint, 
these predicted wrong drugs were regarded as outliers 
of the DDI prediction model and they were distributed 
outside the application domain of the model. As a result, 
based on the comparison results of Tanimoto similarity, 
we can preliminarily assess the application domain of our 
DDI prediction models. We have reasons to believe that 
our prediction model may have more reliable prediction 
results for a new compound whose similarity to the sub-
strate training set compounds is greater than 0.2 and to 
the inhibitor training set compounds is greater than 0.05.

To find the intrinsic hidden rules in the DDI datasets 
and further explain the predictive ability of our DDI 
models, we analyzed the structural features of the com-
pounds in the modeling datasets based on their scaffolds. 
In this part, the RDKit package was applied to analyze 
the scaffold of all the compounds. The RDKit package 
provides a standard decomposition of molecules into 
scaffolds and carbon skeletons based on the two-dimen-
sional structures of molecules. The scaffold decomposi-
tion was proposed by Bemis and Murcko and has become 
the most widely applied and established scaffold defini-
tion. In this definition, scaffolds were extracted from 
compounds by removing all R-groups but retaining the 
linkers between ring systems [31]. Based on the scaffolds, 
Xu and Johnson defined the carbon skeletons in 2002. 
Carbon skeletons are derived from scaffolds by changing 

each heteroatom to a carbon atom and all bond orders to 
single bonds. Thus, different carbon skeletons represent 
topologically distinct scaffolds [32]. The scaffold and car-
bon analyses were carried out for the inhibitor and sub-
strate datasets. To provide some valuable information 
for the readers and the community, not only the Murcko 
scaffold and carbon scaffold of each dataset but also the 
similarity/dis-similarity between substrates/inhibitor and 
non-substrate/non-inhibitors and the most prominent 
scaffold for each dataset were analyzed in this part. In 
the compare process of positive and negative drugs, only 
these scaffolds that appear more than twice were chosen 
to reduce the occasionality. Table 7 listed the number of 
scaffolds, the number of carbons and the most promi-
nent scaffolds of each inhibitor and substrate dataset. As 
shown in Table 7, we can clearly see that no matter the 
number of skeletons or the number of carbon skeletons, 
the inhibitor datasets are much larger than the sub-
strate datasets. As we all know, a QSAR model derived 
from structurally diverse compounds will generally cover 
a large chemical space and consequently have a wide 
application domain. And that’s why the predictive ability 
of the inhibitor models was better than that of the sub-
strate models. Even so, all the five substrate datasets still 
have relatively diverse chemical skeletons which covered 
almost all the chemical structures commonly appeared 
in drug compounds. Based on the further comparation 
of scaffolds that appear more than twice, some interest-
ing clues hidden in the each CYP isoenzyme dataset were 
found: (1) CYP1A2: For CYP 1A2 inhibitor, there were 96 
identical scaffolds in the positive and negative datasets 
and the top three (frequency) were 4, 1 and 168 (Murcko 
class). According to the explanation document of Murcko 
class, three scaffolds were benzene ring, pyridine ring 
and benzylaniline respectively and they are common 
elements for the inhibitor of CYP1A2. Addition to it, 
the positive and negative datasets contain 658 and 771 
unique scaffolds, respectively. Among them, class 1526, 
3567, 3606 were the most prominent ones for CYP1A2 
inhibitor, while class 54, 7220, 5, 414, 849 were important 
for non-inhibitors. Based on the explanation document, 
that is to say, drugs or chemicals with 2-Phenylquinazo-
line, N-Benzyl-5-phenyl-pyrimidin-4-amine, N-benzyl-
2-phenylpyrimidin-4-amine and without Piperidine ring, 
Imidazole ring, 9-(Tetrahydrofuran-2-yl)-9H-purine, or 
3-Benzyl-3,9-diazaspiro [5, 5] undecane were probably 
CYP inhibitors. Similarly, for the substrate, cyclopropane 
and benzyl-[2-(2-phenoxyethoxy) ethyl] azanium were 
the same scaffolds in the positive and negative datasets 
and compounds with 4-N-thiazole, cyclohexane were 
more likely to be CYP1A2 substrates. (2) CYP2C9: For 
the inhibitor, the benzene ring, triazine ring and 6-Ben-
zylaminopurine were the universal substructures in the 
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positive and negative datasets and drugs with quino-
line furan, and benzothiazole were more probably to be 
inhibitors. And for the substrate, the diphenylborane was 
the most common scaffold in the positive and negative 
datasets and the compounds with 1-(14-quinolin-1-ium-
1-yltetradecyl) quinolin-1-ium, 4-N-thiazole or [1, 3] 
benzodioxolo [5,6-c] phenanthridin-12-ium were sup-
posed to be the substrates. (3) CYP2C19: For its inhibi-
tor, the benzene ring, indole ring and diphenylmethane 
were common scaffolds in the positive and negative 
datasets and 3,9-diazaspiro [5.5] undecane and cyclo-
propylphenylmethane may be used for the identification 
of inhibitor and non-inhibitor. For the substrate, phena-
zoline and 1-(1,3-Benzodioxol-5-Ylmethyl) Piperidine 
were the most frequent identical scaffolds for the posi-
tive and negative datasets and compounds with 1-Phe-
nylpiperazinium, Tryptoline and Phenylbutylpyrrolidine 
were more like to become substrates. (4) CYP2D6: For 
the inhibitor, the benzene ring, 4-N-thiazole and ben-
zimidazole were the same scaffolds in the positive and 
negative datasets and the scaffolds pyridazine, 2-phenyl-
N-(pyridin-3-ylmethyl) pyrimidin-4-amine, (1-meth-
ylpyrrol-2-yl)-[2-(4-phenylphenyl)-2,9-diazaspiro [5.5] 
undecan-9-yl] methanone were the most potential scaf-
folds to distinguish the inhibitors. For the substrate, the 
pyridine ring and 4,4-diphenylimidazolidine were the 
same scaffolds in the positive and negative datasets and 

