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METHODOLOGY

Chemical toxicity prediction based 
on semi‑supervised learning and graph 
convolutional neural network
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Abstract 

As safety is one of the most important properties of drugs, chemical toxicology prediction has received increasing 
attentions in the drug discovery research. Traditionally, researchers rely on in vitro and in vivo experiments to test the 
toxicity of chemical compounds. However, not only are these experiments time consuming and costly, but experi‑
ments that involve animal testing are increasingly subject to ethical concerns. While traditional machine learning 
(ML) methods have been used in the field with some success, the limited availability of annotated toxicity data is the 
major hurdle for further improving model performance. Inspired by the success of semi-supervised learning (SSL) 
algorithms, we propose a Graph Convolution Neural Network (GCN) to predict chemical toxicity and trained the 
network by the Mean Teacher (MT) SSL algorithm. Using the Tox21 data, our optimal SSL-GCN models for predicting 
the twelve toxicological endpoints achieve an average ROC-AUC score of 0.757 in the test set, which is a 6% improve‑
ment over GCN models trained by supervised learning and conventional ML methods. Our SSL-GCN models also 
exhibit superior performance when compared to models constructed using the built-in DeepChem ML methods. This 
study demonstrates that SSL can increase the prediction power of models by learning from unannotated data. The 
optimal unannotated to annotated data ratio ranges between 1:1 and 4:1. This study demonstrates the success of SSL 
in chemical toxicity prediction; the same technique is expected to be beneficial to other chemical property prediction 
tasks by utilizing existing large chemical databases. Our optimal model SSL-GCN is hosted on an online server acces‑
sible through: https://​app.​cbbio.​online/​ssl-​gcn/​home.
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Introduction
The fundamental strategy in modern drug discovery and 
development is to identify chemical compounds that 
potently and selectively modulate the functions of the tar-
get molecules to elicit a desired biological response. How 
to quickly locate these compounds from the vast chemi-
cal space and then determine their drug-like properties 

remains a major challenge [1–3]. Traditionally, chemists 
and biologists perform in vitro and in vivo experiments 
to test the pharmacodynamics and pharmacokinetic (PD/
PK) properties of selected candidates obtained from ini-
tial screening results [4, 5]. However, these experiments 
are not only very costly in terms of time and money, the 
experiments that involve animal testings are increasingly 
questionable from ethical perspectives [6]. Previous stud-
ies show that it typically takes 6 to 12 years and more 
than 2.6 billion dollars to develop a new drug. Of this 
cost, about 1.1 billion dollars is for the drug development 
phases prior to human testing [7].
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Toxicity is one of the five pharmacokinetic proper-
ties (ADMET) that must be strictly ascertained before a 
new drug candidate is approved for clinical trials [8]. On 
the premise that “the structure of a chemical substance 
implicitly determines its physical and chemical proper-
ties and reactivity, and these properties interact with 
biological systems to determine its biological/toxicologi-
cal properties” [9, 10], efforts have been made to develop 
computational methods, often machine learning (ML) 
based, that attempt to relate the toxicological properties 
of compounds to their chemical structures. For a com-
prehensive review of ML-based toxicity prediction meth-
ods, the readers are referred to refs [11–13].

Graph Convolutional Neural Networks (GCN) are com-
monly used for tasks such as social network analysis and 
knowledge graph mining. Since biomolecular structures 
can also be represented as graphs, a variety of GCN-based 
biomolecular property prediction models have been 
developed in recent years. For example, the Weave model 
was proposed by Kearnes et  al. in 2016 [14], which was 
a deep learning system based on molecular graph convo-
lutions. This model uses only the simple descriptions of 
atoms, bonds, and atom pairs as input data. In addition, 
a learnable module called Weave module, extracts and 
combines the features of atom and distance relationship 
with learnable parameters. These modules can be stacked 
to an arbitrary depth to allow fine-tuning of the architec-
ture for the needs of different learning tasks. In 2017, Li 
et al. proposed the GraphConv-SuperNode model [15]. By 
adding a dummy fully connected node (the super node) in 
each graph, this model captures and extracts graph-level 
representations from chemical structures, allowing it to 
focus on graph-level classification and regression tasks. 
In 2020, Wang et al. proposed a graph attention convolu-
tional neural network (GACNN) that classified poisonous 
chemicals to honey bees [16], which is a Graph Convolu-
tion Neural Network with undirected graph and attention 
mechanism. They demonstrated that the performance of 
their GACNN model was better than all previous models, 
and they also summarised important structural features 
that might lead to poisoning.

All of these previous studies have highlighted the 
advantages of using GCN-based models to predict bio-
molecular properties. First, the suitability of different 
traditional molecular descriptors for different tasks sig-
nificantly affects the performance of the models [16, 17]. 
Graph-based molecular representations can circumvent 
this problem by preserving the structural and phys-
icochemical information of the molecules. Second, the 
majority of models using graph-based techniques per-
form better on biomolecular property prediction tasks 
than conventional ML models using traditional molecu-
lar descriptors [14–16, 18]. Third, since GCN-based 

models can directly manipulate graph-based molecular 
representations, they can retain molecular structural 
information during prediction. This characteristics of 
GCN makes the interpretability of GCN-based models 
superior to other traditional ML models.

Based on the different training strategies, ML algo-
rithms can be broadly classified into 4 types, namely 
supervised learning (SL), semi-supervised learning (SSL), 
unsupervised learning and reinforcement learning [19]. 
All the prediction models we mentioned above are based 
on the SL algorithms which learn only from annotated 
datasets. However, despite enormous efforts in data cura-
tion and data sharing, the amount of labeled data falls far 
short of the amount of known compounds. Strategies to 
make use of the unannotated data such as those of SSL 
are expected to enhance the generalizability of prediction 
models.

Therefore, inspired by the success of GCN and the 
needs for improving chemical toxicity prediction con-
fronted with limited data, we designed a learning sys-
tem that hybridizes graph convolutional neural network 
(GCN) and SSL to predict the toxicity of chemical com-
pounds. Here, we used chemical data from the Tox21 
dataset as annotated data and collected compounds from 
other datasets as unannotated data. First, the molecular 
features encoded in GCN were defined, then experiments 
were performed to investigate the influence of SSL on the 
predictivity of the models. Moreover, the performances 
of the SSL models with varying unannotated data ratios 
were compared, which showed that SSL has a positive 
influence on the prediction performance of GCN models.

