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Abstract 

Scoring functions for the prediction of protein-ligand binding affinity have seen renewed interest in recent years 
when novel machine learning and deep learning methods started to consistently outperform classical scoring func-
tions. Here we explore the use of atomic environment vectors (AEVs) and feed-forward neural networks, the build-
ing blocks of several neural network potentials, for the prediction of protein-ligand binding affinity. The AEV-based 
scoring function, which we term AEScore, is shown to perform as well or better than other state-of-the-art scoring 
functions on binding affinity prediction, with an RMSE of 1.22 pK units and a Pearson’s correlation coefficient of 0.83 
for the CASF-2016 benchmark. However, AEScore does not perform as well in docking and virtual screening tasks, for 
which it has not been explicitly trained. Therefore, we show that the model can be combined with the classical scor-
ing function AutoDock Vina in the context of �-learning, where corrections to the AutoDock Vina scoring function are 
learned instead of the protein-ligand binding affinity itself. Combined with AutoDock Vina, �-AEScore has an RMSE of 
1.32 pK units and a Pearson’s correlation coefficient of 0.80 on the CASF-2016 benchmark, while retaining the docking 
and screening power of the underlying classical scoring function.
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Introduction
Structure-based drug discovery exploits knowledge of 
protein structures to design novel and potent compounds 
for a specific target. Protein-ligand docking is one of the 
main computational tools employed in the early stages 
of structure-based drug discovery—where more accu-
rate methods, such as free energy calculations [1, 2], are 
too time-consuming—to predict the binding mode and 
binding affinity of different ligands in a binding site [3]. 
The binding mode search is usually guided by a scoring 
function. Sometimes the scoring function has the dual 
purposes of finding the binding poses (docking) and 
predicting the protein-ligand binding affinity (scoring) 
[4], whilst at other times different scoring functions are 

used for different purposes (scoring, ranking, docking, or 
screening).

Scoring functions can be loosely assigned to four 
classes: physics-based, regression-based, knowledge-
based, or machine learning-based [5]. Many scoring 
functions belonging to the first three categories have 
been developed over the past decades [6–10]. Despite 
their successes in reproducing the binding pose, a rapid 
and accurate prediction of the protein-ligand binding 
affinity remains a very challenging task [11]. In recent 
years, machine learning and deep learning scoring func-
tions have consistently improved protein-ligand bind-
ing affinity predictions [12]. These improvements build 
on decades of quantitative structure-activity relation-
ship (QSAR) modelling, where simpler representations 
and regressors were used [13, 14]. Deep learning archi-
tectures—which are outperforming standard algorithms 
in image recognition and natural language processing 
[15–19]—are under active research, as demonstrated by 
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the large number of new scoring functions based on deep 
learning [20–26].

In this work we explore the use of a collection of feed-
forward neural networks (NNs), each computing an 
atomic contribution to the protein-ligand binding affin-
ity. We show that this architecture, combined with atom-
centred symmetry functions (ACSFs) to capture the local 
chemical environment of every atom in the protein-
ligand binding site, performs as well as or better than cur-
rent machine learning and deep learning architectures. 
This particular representation—commonly employed in 
the development of neural-network potentials (NNPs) 
[27, 28]—has the advantage of being translationally and 
rotationally invariant, unlike NN-based or CNN-based 
scoring functions that often use an order-dependent 
input vector or grid-based representations as input.

Methods
Atomic environment vectors
In order to predict the binding affinity of a ligand to a 
target of interest, we need a description of the protein-
ligand binding site that allows the key protein-ligand 
interactions to be learned. Ideally, this representation 
should depend only on the relative positions of the ligand 
and the protein—the representation should be invari-

ant under translation, rotation, and mirror operations. 
However, some machine learning and especially deep 
learning scoring functions employed in computational 
drug discovery do not satisfy such conditions: grid-based 
methods are not translationally or rotationally invariant 
and need extensive data augmentation [20], while vector-
based representations are often order-dependent.

Local representations of the atomic environment sat-
isfying the ideal properties outlined above have been 
employed with success in quantum machine learning [27, 
29–31]. In particular, the ACSFs originally introduced by 
Behler and Parrinello and further developed to build the 
Accurate NeurAl networK engINe for Molecular Ener-
gies (ANAKIN-ME or “ANI” for short) family of NNPs 
have been successful in producing accurate molecular 
properties [27, 28, 32, 33].

Here we employ the ACSFs defined for the ANI family 
of NNPs in order to represent the protein-ligand binding 
site, where protein residues with at least one atom within 
a distance d from the ligand are considered.