the compounds with 4-anilinoquinazoline, 1,3,5-tria-
zine, 9-anilinoacridine were the most probably ones to be 
substrates. (5) CYP3A4: For the inhibitor, there are 108 
same scaffolds both in the positive and negative datasets 
and the most frequent three in order were the benzene 
ring, the pteridine ring and the N-benzylaniline. The 
most prominent scaffolds for inhibitors were 6-(1,3-thi-
azol-4-yl)-3,4-dihydro-2H-1,4-benzoxazine and 2-(furan-
3-yl)-N-phenylquinazolin-4-amine. For the substrate, 
1,6-Dihydropurine, 3,4-Diindolyl pyrrole were the most 
important identical scaffolds for the positive and nega-
tive datasets and the scaffolds Tryptoline and 1-trityl-
imidazole were probably the most informative skeletons 
to identify substrates and non-substrates for CYP3A4. 
Moreover, we can also find some indetectable facts for 
the prediction of substrate and inhibitors: (1) the benzene 
ring was the most common scaffold for all the inhibitor 
datasets, no matter it was positive or negative. And the 
second one is N-benzylaniline; (2) the scaffold of N-ben-
zyl-5-phenylpyrimidin-4-amine was the important skel-
eton for the non-inhibitor of CYP2C19 and the inhibitor 
of CYP1A2; (3) compounds with the scaffold of 4-N-thi-
azole could be a substrate of CYP1A2 and CYP2C9, and 
compounds with the scaffold of Tryptoline could be a 
substrate of CYP2C19 and CYP3A4. Based on the above 
statements and discussion, we hope to provide some 
basis and reference for further research in the future and 

Table 7  The scaffold analysis results of the substrate and inhibitor datasets

Subsets Number of 
scaffolds

Number of 
carbons

Most prominent scaffolds
(Murcko Class)