This paper is organized as follows. The theoretical foun-
dation of GCN and the mean teacher SSL algorithm are 
presented in the Material and Method section. The data-
set, model, and validation technique are then described. 
The Results section contains comparative study of the 
traditional ML, SL-GCN, and SSL-GCN models perfor-
mances. The impact of various unannotated data ratios 
was also investigated. Finally, SSL-GCN was compared to 
existing DeepChem methods for toxicity prediction.

Material and method
Graph convolutional neural network (GCN)
Traditional convolutional neural networks (CNN) can 
extract features from Euclidean or grid structure data, 
such as images and text. But for non-Euclidean data like 
social networks, knowledge graphs, or chemical struc-
tures, due to its irregular data topology, CNN cannot 
directly operate on them [20, 21]. A solution for machine 
learning on non-Euclidean data is Graph Convolutional 
Neural Network (GCN) [22]. GCN has been widely used 
in solving computer science problems such as social net-
work analysis [23], natural language processing [24, 25], 
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and recommendation system [26, 27], and also chemistry 
problems such as molecular properties prediction [14, 15, 
18, 20]. For the latter, each molecule is described as an 
undirected graph where atoms are represented as nodes 
and covalent chemical bonds are represented as edges. 
The basic idea of graph convolution is to apply a learn-
able function on each node and its neighbors, gradually 
merging information from distant atoms through the 
connecting edges, and ultimately extracting the atom-
type and connectivity patterns in the molecule. In this 
work, we used off-the-shelf GCN method that was pro-
posed by Kipf et al. in 2017 [28]. The layer-wise propaga-
tion function of this approach is defined in the following 
equations in terms of matrix calculation:

These equations can be denoted as f (H (l),A) . Ã repre-
sents the adjacency matrix A of an undirected graph G 
with added self-connections I. D̃ is the degree matrix of 
Ã . H (l) ∈ R

N×D represents the nodes signal matrix (fea-
tures) generated by the lth layer, where N and D denote 
the number of nodes in this graph and the dimension of 
each node’s signal matrix respectively. W (l) is the layer-
specific learnable weight matrix of the lth layer. σ denotes 
a non-linear activation function [28].

To facilitate implementation, the previous equations 
can be represented as the following:

where N (i) is the set of neighbors of the node i. W (l) rep-
resents the layer-specific learnable weight matrix of the 
lth layer, h(l)j  is the signal matrix (features) of each neigh-
bor node j around i, and b(l) is the bias value of the lth 
layer. Therefore, the signal of each node in the next layer 
is determined by the weighted sum of signals in each 
node of the current layer and the signals of its adjacent 
nodes of the same layer. All signals are nonlinearly trans-
formed using the Rectified Linear Unit (ReLU) function, 
ReLU(x) = max(0, x).

Semi‑supervised learning (SSL)
The basic idea of machine learning (ML) is to reproduce 
the human learning process by computer algorithms. 
Most ML algorithms can be classified into four types [19, 
29]: supervised learning, unsupervised learning, semi-
supervised learning and reinforcement learning. The 
most commonly used method is supervised learning. It 
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2 ÃD̃− 1

2H (l)W (l))

(3)

h
(l+1)
i = ReLU



b(l) +
�

j∈N (i)

1

√
|N (i)|

�

�

�N (j)
�

�

h
(l)
j W (l)





derives knowledge from training data with fully anno-
tated labels [30]. However, acquiring accurate anno-
tated data is sometimes difficult for certain tasks such as 
chemical compound properties prediction. On one hand, 
there are tens of thousands known chemical compounds 
that exist in nature, and even more artificial chemi-
cal compounds are being produced every year. On the 
other hand, each annotation requires labor-intensive and 
expensive procedure from compound synthesis to meas-
urement. Consequently, a significant amount of mol-
ecules are not properly labelled while some labels may 
subject to experimental errors. To learn from incom-
pletely annotated data, semi-supervised learning method 
is more suitable [31].

In SSL, it is assumed that the label function is smooth 
in high-density areas, so data points located in the same 
area should share the same label. Based on this smooth-
ness assumption, even unlabelled data can be exploited in 
the learning process. Here, the main idea is to build clas-
sification models that are robust to local perturbations 
in the input data. When the input data is perturbed with 
a small amount of noise, the prediction results for the 
perturbed data and original data should be similar [32]. 
Since this consistency in predictions does not depend on 
the data labels, therefore unlabelled data can be exploited 
in the training process to enhance the prediction consist-
ency of the model.

Earlier SSL models that used this consistency regu-
larization, such as the Ŵ-model [33], assigned two roles 
(teacher and student) to the same model. With the role 
of student, the model learns based on labeled data. With 
the teacher role, the model generates targets for unla-
beled data, which are then used by itself as a student for 
consistency learning. However, at the beginning of train-
ing, the generated targets for unlabeled data are most 
likely incorrect. The consistency cost for unlabeled data 
outweighs the classification cost for labeled data at the 
beginning of training, so the model cannot learn any new 
information from the training process [34]. One way to 
solve this problem is to carefully select or update the 
teacher model instead of sharing the same model with 
the student model. Following this idea, the �-model and 
Temporal Ensembling model were proposed in 2017 [35].

In each training epoch of the �-model, the same unla-
beled data are predicted twice with different roles (stu-
dent and teacher). Since data perturbations and dropout 
methods are implemented in each prediction process, 
two prediction processes will give slightly different pre-
dictions for the same data. The goal of the �-model dur-
ing the training process is to make two predictions for 
the same unlabeled data as consistent as possible. Their 
experiments show that this method can eventually make 
the teacher model make accurate targets for unlabeled 
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data [35]. However, the computational cost of this model 
is too high. The Temporal Ensembling model improves 
on the �-model by making predictions only once per 
training epoch for unlabeled data, reducing the number 
of predictions by half and nearly doubling the speed. To 
calculate the consistency cost in the Temporal Ensem-
bling model, the target of unlabeled data is generated by 
the exponential moving average (EMA) of the predictions 
for unlabeled data in previous training epochs. However, 
since each target is updated only once per epoch, the 
updating speed is too slow, which still limits the training 
speed of Temporal Ensembling model [34].