For each atom i of element X in the system, its chemi-
cal environment can be represented by combining 
radial ( GR

i;α,m ) and angular ( GA
i;α,β ,m ) ACSFs in a one 

dimensional vector, GX
i = {GR

i;α1,m1
, . . . ,GA

i;α1,β1,m1
, . . . }

—called the atomic environment vector (AEV). X cor-
responds to the element of the atom for which the AEV 
is being computed, while α and β denote the elements 
of the neighbours within a cutoff radius, Rc . The ACSFs 
capture the atom’s radial and angular chemical environ-
ment [28], and their locality is ensured by a cutoff func-
tion [27]:

Radial symmetry functions are given by [27, 28]:

where the index m runs over the set of parameters 
{{Rs}, {ηR}} and the summation over j runs over all the 
atoms of element α ; ηR controls the width of the radial 
Gaussian distributions, while Rs controls their radial 
shift. The angular symmetry function is defined as [28]:

where the index m runs over the set of parameters 
{{Rs}, {θs}, {ηA}, {ζ }} and the summation runs over pairs of 
atoms of elements α and β ; ηA and Rs have the same role 
of ηR and Rs in the radial symmetry function described 
above, with θs capturing different regions of the angular 
environment, while ζ controls the width of the peaks of 
the ACSF in the angular environment [28].

The AEV GX
i  of atom i of element X—composed of 

different ACSFs in a single vector—encodes the neigh-
bour-dependent local atomic environment of atom 
i of element X. This corresponds essentially to a fine-
grained and flexible atom typing, in contrast to the 
static and arbitrary atom types employed in standard 
scoring functions.

Figure  1 shows schematically the components of an 
AEV for an atom in a system composed only of the ele-
ments H, C, and O. By construction, this vector is trans-
lationally and rotationally invariant as well as invariant 
under the exchange of two atoms of the same element. 
An example calculation of ACSFs and AEVs for a simple 
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system is reported in the Supplementary Information for 
clarity.

In order to keep the size of the AEVs reasonably 
small, we restrict the parameters of GA

α,β ,m to those of 
the original Behler-Parrinello formulation: {θs} = {0,π} 
and Rs = 0 . All other parameters are the same as those 
employed in the ANI-1x NNP [28], which results in an 
AEV size of 200 (for each atom). AEVs are built using the 
AEVComputer as implemented in TorchANI 2.1 [34].

Neural network
The NN architecture is implemented using PyTorch 1.7 
[35], loosely following the original work of Behler and 
Parrinello, the ANI family of NNPs, and the TorchANI 
implementation [27, 28, 34]. It consists of ne atomic 
neural networks, where ne is the number of elements in 
the dataset. The atomic NNs are standard feed-forward 
NNs with rectified linear unit (ReLU) activation func-
tions and dropout layers. The outputs of the atomic 
NNs are then summed together in order to obtain the 
final estimate of the binding affinity.

Figure  2 shows a schematic representation of the 
model for a hypothetical system composed of two 
hydrogen atoms, one carbon atom, and one oxygen 
atom. The AEVs GX

i  corresponding to atoms of the 
same element X are propagated through the same 
atomic NNs (with the same weights). All atomic con-
tributions are summed together in order to get the final 
prediction.

The idea behind the decomposition of the binding affin-
ity into atomic contributions is essentially the one that 
has been proven useful for short-range energy decom-
position in NNPs. The negative logarithm of the binding 
affinity pK = − log10(K/c0) is proportional to the Gibbs 
free energy of binding

pK = −
1

ln(10)

�Gbind
0

RT

and therefore decomposing pK into atomic contributions 
corresponds to a decomposition of the Gibbs free energy. 
As for the total energy in NNPs, this decomposition 
allows the description of local contributions only [30], 
but it is very effective in practice—as demonstrated by 
the success of NNPs in fitting high-dimensional poten-
tial energy surfaces [27, 28, 31, 33, 36]. This decompo-
sition also appears to be very effective in generalisation 
and transferability, since it works for systems much larger 
than the ones included in the training set [28].

Fig. 1  AEV constructed using ACSFs [27, 28] (with Rs = 0 and {θs} = {0,π} for angular symmetry functions) for an atom in a system composed only 
of the elements H, C and O. The radial and angular symmetry functions, GR

α,m and GA
α,β ,m , respectively, are given for the elements α and β , and iterate 

over the parameters m. Loosely adapted from Gao et al. [34]

Fig. 2  Propagation of AEVs, GX
i
 , through atomic NNs for the four 

atoms of a hypothetical system composed of two hydrogen 
atoms, one carbon atom, and one oxygen atom. The AEVs, GX

i
 , are 

constructed for each atom i of element X as described in the main 
text and propagated through the atomic NN of the corresponding 
element (NNs with the same colors have the same weights). All 
atomic contributions are finally summed together to obtain the pK 
prediction. Loosely adapted from Smith et al. [28]
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Training and test datasets
The PDBbind dataset provides protein-ligand com-
plexes with associated experimentally determined inhi-
bition constants, Ki , dissociation constants, Kd , and 
IC50 measurements (in decreasing order of preference) 
[37, 38]. This dataset is divided into two parts: the PDB-
bind Refined set and the PDBbind General superset. The 
Refined set only contains high-quality structures with 
associated Ki or Kd values, while the General set also 
includes structures with associated IC50 values. A curated 
subset of the PDBbind Refined set is provided for com-
parative assessment of scoring functions (CASF) [39, 40].