Common scaffolds

1A2 Inhibitor Positive 3520 1418 1526, 3567, 3606 4, 1, 168

Negative 4257 2090 54, 7220, 5, 414, 849

Substrate Positive 150 94 36, 8, 14 3, 56

Negative 163 113 158, 43

2C9 Inhibitor Positive 3088 1708 4866, 4863, 4885 4, 3366, 179

Negative 4353 1793 59, 3303, 3413

Substrate Positive 168 119 66, 36, 70 19

Negative 166 123 173, 199, 254

2C19 Inhibitor Positive 4189 2015 3756, 188, 349, 5176 4, 6, 39

Negative 3751 1614 3567, 461, 3570, 7237

Substrate Positive 132 89 7, 31, 63 47, 16

Negative 137 105 93

2D6 Inhibitor Positive 1836 1003 74, 3742, 3904, 3911 4, 36, 1655

Negative 6244 2580 3718, 3744, 56

Substrate Positive 209 150 40, 42, 45 1, 26

Negative 223 153 212, 62, 38

3A4 Inhibitor Positive 3536 1912 3504, 3539, 3592 4, 3576, 168

Negative 4227 1630 58, 429, 7136

Substrate Positive 518 385 57, 31, 80 38, 8, 60

Negative 506 301 541, 530, 533, 105, 631
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we believe that the consensus DDI models constructed 
in this study are robust and reliable enough for further 
application in drug discovery and clinical practices. The 
explanation document of Murcko class mentioned in the 
article can be found in the Additional file 5.

External validation
After multi-level validation, we collected an external 
dataset to further evaluate the predictive ability of the 
models as described in the “data collection” part. In 
this part, 11 commonly-used drugs that need therapeu-
tic drug monitoring in Xiangya hospital were chosen 
for the external validation (Carbamazepine, Oxcarbaz-
epine, Phenytoin sodium, Phenobarbital, Valproic acid, 
Methotrexate, Voriconazole, Vancomycin, Tigecycline, 
Meropenem, and Imipenem). Due to their nonlinear 
pharmacokinetic properties or low therapeutic index, 
patients need to regularly monitor if their concentra-
tions and potential DDIs lead to serious consequences. 
Therefore, it is of great value to predict possible DDIs 
for them. Totally, we collected 132 knowns positive DDIs 
from the Drugs.com database after searching the afore-
mentioned drugs and deleting duplicates in the training 
set, and the final consensus DDI models were applied 
to evaluate them. To study the reliability of the external 
datasets, Tanimoto similarity was proposed to evalu-
ate the similarity between external and training sets. In 
this part, ECFP4 fingerprint was applied to represent the 
chemical compounds and then Tanimoto similarity val-
ues were calculated between them. The results showed 
that the Tanimoto similarity coefficients between exter-
nal test sets and inhibitor training sets were smaller, 
generally below 0.2. However, the ones between valida-
tion set and substrate training sets were larger, most are 
around 0.5. Overall, the external test dataset was reli-
able enough to evaluate our obtained consensus models. 
According to the prediction results, the number of the 
true positives was 105, the number of false negatives was 
27, and the accuracy of the DDI model reached 79.50%. 
Moreover, to evaluate the predictive ability of our meth-
odology for negative samples, a new dataset composed 
of reliable negative DDIs was necessary in our validation 
procedure. As we all know, DDI prediction is now fac-
ing challenges due to the lack of experimentally verified 

negative samples, and thus we thought to find a reliable 
negative dataset from recent published literatures. In 
this part, 45,026 reliable negative samples generated by 
DDI-PULearn were finally collected to further verify the 
strength of our consensus models [33]. According to the 
result, 81.94% of negative samples were classified cor-
rectly by the final model and this newly added validation 
demonstrated that our proposed models were effective 
enough for both positive and negative DDI samples. On 
the whole, these prediction results of the external vali-
dation proved the usefulness and reliability of our final 
model and consequently provided a theoretical basis 
for its practical application in the DDI prediction of 
unknown drugs.