In this study, we implemented the SSL algorithm pro-
posed by Tarvainen and Valpola, called Mean Teacher 
(MT) [34]. To circumvent the limitations of the Tempo-
ral Ensembling model, the MT algorithm updates the 
internal weights of the model through the EMA strategy 
at each training step to produce a more accurate model, 
rather than updating the targets of the unlabeled data at 
each training epoch. During training process, this algo-
rithm requires two models with the same architecture, 
namely the student model and the teacher model. In 
each training step, the student model updates its internal 
weights based on the classification loss on the labeled data 
and the consistency loss between the two models on the 
unlabeled data. After the student model is updated, the 
teacher model is also updated using EMA strategy defined 
in Equation  4 [31, 34]. Previous studies have demon-
strated that this kind of self-ensembling framework could 
bring improvements to classification models [34, 35]. The 
pseudo code of this algorithm is shown below:

g(·) denotes the data perturbation function, ms(·) and 
mt(·) represent the student and teacher models respec-
tively, θ is and θ it represent the internal weights in the 
training step i, z and z̃ are the generated classification 
probabilities. Losscls and Losscon represent classification 
loss and consistency loss. wi denotes the consistency loss 
coefficient in the training step i. This consistency loss 
coefficient varies with the training steps. It is defined as 
the function e−5(1−t)2 , where t ∈ {0, 1} , represents scaled 
number of training step [34]. Update(·) is the process 
of updating the internal weights of the model through 
backpropagation.
EMA(·) is the process of updating the weights in mt 

by applying the Exponential Moving Average (EMA) of 
weights in ms where αi is the smoothing coefficient. The 
following equation defines this process mathematically:

In our implementation, we applied the Gaussian noise 
g(x) as the data perturbation method using the same 
distribution for both ms(·) and mt(·) . The cross entropy 
loss function and Mean Squared Error (MSE) are used 
to compute the classification loss and consistency loss, 
respectively. The GCN network is optimized using the 
Adam optimizer [36], which is the optimizer chosen in 
the original implementation of MT [34]. Although both 
the well-trained teacher model and the student model 
can be used for prediction, previous studies have demon-
strated that the teacher model is more accurate than the 
student model [31, 34]. Therefore, the teacher model is 
used as the final classification model.

(4)θ it = αiθ
i−1
t + (1− αi)θ

i
s

Algorithm 1: Pseudo code of the Mean Teacher (MT) algorithm
Data: labeled training dataset L, unlabeled training dataset U

1 repeat
2 for x ∈ L+ U do
3 z ← ms(g(x), θi−1

s );
4 z̃ ← mt(g(x), θi−1

t );
5 if x ∈ L then
6 Losscls = CrossEntropy(z, label);
7 end
8 Losscon = MSE(z, z̃);
9 Loss = wi × Losscon + Losscls;

10 θis ← Update(Loss, θi−1
s );

11 θit ← EMA(θis, θ
i−1
t , αi);

12 end

13 until end condition is met ;
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Datasets
For semi-supervised learning, both labeled (compounds 
with toxicity information) and unlabeled (compounds 
without toxicity information) data are required. In this 
study, the Tox21 dataset from MoleculeNet [37] is used 
as the labeled data. The Tox21 challenge is a community-
wide compound toxicity prediction competition in 2014. 
Since then, the Tox21 dataset has been widely used as 
the benchmark dataset for evaluating toxicity prediction 
models. It consists of 12 endpoints, including 7 nuclear 
receptor signals (NR-AR, NR-AhR, NR-AR-LBD, NR-ER, 
NR-ER-LBD, NR-Aromatase, NR-PPAR-gamma) and 5 
stress response indicators (SR-ARE, SR-ATAD5, SR-HSE, 
SR-MMP, SR-p53). In this dataset, each compound is 
expressed in Simplified Molecular Input Line Entry Spec-
ification (SMILES) format and the binary labels indicate 
whether the compound is toxic to a specific toxicological 
endpoint. In total, the Tox21 dataset include 7831 com-
pounds and 12 different endpoints. It should be noted 
that not all compounds have all endpoint labels; the 
missing endpoint label means that the toxicology effect 
toward this endpoint is unknown. For unlabeled data, 
other chemical compound datasets were sought from the 
MoleculeNet website, including ClinTox, SIDER, Tox-
Cast, and HIV datasets [37]. All the label information in 
these datasets have been removed. In addition, duplicate 
molecules between these datasets and the Tox21 dataset 
have also been removed. In total, 50527 compounds were 
used as unlabeled data. Table 1 shows the details of the 
datasets used in this study.

For each labeled dataset, we follow the conven-
tional dataset splitting rule with the splitting ratios of 
0.8:0.1:0.1 to divide the dataset into training, valida-
tion and test sets. Training set is used for the training 
process, validation set for the hyperparameter tuning 

process and the test set is to measure the generaliza-
tion performance. The most commonly used splitting 
method is random splitting. However, it is not always 
suitable for molecular data because random splitting 
cannot guarantee that the training and test sets con-
tain diverse and representative data samples [37, 38]. In 
order to overcome the problem of data bias, we adopted 
a scaffold splitting method. It splits the dataset accord-
ing to the two-dimensional structural framework of the 
molecule [39, 40] and then assign structurally different 
molecules into different subsets [37]. In this way, both 
the training set and the test set contain a good propor-
tion of data samples scattered in the molecular space 
of the dataset, and we can expect that the performance 
of the model measured on this test set is closer to its 
actual performance on new data.

As mentioned above, an undirected graph can be 
described by two matrices, namely the signal (feature) 
matrix H and the adjacency matrix A. In this study, we 
used the molecule-graph conversion tool from Deep 
Graph Library (DGL) [41] to convert molecules from 
SMILES to graphs. For each molecule, the connectivity 
of atoms is stored in the adjacency matrix and the phys-
icochemical properties of each atom (node features) 
are encoded into a feature matrix in binary or numeri-
cal form. Since the DGL conversion tool provides eight 
default atom features, as listed in Table  2, the dimen-
sion of each node feature matrix is 1× 74 . Therefore, 
for a molecule with N atoms, the conversion will gen-
erate one adjacency matrix of dimension N × N  and 
one feature matrix of dimension N × 74 . This graph 
conversion process is depicted in Fig. 1. After this step, 
the graph-based molecular data can be learned by the 
graph convolutional neural network.