In this work, the PDBbind 2016 Refined set is used for 
training and validation while the CASF-2013 and CASF-
2016 data sets are used for testing and comparison with 
other machine learning and deep learning models, as well 
as classical scoring functions [37–40]. The PDBbind 2016 
Refined set is randomly split into training and validation 
sets with a 90/10 ratio. Systems present in both PDBbind 
and CASF datasets are removed from the training and 
validation sets and used only for testing. This procedure 
ensures that there is no exact overlap (“hard overlap”) of 
protein-ligand complexes between the PDBbind (train-
ing/validation) and CASF (test) datasets, although some 
overlap with similar targets and ligands remains [39–41]. 
In order to assess this remaining “soft overlap” between 
training and test sets—arising from similar proteins, sim-
ilar binding sites, and similar ligands—we use the subset 
of the PDBbind 2016 dataset proposed by Su et al. [41].

A detailed analysis of the CASF-2013 and CASF-2016 
test sets—including the distribution of the protein-ligand 
binding constants and of some key properties of the 
protein-ligand complexes—is reported by Li et  al. [39] 
(CASF-2013) and Su et al. [40] (CASF-2016). In particu-
lar, the CASF-2016 dataset is composed of 57 protein 
classes each containing 5 protein-ligand complexes—
with at least 90% sequence similarity [40]. The CASF-
2013 dataset is smaller in size, with 65 protein classes 
each containing 3 protein-ligand complexes [39].

Ligand SDF or MOL2 files from the datasets were 
either converted to PDB files using OpenBabel [42] and 
parsed using MDAnalysis (for scoring and ranking) or 
parsed directly with OpenBabel’s Python bindings (dock-
ing and screening) [43–45]. Protein PDB files were dis-
carded when the element column was absent or could not 
be parsed correctly by MDAnalysis (this never occurred 
for the test set). All water molecules were removed from 
the dataset. All the systems in the PDBbind and CASF 
dataset were automatically protonated using OpenBabel 
[42], and given the size of the dataset the protonation 
state was not further assessed.

The complexity of the NN model grows quickly with 
the number of atomic species present in the dataset 
since every element requires its own atomic NN. For 
this reason, we adopted two different strategies to deal 
with metal centres: selecting only protein and ligand 
atoms (retaining protein residues with at least one atom 
within distance d from the ligand and discarding all metal 
centers), or selecting protein and ligand atoms (retain-
ing protein residues with at least one atom within dis-
tance d from the ligand) and mapping metal centers to 
a single dummy atom. Additionally, we removed the few 
selenoproteins present in the training or validation sets. 
When selecting only protein and ligand atoms, the fol-
lowing elements remained (in order of abundance for the 
ligands, see Additional file  1: Figure  S3): H, C, O, N, S, 
P, F, Cl, Br, I. This resulted in a total of 10 atomic NNs, 
one for each element. When metal centers were kept (see 
Additional file 1: Figure S4), all atoms outside of the pre-
vious list were mapped to a dummy element, X.

When “hard overlaps” with CASF-2016 were removed, 
the final training set consisted of 3377 complexes while 
the validation set consisted of 376 complexes. When 
“hard overlaps” with CASF-2013 were removed, the final 
training set consisted of 3464 complexes while the valida-
tion set consisted of 385 complexes. The CASF test sets 
are left unchanged.

Protein-ligand complexes 4O3C and 4IGT were 
removed from the PDBbind Refined Set since they con-
tain lithium, which is not supported by AutoDock Vina 
[10], the classical scoring function used as baseline in this 
work.

The advantage of mapping metal centers to a dummy 
atom is that metalloproteins, which are notoriously diffi-
cult to treat with docking and classical molecular dynam-
ics [46, 47], are supported by our method. However, our 
treatment has the drawback of considering all metal 
atoms as equivalent, irrespective of their coordination 
number. As more experimental data on metalloproteins 
becomes available, more elements could be added to the 
model (with an increased computational cost).

�‑learning
�-learning is a powerful machine learning approach 
where the model is trained to predict the corrections to 
a baseline towards the target value, instead of predict-
ing the target value itself [48]. This approach has been 
applied successfully to the prediction of molecular prop-
erties from quantum mechanical calculations as well as 
for binding affinity predictions [48–50]. In the context 
of docking scoring functions, a �-learning approach 
has the advantage of retaining the good docking power 
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of traditional methods while significantly improving the 
scoring function [49].