Compared with other advanced methods
To further test the reliability and robustness of our DDI 
prediction model, we decided to compare it with other 
advanced methods. Considering the pharmacokinetics 
mechanism of our study and the dataset availability of 
published literatures, two recently methods were chosen 
to compare with ours: The first one is a Multitask Deep 
Autoencoder Neural Network method (DNN) to pre-
dict Human Cytochrome P450 Inhibition, proposed by 
Pei in 2018 [34]. In this paper, based on a dataset con-
taining 13,000 compounds, they developed a multitask 
model for concurrent inhibition prediction of five major 
CYP450 isoforms, namely, 1A2, 2C9, 2C19, 2D6, and 
3A4. The other one is the stratified bagging (SB) method 
used in Xin Xu’s study recently [35], which was applied to 
develop quantitative structure–activity relationship mod-
els for the prediction of CYP2C9, CYP2D6, and CYP3A4 
Catalysis and Inhibition. To validate the effectiveness of 
as many models as possible, two external datasets were 
collected for further evaluation respectively: the multi-
validation dataset proposed in Part 4.3 of this manu-
script was used to compare our models with Pei’s DNN 
models; the National Center for Advancing Translational 
Sciences (NCATS) dataset was collected from Xu’s pub-
lication and used to compare our models with SB mod-
els. The detailed comparison results (Accuracy) between 
models using different methods were listed in the below 
Table  8. From this table, we can see that for the inhibi-
tors of multi-validation dataset, the accuracy values of 

Table 8  The detailed comparison results (Accuracy) between models using different methods

Dataset Methods 1A2_In 2C9_In 2C19_In 2D6_In 3A4_In 2C9_Sub 2D6_Sub 3A4_Sub

Multi-validation DNN 0.293 0.345 0.471 0.712 0.506 – – –

Ours 1.000 1.000 1.000 0.856 0.915 – – –

NCATS SB – 0.614 – 0.550 0.653 0.618 0.607 0.663

Ours – 0.662 – 0.629 0.664 0.632 0.608 0.547
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DNN models were in the range of 0.3 ~ 0.7 while our 
models resulted accuracy values in the range of 0.8 ~ 1.0. 
Although the DNN model reported an accuracy of 0.8 for 
external test dataset, its predictive power does not appear 
to be very good for this validation dataset. Given that 
all compounds in this dataset are positive, we can only 
draw a preliminary conclusion that our model is better 
than this DNN model at predicting positive data. As for 
the NCATS dataset, it contains not only positive but also 
negative samples for CYP inhibitor and substrate. After 
predicting the NCATS dataset, the accuracy values of 
SB models and ours were both in the range of 0.5 ~ 0.7. 
In detail, except for the dataset of 3A4_Sub, our models 
performed equal or better for all the other datasets than 
the SB models. Based on the comparison results between 
two recently published models and ours, we have reasons 
to believe that the prediction models derived from this 
study were reliable and effective enough for the potential 
metabolic DDI screening in the future.

Application of DDI models
After evaluation, our DDI models were proved to be reli-
able and practical. To broaden the application of these 
models, we decided to apply our models to predict the 
potential DDIs for currently marketed drugs. For this 
propose, we searched for the FDA-approved mono-
component electroneutral organic drugs in the Drug-
Bank and thus 1132 drugs were extracted. In total, there 
are 1132 × 1132/2 = 640,146 possible binary combina-
tions for these drugs. After predicting all possible com-
binations, we proposed a new index, PDDI, to screen the 
potential DDI drug pairs and it was defined as follows: 
PDDI = Pdrug 1 × Pdrug 2, where Pdrug 1 and Pdrug 2 are the 
predictive probabilities of drug 1 and drug 2, respectively. 
As a result, we found 54,013 potential drug pairs accord-
ing to their predictive possibilities (the PDDI threshold 
was defined at 0.95). For each CYP isozyme, the specific 
potential DDI number is as follows: 3328 drug pairs for 
CYP 1A2, 4415 drug pairs for CYP 2C9, 5935 drug pairs 
for CYP 2C19, 10,749 drug pairs for CYP 2D6 and 38,805 
drug pairs for CYP 3A4. According to these results, we 
can see that some drug pairs have potential DDIs based 
on multi-enzymes and DDIs are more likely to occur for 
drugs that interact with CYP3A4. After checking the 
number of the DDIs for each drug, the most frequently 
10 drugs predicted to cause unsafe DDIs when inter-
acting with other drugs are listed in Table  9.  From this 
table, we can see that most of the 10 drugs interact with 
more than one enzyme and nine of them are associated 
with CYP3A4. Oppositely, only Cidofovir may have the 
interaction with CYP2C9. Detailedly, Cidofovir and Tri-
fluridine are injectable antiviral medication for the treat-
ment of cytomegalovirus (CMV) retinitis in patients with 