Table 1  The labeled compound toxicity datasets for 12 toxicological endpoints and the unlabeled dataset

Endpoint Compounds(labeled) Training set Validation set Test set

NR-AhR 6549 5239 655 655

NR-AR-LBD 6758 5406 676 676

NR-AR 7265 5812 726 727

NR-Aromatase 5821 4656 582 583

NR-ER-LBD 6955 5564 695 696

NR-ER 6193 4954 619 620

NR-PPAR-gamma 6450 5160 645 645

SR-ARE 5832 4665 583 584

SR-ATAD5 7072 5657 707 708

SR-HSE 6467 5173 647 647

SR-MMP 5810 4648 581 581

SR-p53 6774 5419 677 678

Unlabeled data 50527 – – –



Page 6 of 16Chen et al. Journal of Cheminformatics           (2021) 13:93 

Model architecture and hyperparameters selection
The architecture of our GCN model consists of two 
parts, an encoder and a classifier. The encoder extracts 
and updates node representations through several graph 
convolutional layers (Graph Conv). In addition, there is 
a dropout layer after each Graph Conv layer to provide 
additional noise to the molecular representations [31, 

Fig. 1  The SSL-GCN model for compound toxicity prediction. Molecular compounds are converted into graphs of nodes and connections. The 
GCN model architecture is composed of two stacked layers of graph convolutional layer, dropout, and batch normalization layer. All signals are 
summarized by the max pooling layer and fed into the multilayer perceptron network to generate the final output. The teacher and student GCN 
models are updated using the MT algorithm

34]. The last layer of the encoder merges all nodes fea-
tures into a tensor by using max-pooling and weighted 
sum operations. This tensor is the learned representation 
of the input molecule. The classifier is to compute the 
final prediction. We used the classifier provided in DGL 
[41] which contains two layers perceptron (MLP) with a 
dropout layer and a batch normalization layer.
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In order to select the best hyperparameters for these 
models, Bayesian optimization algorithm [42] is used 
to search the hyperparameter space, and the maximum 
number of trials is 32. In each trial, the algorithm selects 
a set of candidate hyperparameters and initializes the 
model. Then, model training and validation are carried 
out iteratively until the early stopping condition of 30 
epochs is met. After all trials are completed, a set of can-
didate hyperparameters with the best validation metric 
(ROC-AUC) is selected as the default hyperparameters 
for the following experiments.

Since the toxicity dataset is highly imbalanced, with an 
average toxic/non-toxic data ratio of about 1:17, the area 
under the Receiver Characteristic Operator curve (ROC-
AUC) is used as the main metric in the hyperparameter 
selection process (practically, to decide for early stop-
ping) and the final model evaluation. The hyperparam-
eters with the best validation performance are selected to 
construct the optimal toxicity prediction models. Finally, 
the generalization performance of these models are esti-
mated using the test set.

Implementation detail
In this study, all implementations and experiments are 
carried out in an environment with following libraries/
software: Python 3.7.9, Anaconda 4.7.10, Scikit-learn 
0.23.2, RDKit v2018.09.3.0. We used Pytorch 1.7.0 with 
CUDA 10.0 as the basic machine learning framework. 
The GCN model is implemented using DGL 0.5.6 and 
its supplementary package DGL-LifeSci 0.2.6 [41] (avail-
able on GitHub, DGL [43], DGL-LifeSci [44]). The Bayes-
ian Optimization process for hyperparameter selection 
is implemented using Hyperopt 0.2.5 [42] (available 
on GitHub [45]). We also used DeepChem 2.5.0 [46] to 
generate the benchmark scores of other state-of-the-art 
models on the Tox21 dataset (available on GitHub [47]). 
The original source code for the Mean Teacher(MT) 
algorithm [34] can be accessed via its GitHub repository 
[48].

Results
All experiments were repeated five times to observe the 
variability of the results and obtain an accurate meas-
ure of model performance through the average ROC-
AUC score. The complete record of all experiments can 
be found in the Additional file 1.

Performance of conventional machine learning (ML) 
methods
To establish the baseline performance, several com-
monly used ML algorithms, namely K-Nearest Neigh-
bor (KNN), Neural Network (NN), Random Forest 
(RF), Support Vector Machine (SVM) and eXtreme 
Gradient Boosting (XGBoost) were tested. The com-
pounds were encoded using the Extended Connectivity 
Fingerprints (ECFP4), which is a circular topological 
fingerprint designed for molecular characterization, 
similarity searching, and structure-activity modeling 
[49]. The encoding was generated using the RDKit 
library. In total, 60 different ML models (12 predic-
tion tasks × 5 types of ML algorithms) were trained and 
optimized using the training and validation sets. Sub-
sequently, the optimal models were tested on the test 
set. The test performance of these conventional mod-
els on the 12 toxicity prediction tasks are presented 
in Table 3. Each experiment was repeated 5 times; the 
average ROC-AUC score and the standard deviation 
(std) were reported. In all prediction tasks, the ROC-
AUC scores range between 0.5127 and 0.8287. In cer-
tain cases (KNN, SVM, and XGBoost), we observed 
that the same optimal models were obtained in all rep-
licate experiments such that the ROC-AUC scores are 
the same (std = 0). Overall, RF, XGBoost, and SVM 
generated the best models for 5, 4, 3 of the prediction 
tasks, respectively. The average ROC-AUC score of the 
best performing conventional ML models of all tasks is 
0.71.

Table 2  Atom features provided by the molecule-graph conversion tool from Deep Graph Library

No. Description No. of bits Form

1 One hot encoding of the atom type 1-43 Binary

2 One hot encoding of the atom degree 44-54 Binary

3 One hot encoding of the number of implicit Hs on the atom 55-61 Binary

4 Formal charge of the atom 62 Numerical

5 Number of radical electrons of the atom 63 Numerical

6 One hot encoding of the atom hybridization 64-68 Binary

7 Whether the atom is aromatic 69 Numerical

8 One hot encoding of the number of total Hs on the atom 70-74 Binary
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Performance of supervised learning GCN (SL‑GCN)
Having established the baseline performance of the 
traditional ML models in toxicity prediction, we went 
on to test the GCN models for the 12 prediction tasks. 
Similar to other ML models above, the GCN mod-
els were trained using supervised learning and opti-
mized by the Bayesian optimization algorithm, hence 
the name SL-GCN. In Fig.  2, the ROC curves of the 
SL-GCN models on the test set prediction are plotted 
against other ML models, and the 5-repeated average 
of the ROC-AUC scores are tabulated in Table  4. The 
results show that, while the SL-GCN models perform 
similarly to the best conventional ML models in the 
majority of the twelve toxicity prediction tasks, they 
improve in four of the tasks, including NR-ER, SR-ARE, 
SR-HSE, and SR-MMP, while they perform worse in 
three of the tasks, including NR-AR-LBD, NR-PPAR-
gamma, SR-p53. 