In this work we explored the use of a �-learning 
approach in combination with the AutoDock Vina scor-
ing function [10]. The �-AEScore scoring function is 
therefore given by:

where S is the standard AutoDock Vina score (in 
pK units) and � is the learned correction.

Consensus scoring
In order to compensate for the variability introduced 
by random weights initialization and stochastic opti-
mization, we investigated the use of consensus scoring 
in order to evaluate our models. Consensus scoring has 
been shown, in some cases, to improve performance 
across targets in structure-based virtual screening [51, 
52].

During training, a total of five models were randomly 
initialized and independently trained. Final predic-
tions were obtained as the average protein-ligand bind-
ing affinity of the models. This technique also allows the 
computation of the standard deviation associated with 
each prediction. The benefits of consensus scoring are 
analysed retrospectively below.

Software
Our implementation is based on open source software 
from the Python [53] ecosystem. This includes: Tor-
chANI 2.1 [34], PyTorch 1.7 [35], MDAnalysis 2.0-dev 
[43, 44], OpenBabel 3.1 [45, 54], NumPy 1.19 [55], SciPy 
1.5 [56], pandas 1.1 [57] , Matplotlib 3.3 [58], seaborn 
0.11 [59], scikit-learn 0.23 [60], and pytest 6.0 [61].

Results
AEScore
Hyperparameters optimization
The hyperparameters of our model—the number and size 
of layers in the elemental NNs, dropout probability, batch 
size, and protein-ligand distance, d—were optimized 
with a grid-based method and manually fine-tuned in 
order to maximize the Pearson’s correlation coefficient 
between the predicted and experimental binding affini-
ties on the validation set.

We found that a protein-ligand distance d = 3.5 Å and 
256-128-64-1 feed-forward NNs performed best when 
combined with a batch size of 64 and a dropout probabil-
ity of 25%.

Additional file  1: Table  S2 shows the performance of 
the model—with consensus scoring—on the validation 

�-AEScore = S +�

test for different values of d. Using a distance of d = 4.0 
Å does not change the performance, compared to d = 3.5 
Å. However, the larger number of protein atoms causes 
the computational time to be increased. Visual inspec-
tion of a selection of systems showed that the d = 3.5 Å 
selects the important residues in the binding site.

The model’s weights are optimized using the ADAM 
optimizer with a learning rate of 1× 10−4 and using 
PyTorch’s default parameters, β1 = 0.9 and β2 = 0.999 
[35, 62].

Dropout layers are usually not employed in NNPs, but 
our hyperparameter search shows that they increase the 
performance of our model by decreasing overfitting on 
the training set, thus improving transferability.

Scoring power
The scoring power of a scoring function measures the 
linear correlation between predicted and experimental 
binding affinities and it is usually quantified by Pear-
son’s correlation coefficient:

where y denotes experimental values, ŷ denotes predicted 
values, and �·� denotes the average over all experimental 
or predicted values.

Figure  3 shows the predictions of our model versus 
the experimental values of the binding affinity for the 
CASF-2013 and CASF-2016 benchmark data sets—
when only protein and ligand atoms are considered. 
Our model achieves an RMSE of 1.30 pK units and a 
Pearson’s correlation coefficient of 0.80 on the CASF-
2016 test set, and an RMSE of 1.46 pK units and a Pear-
son’s correlation coefficient of 0.76 on the CASF-2013 
test set. Error bars show the standard deviation of the 
predictions obtained with consensus scoring (average 
over five independently trained models).

Confidence intervals (CIs) for the correlation coef-
ficient can be obtained by bootstrapping (with 10000 
bootstrap replicates), as described in the CASF evalua-
tion [40]. The 90% CI for the Pearson’s correlation coef-
ficient for the CASF-2016 test set is [0.76, 0.83]CI 90% , 
while for the CASF-2013 test set it is [0.68, 0.81]CI 90%.

Figure 4 shows a breakdown of the Pearson’s correla-
tion coefficient (and the RMSE) for each protein class 
in the CASF-2016 benchmark data set. We see that the 
performance of AEScore is class-dependent and there 
is no clear correlation between the Pearson’s correla-
tion coefficient and the RMSE (by comparing class #1 
and class #55, for example). For the majority of targets, 
the predicted binding affinity is well correlated with the 
corresponding experimental value. Only a few classes 

r =

∑

i(ŷi − �ŷ�)(yi − �y�)
√

∑

i(ŷi − �ŷ�)2
√

∑

i(yi − �y�)2



Page 6 of 19Meli et al. J Cheminform           (2021) 13:59 

have a low correlation coefficient and two classes show 
negative correlation. The classes with negative correla-
tion are (refer to the supplementary information of Su 
et  al. [40] for the full list of classes): β-lactoglobulin 
(class 13) and queuine tRNA-ribosyltransferase (class 
40). The average and median Pearson’s correlation 

coefficients across all target classes are 0.67 and 0.82, 
respectively.