acquired immune deficiency syndrome (AIDS) and pri-
mary keratoconjunctivitis, respectively [36, 37]. Vinblas-
tine and Vincristine are antitumor vinca alkaloid isolated 
from Vinca Rosea and the CYP3A subfamily facilitates 
their metabolism [38]. Among the remaining 4 drugs, 
Chloropyramine and Citalopram belong to the first-
generation antihistamine drug and antidepressant agent, 
respectively, and both of them have interaction with 
CYP2C19 and CYP2D6 [39, 40]. Moreover, Clarithromy-
cin and Nitrendipine mainly interact with CYP3A4 [41, 
42]. Based on the above analyses, clinician and clinical 
pharmacist should avoid the combination of the above 
drugs when prescribing to avoid serious adverse reac-
tions caused by drug interactions. All the related infor-
mation of can be found in Additional file 4 (Table 9).

Conclusion
In this study, we took mechanism-specific metabolic 
DDIs caused by Cytochrome P450 as the breakthrough 
point, RF and XGBoost were used to construct the 
computational models based on 4 different descriptors 
(2D, CATS, ECFP4, and MACCS) for substrates and 
inhibitors of five important CYP450 isoenzymes. The 
predictive ability differences between the inhibitor and 
substrate models using RF and XGBoost demonstrate 
that the models based on the datasets with more chem-
ical skeletons and optimal modeling methods have a 
more wider application domain and thus the derived 
DDI models were more reliable and practical in the 
future applications. To reduce the model uncertainty, 
a series of consensus models were constructed by 
combining RF and XGBoost models. For the internal 
validation, the whole accuracy and AUC value of the 
final DDI model was around 0.8 and 0.9, respectively. 
When it was applied to the external datasets, its accu-
racy was 0.793 and 0.795 for the multi-level validation 

Table 9  The most frequently 10 drugs predicted to cause DDIs 
when interacting with other drugs

Drugs Interact with No. of 
predicted 
DDIs

Cidofovir CYP2C9, CYP3A4 455

Alendronate CYP1A2, CYP3A4 444

Trifluridine CYP2D6, CYP3A4 442

Promazine CYP2C19, CYP2D6, CYP3A4 439

Vinblastine CYP3A4 424

Chloropyramine CYP2C19, CYP2D6 397

Citalopram CYP2C19, CYP2D6, CYP3A4 396

Clarithromycin CYP3A4 384

Vincristine CYP3A4 384

Nitrendipine CYP3A4 384
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and external validation, respectively. Additionally, a 
series of evaluation including AD assessment, the scaf-
fold analysis and comparison with recent published 
models were carried out to prove the reliability and 
effectiveness of our models. Finally, we applied our 
model to predict the FDA-approved drugs and found 
some drug pairs with potential DDIs. In conclusion, 
we constructed a practical and reliable DDI predictive 
model based on the CYP450 enzyme family and aimed 
to help clinicians avoid high-risk drug combinations 
in prescribing, help drug researchers assess poten-
tial DDI quickly and accurately in the early stages of 
development and provide valuable references for the 
subsequent studies and findings of CYP450-related 
drug–drug interactions.
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