Performance of semi‑supervised learning GCN (SSL‑GCN)
The MT technique employed in this study necessi-
tates the use of two models with the same architec-
ture, one for mt and one for ms . Therefore, we used 
the hyperparameters obtained from the SL-GCN 
models as the initial parameters to train SSL-GCN. 
As shown in the previous study [34], the amount of 
unlabeled data in the training process can affect the 
final model performance. To investigate this impact 
on the performance of the SSL-GCN models, we ran 
numerous trials with varying amounts of unlabeled 
data. We define the unlabeled-to-labeled data ratio 
as Ru ∈ {0.5, 1.0, 2.0, 3.0, 4.0} . So, when Ru = 0.5 , we 
randomly select a portion of unlabeled data from the 

entire unlabeled data set to participate in the semi-
supervised learning process, and the amount of this 
portion of unlabeled data is only half of the labeled 
data. Due to significant increase in training time, a 
large Ru , such as > 4.0 , were not considered. Table  4 
shows the test results of the optimized SSL-GCN mod-
els for the 12 toxicity prediction tasks, as well as a 
comparison of the ROC curves in Fig. 3.

As shown in Table  4, SSL improves the predictive 
power of the GCN models when sufficient amount of 
unlabeled data is included in the training. SSL-GCN 
with Ru of 0.5 improves the ROC-AUC score in 10 of 
the 12 prediction tasks, while only the ROC-AUC 
scores of two tasks are somewhat reduced. When the 
SSL-GCN models are trained with additional unlabeled 
data ( Ru = 1.0 to 4.0) , they always outperform their SL-
GCN counterparts in terms of AUC score. Nonethe-
less, the best Ru for each prediction task is different. 
SSL-GCN produces 4 optimal models when Ru = 2.0 ; 3 
optimal models when Ru = 4.0 ; 2 optimal models when 
Ru = 0.5 , and 1 optimal model when Ru = 1.0 . As a 
result, the best Ru varies depending on the prediction 
task at hand. The rates of performance improvement in 
terms of ROC-AUC for different task range from 1% to 
13%. Finally, Fig. 4 compares the best CM, SL-GCN and 
SSL-GCN models. As can be clearly seen, SSL-GCN 
can produce models with greater predictive potential 
than CM and SL-GCN in all toxicity prediction tasks.

As a summary, the comparative study of the SSL-
GCN models with varying Ru values suggests that when 
training with unlabeled data, the ratio of unlabeled and 
labeled data should be treated as a hyperparameter in 
order to obtain the optimal model.

Table 3  The average test performance of conventional ML models on the 12 prediction tasks in 5 repeated experiments

The bold number denotes the best result among all conventional ML models in the corresponding task

Tasks KNN NN RF SVM XGBoost

AUC​ Std. AUC​ Std. AUC​ Std. AUC​ Std. AUC​ Std.

NR-AR-LBD 0.6955 – 0.6671 0.0244 0.7323 0.0267 0.6795 – 0.6784 –

NR-AR 0.6527 – 0.6806 0.0088 0.6836 0.0266 0.7193 – 0.6818 –

NR-AhR 0.7639 – 0.7628 0.0177 0.8243 0.0074 0.7794 – 0.8287 –

NR-Aromatase 0.5576 – 0.5127 0.0772 0.6900 0.0092 0.6873 – 0.7106 –

NR-ER-LBD 0.6191 – 0.5387 0.1171 0.6169 0.0300 0.6078 – 0.6250 –

NR-ER 0.6597 – 0.6549 0.0162 0.6316 0.0080 0.6126 – 0.6745 –

NR-PPAR-gamma 0.6182 – 0.5558 0.0736 0.7135 0.0258 0.6454 – 0.6414 –

SR-ARE 0.6366 – 0.5656 0.0251 0.6603 0.0018 0.6843 – 0.6640 –

SR-ATAD5 0.5866 – 0.6240 0.0537 0.6928 0.0189 0.6546 – 0.6841 –

SR-HSE 0.6574 – 0.6143 0.0222 0.6852 0.0131 0.6858 – 0.6647 –

SR-MMP 0.7057 – 0.6551 0.0612 0.7818 0.0065 0.7794 – 0.7656 –

SR-p53 0.6778 – 0.5963 0.0075 0.7263 0.0130 0.7051 – 0.6942 –
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Case study: how the similarity between unlabeled 
and labeled data affects the semi‑supervised learning 
process?
In the previous section, we showed that semi-super-
vised learning algorithms can improve the performance 
of our GCN models compared to models trained with 
purely supervised algorithm. However, we only studied 
the effect of unlabeled data ration Ru on the SSL algo-
rithm. Here, we will further investigate how the simi-
larity between unlabeled and labeled data affects the 
performance of SSL-GCN model.

To define the similarity between unlabeled data 
and labeled dataset, we used the k-nearest neighbors 
(KNN) method proposed by Tropsha et al. [50, 51] This 
method are been widely used to measure the similar-
ity between known and unknown chemical compounds 
using different similarity cutoff, Cs , which is defined by 
following equation 5.

(5)Cs(Z) =< d > +Zσ

where < d > denotes the average of similarity scores of 
all instances in labeled data set, σ denotes the standard 
deviation of these similarity scores. Z is a self-defined 
parameter to control the similarity cutoff Cs , which can 
help us determine the level of similarity. Next, we used 
the average similarity score SSi between each unlabeled 
instance i and its k nearest neighbors in the labeled data-
set to evaluate how similar each unlabeled instance is 
to the labeled dataset. In this study, k = 5 and we used 
RDKit to calculate the most commonly used Tanimoto 
(Jaccard) distance as similarity score. To properly define 
the level of similarity, we first counted the distribution 
of SSi in 12 similarity domains defined by different cutoff 
values Cs . The Z of these cutoff values range from − 2 to 
3.5 with a step size of 0.5. The detail of the distribution 
can be found in the Additional file 1: Figure S4.