Additional file 1: Figure S5 compares per-class Pear-
son’s correlation coefficient obtained with AEScore 
(and reported in Fig.  4) using results obtained with 
GNINA [20, 21], a CNN-based scoring function. We 
see that for most classes the Pearson’s correlation coef-
ficient obtained with both methods is similar. However, 
there are some classes where the difference between 
the two methods is larger than 0.2 and in such cases 
GNINA shows a better correlation in most cases (15 
out of 21).

This protein class-dependence opens up the scope for 
protein-specific models or fine-tuning (for example using 
transfer learning) which are likely to improve per-class 
performance [63].

Consensus scoring
In the previous section we employed consensus scor-
ing—with five independently trained models—since this 
has previously been shown to improve performance [51, 
52]. A small performance boost is also obtained in our 
case, as it can be verified retrospectively.

If we consider the CASF-2016 dataset, the average cor-
relation coefficient of the five independent models is 0.77 
(minimum 0.77, maximum 0.78) while consensus scoring 
reaches 0.80—better than the best-performing individual 
model amongst the five. The same observation is true for 
the RMSE on the same test set. The average RMSE is 1.38 
pK units (minimum 1.35, maximum 1.42) while the con-
sensus scoring has a RMSE of 1.30 pK units—which is 
lower than the best-performing model amongst the five.

Implicit hydrogen atoms
To assess the impact of automatic protonation using 
OpenBabel [54] we also trained AEScore without hydro-
gen atoms for both the protein and the ligand. This 
results in the removal of one atomic NN, thus decreasing 
the number of parameters in the model.

Training the model without hydrogen atoms does not 
seem to consistently affect the performance of our model: 
we observe a small decrease in performance with the 
CASF-2013 test set and a small gain with the CASF-2016 
test set. For the CASF-2013 test set, we obtain a Pear-
son’s correlation coefficient of 0.75 ∈ [0.69, 0.80]CI 90% 
and an RMSE of 1.48 pK units while for the CASF-2016 
test set we obtain a Pearson’s correlation coefficient of 
0.81 ∈ [0.77, 0.84]CI 90% and an RMSE of 1.28 pK units.

Per-class Pearson’s correlation coefficient (and RMSE) 
for the CASF-2016 test set for the model trained without 
hydrogen atoms is shown in Additional file 1: Figure S6. 

(a) CASF-2013

(b) CASF-2016
Fig. 3  Predicted versus experimental binding affinityfor AEScore, 
expressed in pK units, when only protein and ligand atoms are 
retained
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Again, there is no clear relationship between Pearson’s 
correlation coefficient and RMSE. In this case, the aver-
age Pearson’s correlation coefficient is 0.69 while the 
median is 0.85.

Metalloproteins
When metal centers are included, they are mapped to a 
dummy element X. As we can see from Additional file 1: 
Figure S4, Zn is the most abundant metal center in our 
dataset (545 systems), followed by Mg (142 systems). All 
other metal centers appear in fewer than 60 systems.

With the metal centers mapped to a dummy ele-
ment X, we obtain a Pearson’s correlation coefficient of 
0.80 ∈ [0.76, 0.83]CI 90% and an RMSE of 1.31 pK units on 
the CASF-2016 benchmark. When hydrogen atoms are 
removed, we find a Pearson’s correlation coefficient of 
0.81 ∈ [0.77, 0.84]CI 90% and a RMSE of 1.31 pK units.

Similarity between training and test sets
As mentioned above, we removed the systems appear-
ing in the CASF-2016 and CASF-2013 benchmark 
datasets from the training sets (removing the so-called 
“hard overlap”). However, some “soft overlap”—arising 
from similar proteins, similar binding sites, and similar 
ligands—between the training and test sets remains and 
could therefore artificially inflate the results. This is a 
known problem as shown by Boyles et al. [4] and, more 
recently, by Su et al. [41] who both proposed non-redun-
dant subsets of the PDBbind refined set with decreasing 
similarity with respect to the CASF-2016 test set. Such 
non-redundant datasets allow assessing how scoring 
functions behave when the “soft overlap” between the 
training and test sets is incrementally reduced.

In the work of Su et  al. [41] the similarity between 
the training and test sets is measured by three metrics: 
similarity between protein sequences, similarity between 

ligand shapes, and similarity between binding pockets. If 
two protein-ligand complexes—one in the training set, 
the other in the test set—have all three similarity metrics 
above a given threshold they are considered redundant. 
All redundant complexes are removed from the training 
set with an iterative procedure until the remaining com-
plexes form a representative, non-redundant training set 
for the given similarity threshold [41].