To shorten the experiment time and to ensure that 
there is enough unlabeled data at each similarity level to 
support the semi-supervised learning process, we reor-
ganized the above 12 similarity domains into 3 similarity 

Fig. 2  ROC curves of conventional ML models and SL-GCN models. The comparison of ROC curves between conventional ML models (black line) 
and SL-GCN models (red line) on 12 toxicity prediction tasks. Additional information of the ROC curves are provided in the Additional file 1
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domains based on the distribution, namely close, normal, 
and far. For one unlabeled instance i with similarity score 
SSi , SSi ≤ Cs(Z = 0) means i belongs to close domain; 
Cs(Z = 0) < SSi ≤ Cs(Z = 1) means it belongs to nor-
mal domain; Cs(Z = 1) < SSi represents i belongs to far 
domain. Based on three similarity domains, we divided 
the entire unlabeled dataset into three subsets with cor-
responding similarity level. The following Table  5 pre-
sents the detail of these unlabeled subsets.

Here, we used these newly generated subsets to train 
several SSL-GCN models for comparison. We adopted 
the same experimental procedure (repeated 5 times) 
and optimal hyperparameter settings as in the previous 
section to facilitate performance comparison. The aver-
age ROC-AUC scores of these SSL-GCN models on 
the 12 test sets can be found in Table 6. The bold num-
ber denotes the best result among all models (all, close, 
normal, far) in the corresponding task, the underlined 

number represents only the best result among mod-
els using different similarity levels of unlabeled subsets 
(close, normal, far).

As shown in Table 6, the optimal model for 7 tasks still 
belongs to the model trained on the entire unlabeled 
dataset, SSL-GCN(all). For the remaining 5 tasks, the 
optimal model for 3 tasks (NR-ER, SR-ARE, SR-HSE) was 
trained with the close subset, and only for 2 tasks (NR-
AR-LBD, NR-Aromatase) the optimal model was trained 
with the far subset. However, the performance improve-
ment of the SSL-GCN model on these 5 tasks is slight, 
ranging from 0.0011 to 0.0080, suggesting that the use of 
close subset and far subset in the SSL process had a lim-
ited impact on these models. On the other hand, the use 
of these similarity-based subsets leads to performance 
degradation in 7 tasks, with the largest degradation 
occurring in the NR-AR task, where the average AUC 
value decreased by 0.0616.

Table 4  The average test performance of SSL-GCN models with various unlabeled data ratio ( Ru in brackets) on the 12 prediction tasks 
in 5 repeated experiments. For comparison, the results of the SL-GCN models are shown

The bold number denotes the best result among all SSL-GCN models with various unlabeled data ratio in the corresponding task

Tasks SL-GCN SSL-GCN (0.5) SSL-GCN (1.0)

AUC​ Std. AUC​ Std. AUC​ Std.

NR-AR-LBD 0.6783 0.0269 0.7417 0.0105 0.7333 0.0401

NR-AR 0.7157 0.0367 0.7550 0.0483 0.7858 0.0357

NR-AhR 0.8260 0.0055 0.8161 0.0121 0.8295 0.0129

NR-Aromatase 0.7092 0.0167 0.7202 0.0057 0.7306 0.0156

NR-ER-LBD 0.6340 0.0161 0.6623 0.0330 0.6794 0.0411

NR-ER 0.6899 0.0160 0.7188 0.0196 0.7114 0.0179

NR-PPAR-gamma 0.6753 0.0278 0.7267 0.0210 0.7614 0.0212

SR-ARE 0.7134 0.0137 0.7241 0.0065 0.7288 0.0063

SR-ATAD5 0.6850 0.0223 0.7119 0.0080 0.7061 0.0245

SR-HSE 0.7644 0.0096 0.7636 0.0239 0.7678 0.0080

SR-MMP 0.7988 0.0066 0.8120 0.0075 0.8035 0.0061

SR-p53 0.6970 0.0253 0.7291 0.0114 0.7401 0.0203

Tasks SSL-GCN (2.0) SSL-GCN (3.0) SSL-GCN (4.0)

AUC​ Std. AUC​ Std. AUC​ Std.

NR-AR-LBD 0.7647 0.0279 0.7377 0.0145 0.7477 0.0135

NR-AR 0.7512 0.0358 0.7412 0.0659 0.7967 0.0251

NR-AhR 0.8287 0.0072 0.8303 0.0055 0.8224 0.0090

NR-Aromatase 0.7232 0.0040 0.7287 0.0082 0.7337 0.0057

NR-ER-LBD 0.6772 0.0161 0.6662 0.0250 0.6870 0.0282

NR-ER 0.7039 0.0124 0.7113 0.0083 0.7166 0.0137

NR-PPAR-gamma 0.7491 0.0201 0.7429 0.0177 0.7456 0.0223

SR-ARE 0.7297 0.0080 0.7277 0.0067 0.7243 0.0114

SR-ATAD5 0.7096 0.0139 0.7175 0.0143 0.7077 0.0162

SR-HSE 0.7822 0.0097 0.7731 0.0098 0.7700 0.0066

SR-MMP 0.8100 0.0033 0.8031 0.0088 0.8081 0.0078

SR-p53 0.7518 0.0198 0.7359 0.0147 0.7434 0.0126
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Fig. 3  ROC curves of best SSL-GCN, SL-GCN, and CM models. The comparison of ROC curves between the best conventional ML models (CM, black 
line), SL-GCN models (blue line), and SSL-GCN models with the best Ru (red line) on 12 toxicity prediction tasks. Additional information on the ROC 
curves can be found in the Additional file 1

Fig. 4  Comparison of AUC scores between SL-GCN, SSL-GCN and CM models Comparison of the best models from conventional methods (CM), 
SL-GCN, and the SSL-GCN on twelve toxicity prediction tasks. The mean and standard deviation are obtained from the 5-repeat experiments
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From the perspective of similarity between labeled 
and unlabeled data, models trained with the close sub-
set tend to perform better than models trained with 
normal and far subsets. After excluding the perfor-
mance of SSL-GCN(all) models, 5 SSL-GCN(close) mod-
els, 3 SSL-GCN(normal) models, and 3 SSL-GCN(far) 
models achieved optimal performance on the corre-
sponding task. In addition, the model SSL-GCN(close) 
outperformed the SSL-GCN(all) model on 3 tasks (NR-
ER, SR-ARE, SR-HSE), while this number is 0 for SSL-
GCN(normal) model and 2 for SSL-GCN(far) model. 
Therefore, the performance of SSL-GCN(normal) is the 
worst among these three types of models; the overall 

scores of SSL-GCN(near), SSL-GCN(normal), and SSL-
GCN(far) on 12 tasks are 0.7417, 0.7388, and 0.7450 
respectively, which also indicates this fact.

There are several reasons that lead to this result. First, 
using unlabeled data in the close subset that is similar 
to the labeled data allows the semi-supervised learn-
ing model to make more accurate predictions about 
unlabeled data in the early training phase, allowing the 
model to more accurately generate and update the loss 
in the early training phase. This enriches the informa-
tion learned by the model and results in the SSL process 
generating a better model. Second, using unlabeled data 
that is dissimilar to the labeled data (far subset) provides 

Table 5  The subsets of unlabeled toxicity compounds for 12 toxicological endpoints with varying levels of similarity to the 
corresponding labeled dataset

Endpoint Compounds(close) Compounds(normal) Compounds(far) Total

NR-AhR 12116 20416 17995 50527

NR-AR-LBD 11765 20379 18383 50527

NR-AR 12471 19857 18199 50527

NR-Aromatase 11658 20764 18105 50527

NR-ER-LBD 11930 20140 18457 50527

NR-ER 11868 20527 18132 50527

NR-PPAR-gamma 11527 20797 18203 50527

SR-ARE 11659 21301 17567 50527

SR-ATAD5 12309 19875 18343 50527

SR-HSE 12534 20640 17353 50527

SR-MMP 11552 21325 17650 50527

SR-p53 12239 19991 18297 50527

Table 6  The average test performance of the SSL-GCN models with different similarity levels of unlabeled subsets (close, normal, far) 
on the 12 prediction tasks in 5 repeated experiments

For comparison, the best results of the SSL-GCN models trained with the entire unlabeled dataset (all) are shown. The complete test performance can be found in the 
Additional file 1

The bold number denotes the best result among all models (all, close, normal, far) in the corresponding task, the underlined number represents only the best result 
among models using different similarity levels of unlabeled subsets (close, normal, far)

Tasks SSL-GCN (all) SSL-GCN (close) SSL-GCN (normal) SSL-GCN (far)

AUC​ Std AUC​ Std AUC​ Std AUC​ Std

NR-AR-LBD 0.7647 0.0279 0.7353 0.0353 0.7410 0.0210 0.7726 0.0242

NR-AR 0.7967 0.0251 0.7398 0.0594 0.7389 0.0401 0.7351 0.0357

NR-AhR 0.8303 0.0055 0.8261 0.0076 0.8292 0.0080 0.8278 0.0055

NR-Aromatase 0.7337 0.0057 0.7318 0.0082 0.7222 0.0131 0.7382 0.0145

NR-ER-LBD 0.6870 0.0282 0.6731 0.0261 0.6532 0.0207 0.6609 0.0253

NR-ER 0.7188 0.0196 0.7214 0.0087 0.7108 0.0133 0.7190 0.0107

NR-PPAR-gamma 0.7614 0.0212 0.7435 0.0493 0.7538 0.0164 0.7493 0.0171

SR-ARE 0.7297 0.0080 0.7308 0.0066 0.7099 0.0118 0.7172 0.0081

SR-ATAD5 0.7175 0.0143 0.6896 0.0261 0.6855 0.0295 0.7095 0.0113

SR-HSE 0.7822 0.0097 0.7833 0.0116 0.7700 0.0071 0.7745 0.0075

SR-MMP 0.8120 0.0075 0.8096 0.0097 0.8099 0.0091 0.8080 0.0091

SR-p53 0.7518 0.0198 0.7159 0.0208 0.7417 0.0129 0.7279 0.0113
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additional information for the SSL-GCN model during 
the semi-supervised learning process. This may improve 
the generalization ability of the model, which could 
increase the performance of the model on unseen data. 
In summary, we believe that using the entire unlabeled 
dataset and labeled data to train the SSL-GCN model is 
still the best way to generate the optimal model since the 
whole unlabeled dataset mixes unlabeled data with differ-
ent similarities to labeled data.

Performance comparison of SSL‑GCN to the built‑in 
DeepChem methods
The DeepChem package [46] provides some built-in ML 
methods that can be readily used to generate predictive 
models for different computational chemistry challenges. 
Making use of the DeepChem-integrated MoleculeNet 
datasets [37], we performed experiments to evaluate the 
performances of the DeepChem models on the Tox21 
dataset. The dataset was splitted by scaffold splitting 
method and all models were initialized with the hyper-
parameters provided by the DeepChem package. Follow-
ing the previous experimental procedure, we conducted 
the training, validation and test processes, and repeated 
them five times for each model. Here, we benchmark our 
method by comparing the performance of the SL-GCN 
and SSL-GCN models in the test set to these DeepChem 
models in terms of the average ROC-AUC score.

As shown in Table  7, among the 8 DeepChem mod-
els, the best one is kernelsvm, with an overall score of 
0.7, whereas both our models SL-GCN and SSL-GCN 
beat the best DeepChem model with overall scores of 
0.7156 (2% improvement) and 0.7571 (8% improvement), 
respectively. It should be mentioned that while the graph-
conv model utilizes similar graph convolution technique 

to our method but its use of different model architec-
ture and molecular feature rendering their model less 
effective.

Discussion and conclusions
In this work, we attempt to improve compound toxic-
ity prediction using graph convolutional neural network 
(GCN) and semi-supervised learning (SSL). We choose 
Mean Teacher [34] as the SSL algorithm to improve the 
prediction performance of GCN on 12 toxicity prediction 
tasks from the Tox21 dataset. Meanwhile, we hope to 
answer two questions about predictive modeling in this 
research. First, is GCN superior to other more commonly 
used ML methods? Second, is unlabeled data advanta-
geous for model training?

To this end, we have designed and implemented a GCN 
model for chemical compounds based on simple physic-
ochemical properties of atoms. Unlike other commonly 
used chemical fingerprints that represent an entire com-
pound in a one-dimensional feature vector for learning, 
GCN encodes it into a network of features, where the 
network resembles bond connectivity in the molecule. 
Given that structural diversity of a dataset is one of the 
elements that affect the prediction performance and 
generalizability of a model, we have used the scaffold 
splitting approach to divide the dataset into training, vali-
dation, and test sets for each prediction task. The Bayes-
ian optimization technique has been used to speed up the 
process of tuning hyperparameters.