Figure 5 shows the performance of our model on the 
CASF-2016 dataset when trained on the non-redun-
dant training sets proposed by Su et  al. [41], with dif-
ferent similarity thresholds (“None” indicates that only 
the “hard overlap” between training and test sets is 
removed). We see that as the overlap threshold between 
the training and test sets increases, the performance 

Fig. 4  Per-class Pearson’s correlation coefficient, with each bar color-coded by the corresponding RMSE in pK units, for the 57 classes of the 
CASF-2016 dataset

Fig. 5  Scoring power of AEScore (with and without hydrogen atoms) 
as a function of the similarity threshold between the training and 
test sets, as defined by Su et al. [41]. The raw data for the RF and DT 
scoring functions was kindly provided by Su et al. [41] upon request. 
RF and DT are respectively the best and worst performing models 
(at the 95% similarity threshold) presented in Su et al. [41] and are 
consistently outperformed by AEScore
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of our model also increases. Interestingly, a similarity 
threshold of 95% does not negatively affect our scoring 
function, in contrast with other machine learning scor-
ing functions [41]. This trend is similar to the RF model 
of Su et al. [41], which is consistently outperformed by 
our model. Other machine learning scoring functions 
evaluated by Su et  al. [41] are effectively negatively 
affected by removing structurally redundant samples 
already at high thresholds.

We also found that the model with a similarity thresh-
old of 95% (denoted AEScore95 hereafter) seems to 
perform slightly better than the model trained by only 
removing the “hard overlap”. This could be attributed 
to the removal of some inconsistencies in the training 
set, introduced by experimental errors, or simply to 
the variability of the training procedure (minibatches, 
dropouts, etc.). The AEScore95 model is our best per-
forming model on the CASF-2016 test set (Pearson’s 
correlation coefficient of 0.83 ∈ [0.79, 0.86]CI 90% , RMSE 
of 1.22 pK units) and it performs very well compared to 
other state-of-the-art scoring functions (see discussion 
of Figure 10)—although differences with other top-per-
forming methods might not be statistically significant.

Ranking power
The ranking power of a scoring function measures its 
ability to rank different ligands—in a given binding 
pose—according to their binding affinity against a par-
ticular target. The ranking power is usually measured by 
three quantities: Spearman’s (rank-)correlation coeffi-
cient, Kendall’s (rank-)correlation coefficient and the pre-
dictive index (PI) [40, 64].

Our scoring function AEScore has an average Spear-
man’s correlation coefficient of 0.64 ∈ [0.54, 0.71]CI 90% . 
This is similar to the best classical scoring function 
evaluated in the CASF-2016 [40], although it is within 
the 90% confidence interval. The same observation 

remains true for the average Kendall’s correlation coef-
ficient of 0.55 ∈ [0.47, 0.62]CI 90% and for the PI of 
0.67 ∈ [0.58, 0.73]CI 90%.

Interestingly, if hydrogen atoms are removed the rank-
ing power does not change. When hydrogen atoms are 
ignored, the Spearman’s correlation coefficient becomes 
0.63 ∈ [0.54, 0.71]CI 90% , the Kendall’s correlation coef-
ficient becomes 0.56 ∈ [0.48, 0.63]CI 90% , and the PI 
becomes 0.66 ∈ [0.57, 0.74]CI 90%.

Figure  6 shows the per-class Spearman’s rank-corre-
lation coefficient, while the per-class Kendall’s correla-
tion coefficient is reported in Additional file 1: Figure S7. 
For Spearman’s correlation coefficient we now have four 
classes with negative correlation. Classes 13 and 40 ( β
-lactoglobulin and queuine tRNA-ribosyltransferase, 
respectively) also had a negative Pearson’s correlation 
coefficient, while classes 5 (alpha-L-fucosidase) and 51 
(transporter) did not. For Kendall’s correlation coef-
ficient we have only three classes with negative correla-
tion: classes 13, 40, and 51. A few other classes have no 
correlation.

Docking power
AEScore has been developed with the intent of predict-
ing the binding affinity of a given protein-ligand complex. 
However, scoring functions can also be used to determine 
correct binding poses. Therefore we evaluate the docking 
power of AEScore using the docking decoys provided in 
CASF-2016 dataset [40].

If we consider a correct binding pose as one with a 
root mean squared deviation (RMSD) from the crystal-
lographic binding mode that is smaller than 2 Å, we can 
define the docking success rate as the percentage of tar-
gets with a good pose ranked amongst the top one, top 
two or top three poses.

AEScore has a success rate of 
35.8% ∈ [30.9, 40.4%]90% CI for the top one pose, a success 

Fig. 6  Per-class Spearman’s correlation coefficient, with each bar color-coded by the corresponding RMSE in pK units, for the 57 classes of the 
CASF-2016 dataset
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rate of 54.4% ∈ [48.8, 58.6%]90%CI for the top two poses 
and a success rate of 60.4% ∈ [54.7, 64.2%]90% CI for the 
top three poses. Such low success rates are comparable 
with the worst classical scoring functions evaluated on 
the CASF-2016 benchmark [40]. This low success rate is 
also observed with other deep learning scoring functions: 
a recent pre-print study presenting a CNN-based scoring 
function, AK-score [65], reports a top one success rate of 
34.9 (single) or 36.0% (ensemble) [65].