Now, with the GCN model in place, we have trained 
and optimized the supervised learning SL-GCN mod-
els and the semi-supervised learning SSL-GCN mod-
els on 12 toxicity prediction tasks. To answer the first 
question, is GCN superior to other commonly used 
ML methods? We have trained and optimized toxicity 

Table 7  Comparison of our GCN models (SL-GCN and SSL-GCN) and the models constructed using the DeepChem built-in ML 
methods

The overall score is the average ROC-AUC score in predicting the 12 prediction tasks in the test set. The experiments were repeated 5 times

The bold number denotes the best overall score among all models

Model Description Overall score Std. Refs.

logreg Logistic regression model 0.6397 – [52]

tf Deep neural network 0.6582 0.0097 [37]

tf-robust Deep neural network (with bypass layers) 0.6825 0.0056 [53]

rf Random forest model 0.6618 0.0066 [52]

kernelsvm Kernel SVM model 0.7000 – [52]

graphconv Graph convolutional model 0.6943 0.0043 [54]

irv Influence relevance voting (IRV) classifier 0.6853 – [55]

xgb Xgboost classification model 0.6908 0.0039 [56]

SL-GCN Supervised GCN model 0.7156 0.0068 This study

SSL-GCN Semi-supervised GCN model 0.7571 0.0084 This study
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prediction models using 5 conventional ML methods 
in the supervised learning setting. Our comparative 
study has revealed that out of the 12 prediction tasks, 5 
tasks are better predicted by SL-GCN, 2 tasks are simi-
larly predicted, and 5 tasks are worse by SL-GCN; and 
the “better” models are not improved by a large margin. 
Therefore, our experimental result suggests that in the 
same supervised learning setting, GCN is not superior to 
conventional ML methods. The answer to this question 
is a bit disappointing though, as a GCN model is much 
more complex and expensive to train than the conven-
tional models.

We believe that the bottleneck to improvement is the 
limitation of available data. Instead of adding more anno-
tated data, which is not always possible or easy, we turn 
our attention to unlabeled data. Here, we have applied the 
SSL algorithm, called Mean Teacher (MT), to enhance 
the performance of the GCN model. Encouragingly, SSL-
GCN models consistently outperform their SL-GCN 
counterparts, with the ROC-AUC scores improving 
between 1 and 13%. Nonetheless, the amount of unlabeled 
data required to boost performance has to be determined 
on a case-by-case basis. We have found that for the pre-
diction of various toxicological endpoints, the appropriate 
ratios of unlabel-to-label data range from 1 to 4. Larger 
ratios may improve further, but were not investigated 
in this study due to limited computational resources. 
Finally, a comparative analysis of our models with the 
models from the DeepChem library was done. The find-
ings are that the SL-GCN models are 2 to 12% better than 
the DeepChem models in terms of ROC-AUC, while the 
SSL-GCN models are 8 to 18% better. Based on the above 
results, our answer to the second question, “Is unlabeled 
data advantageous for model training?”, is therefore yes, 
and the amount of unlabeled  data required to optimize 
the model is subject to each study.

In many bioinformatics tasks, the size of an annotated 
dataset is often limited, which complicates the imple-
mentation and limits the performance of many ML algo-
rithms. The result of this study suggests that SSL could 
be applied to other property prediction tasks such as 
adsorption/distribution/metabolism/excretion (ADME), 
solubility, binding activity, etc., to improve the predictive 
ability of model by using unannotated data.

This study does, however, have some limitations that 
we must point out.

First, the toxicity of a compound is determined by sev-
eral factors such as chirality and the nature of functional 
groups. This information requires a more delicate coding 
approach to avoid information loss during graph conver-
sion. Although there are various well-designed molecular 
fingerprints or descriptors for conventional ML algo-
rithms that can be used, there is no specific one that is 

suitable for GCN. Therefore, we have to use the mole-
cule-graph conversion tool from Deep Graph Library 
(DGL) to convert molecules from SMILES to graphs. 
However, the graphs converted by this tool only include 
few basic molecular physicochemical properties. Due to 
the limited computational power, the running time of the 
graph convolution layers using the current feature matrix 
was already very high and adding additional features 
will certainly cost more time during the model develop-
ment process. In our future study, it becomes particularly 
important to increase the diversity of molecular informa-
tion contained in the feature matrix while limiting the 
size of the matrix.

Second, the interpretability of our graph convolution 
model has not been explored. Most researchers consider 
ML methods with neural networks as a black box. The 
only factor that can be confirmed during the training or 
prediction process is the input data, and the prediction 
results produced by these ML models are unexplainable. 
Specifically for biomedical ML applications, this limita-
tion has been amplified. Without knowing which part of 
the compound led to the prediction result, researchers 
cannot modify the original compounds or select the com-
pounds with better structure to conduct further stud-
ies. Therefore, in the next step of our study, we will focus 
on the interpretability of the graph convolutional neural 
network.

Third, the activity cliffs problem has not yet been 
solved in this study. Activity cliffs refer to those chemi-
cal compounds that have highly similar structure but 
different or opposite chemical properties. Although the 
semi-supervised learning algorithm can use unlabeled 
data to improve the performance of our GCN model. But 
nothing comes for free, the basic assumption of the SSL 
algorithm we implemented is the smoothing assumption, 
i.e., it assumes that the label function is smooth in high-
density areas, so data points located in the same area of 
the feature space should share the same label. This fun-
damental assumption makes our model very unreliable 
in predicting molecules distributed at the edges of high 
density areas (decision boundary), where most of the 
molecules with “activity cliffs” are located. Moreover, 
there is currently no good way for QSAR models to solve 
the “activity cliff” problem, since the primary assump-
tion of the QSAR model is that similar molecular struc-
ture should lead to similar properties [57, 58]. We have 
already noted that there are some studies [58–62] that 
attempt to address this problem, and we will follow these 
studies in our future work.

Finally, our study has exploited the SSL algorithm 
that is based on the self-ensembling framework. There 
are other recently proposed SSL algorithms, such as 
Mixup [63], Interpolation Consistency Training [64], 
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ReMixMatch [65], FixMatch [66], etc. The impact of dif-
ferent SSL algorithms on the toxicity prediction needs 
further research.
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