These results are not surprising, since AEScore has 
been trained to predict the experimental binding affinity 
given a protein-ligand complex and has therefore never 
been exposed to high-RMSD binding poses (decoys). 
In order to use the scoring function to determine low-
RMSD poses one has to train for such task. One way to 
train a scoring function for docking is to train a pose clas-
sifier (distinguishing low RMSD poses from high RMSD 
poses) [20], but this requires a change in the model archi-
tecture. Another way to tailor a machine learning scor-
ing function for docking is to train on docking scores as 
done for AGL-Score [66]. A third way to improve bind-
ing affinity predictions while retaining the good docking 
and screening power of some classical scoring functions 
is to use �-learning [49]. In this work we explore the lat-
ter approach.

�‑AEScore
�‑learning with AutoDock Vina
The use of AEVs combined with a collection of feed-
forward NNs has proven successful to predict pro-
tein-ligand binding affinities on the CASF-2013 and 
CASF-2016 benchmark datasets using exclusively ele-
ments and atomic coordinates, as demonstrated above. 
Unfortunately, the results of the docking power test were 
unexpectedly deceiving. However, it has been previously 
demonstrated that a �-learning approach can retain 
the good screening power of a scoring function while 
improving the performance in the docking and screening 
power tests [49].

In the �-learning approach, a classical scoring func-
tion is used to obtain a crude prediction of the binding 
affinity, which is subsequently corrected with a machine 
learning or deep learning scoring function. If corrections 
to the AutoDock Vina scoring function can be learned by 
our model, combining such corrections with the docking 
power of AutoDock Vina would provide a scoring func-
tion with both good scoring and docking powers [49].

In order to combine AutoDock Vina and the experi-
mental data of PDBbind, AutoDock Vina scores, S, are 
converted to pK values using

pK = − log10

(

e
S
RT

)

,

where T = 295K and R is the ideal gas constant.

Scoring power
Figure  7 shows the predictions of our model versus the 
experimental values of the binding affinity for the CASF-
2013 and CASF-2016 benchmark data sets. �-AES-
core achieves an RMSE of 1.53 pK units and a Pearson’s 

(a) CASF-2013

(b) CASF-2016
Fig. 7  Predicted versus experimental binding affinity using the �
-learning approach with �-AEScore, expressed in pK units, when only 
protein and ligand atoms are retained
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correlation coefficient of 0.74 ∈ [0.67, 0.78]CI 90% on 
the CASF-2013 test set and an RMSE of 1.34 pK 
units and a Pearson’s correlation coefficient of 
0.79 ∈ [0.75, 0.82]CI 90% on the CASF-2016 test set. The 
performance is slightly worse than that of AEScore, indi-
cating that corrections to the AutoDock Vina native scor-
ing function are also difficult to learn. This is probably 
caused by the approximate nature of classical scoring 
functions.

Table 1 compares our �-learning results on the CASF-
2013 and CASF-2016 data sets with the �vinaRF scoring 
function, arguably the most successful implementation of 
this approach [49]. Our model performs significantly bet-
ter than �vinaRF on the CASF-2013 dataset and compa-
rably on the CASF-2016. It is worth noting that �vinaRF 
is the best scoring function on the scoring and ranks 
power tests for the CASF-2016 benchmark, and is rank-
ing consistently amongst the top scoring functions for 
the docking and screening power tests. However, �vinaRF 
is calibrated on protein-ligand complexes from the PDB-
bind, which overlaps with ∼50% of the CASF-2016 test 
set and its performance might therefore have been arti-
ficially enhanced by a large overlap between the training 
and test sets [40].

Both �vinaRF and �-AEScore outperform the classical 
scoring function AutoDock Vina in the scoring power 
test, by a large margin [40].

Ranking power
In terms of ranking power �-AEScore has a Spearman’s cor-
relation coefficient of 0.59 ∈ [0.47, 0.68]90% CI , a Kendall’s 
correlation coefficient of 0.52 ∈ [0.42, 0.60]90% CI and a PI 
of 0.61 ∈ [0.49, 0.69]90% CI on the CASF-2016 benchmark. 

For the CASF-2013 benchmark, �-AEScore has a Spear-
man’s correlation coefficient of 0.61 ∈ [0.47, 0.71]90% CI , a 
Kendall’s correlation coefficient of 0.58 ∈ [0.44, 0.67]90% CI 
and a PI of 0.63 ∈ [0.49, 0.73]90% CI.

The performance of �-AEScore in the ranking power 
test is lower than the performance of AEScore. This is 
to be attributed to the poor performance of AutoDock 
Vina on this benchmark, with a Spearman’s correlation 
coefficient of 0.53 ∈ [0.43, 0.61]90% CI on the CASF-2016 
benchmark [40]. However, the use of AEScore on top of 
AutoDock Vina allows us to improve the performance of 
the latter in both scoring and ranking.

Docking power
We next wanted to see if the corrections to the Auto-
Dock Vina scoring function can be applied in the context 
of docking. Using the docking decoys of the CASF-2016 
benchmark dataset we obtain a top one success rate of 
85.6% ∈ [81.1, 88.1%]90% CI , a top two success rate of 
94.4% ∈ [90.9, 95.8%]90% CI and a top three success rate 
of 95.8% ∈ [92.6, 96.8%]90% CI . This is a very signifi-
cant improvement on the previous results obtained with 
AEScore.

The top one performance is lower than Autodock Vina 
itself, which performs extremely well in this benchmark 
with a top 1 success rate of 90.2% ∈ [86.7, 92.6%]90% CI 
(when the native ligand binding pose is included), and 
compared to the performance of �vinaRF , the second-
best performing scoring function in CASF-2016 with 
a top 1 success rate of 89.1% ∈ [85.6, 91.6%]90% CI [40]. 
However, the much higher performance compared to 
AEScore indicates that the protein-ligand binding site 
representation and the model architecture used for AES-
core are amenable to �-learning. We thus have good 
scoring power—significantly better than AutoDock Vina 
alone—while retaining the excellent docking power of 
Autodock Vina.

Screening power
Given the good success rate of �-AEScore in the dock-
ing power test, we wanted to evaluate �-AEScore in the 
context of virtual screening as well. The screening power 
test assesses the ability of a scoring function to iden-
tify true binders among a large pool of decoys. There 
are two types of screening power tests provided in the 
CASF-2016 benchmark: in forward screening, the goal 
is to identify the true binders for a given target, while in 
reverse screening, the goal is to identify a potential target 
for a given active compound [40].

For the forward screening power test, �-AEScore ranks the 
best ligand among the top 1% of candidates with a success 
rate of 19.3% ∈ [10.5, 26.3%]90% CI . The top 5% success rate 
and the 10% success rates are 49.1% ∈ [36.8, 57.9%]90% CI 

Table 1  Performance of �-AEScore compared to the �vinaRF 
for affinity prediction on the CASF-2013 and CASF-2016 
benchmarks. For �-AEScore the “hard overlap” between the 
training and both test sets is removed while for �vinaRF only 
the “hard overlap” between the training set and CASF-2013 
is removed [49, 67]. The best performance for each test set is 
underlined. RMSE values are given in pK units

† This work

Model Training set Test set RMSE Pearson’s r

�-AEScore† Refined 2013 CASF-2013 1.53 0.74

�-AEScore† (no H) Refined 2013 CASF-2013 1.52 0.74

�vinaRF [49] Refined 2013 CASF 2013 — 0.69

Vina (optim) — CASF-2013 1.82 0.61

�-AEScore† Refined 2016 CASF-2016 1.34 0.79

�-AEScore† (no H) Refined 2016 CASF-2016 1.32 0.80

�vinaRF [40, 49] Refined 2013 CASF 2016 — 0.81

Vina (optim) — CASF-2016 1.75 0.59
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and 54.4% ∈ [42.1, 63.2%]90% CI , respectively. The 
top 1% success rate is rather low compared to Auto-
dock Vina ( 29.8% ∈ [19.3, 38.6%]90% CI ) and �vinaRF 
( 42.1% ∈ [29.8, 50.9%]90% CI ), but top 5% and top 10% per-
formances are in line with �vinaRF and better than Auto-
Dock Vina itself [40]. Again, it is worth re-iterating that the 
reported performance of �vinaRF on CASF-2016 might be 
artificially inflated by the overlap between training and test 
sets [40].

Another quantitative metric of the screening power is 
the enrichment factor (EF), defined by:

where TBα denotes the number of true binders 
amongst the top α% candidates and TBtot is the total 
number of true binders. �-AEScore has an aver-
age EF1% of 6.16 ∈ [4.14, 8.75]90% CI , an average EF5% 
of 3.76 ∈ [2.94, 4.63]90% CI and an average EF10% of 
2.48 ∈ [2.02, 3.00]90% CI . The EF are not too far from 
AutoDock Vina’s EF on CASF-2016, with an EF1% of 
7.7 ∈ [5.37, 10.97]90% CI [40]. �vinaRF is again amongst 
the top performing scoring functions on CASF-2016, 
not withstanding the training/testing caveats discussed 
above; �vinaRF EF1% is 11.73 ∈ [8.84, 15.41]90% CI [40].

For reverse screening on the CASF-2016 
benchmark, we obtain a top 1% success rate of 

EFα =
TBα

αTBtot

11.9% ∈ [8.8%, 15.1%]90% CI , a top 5% success rate of 
19.3% ∈ [15.4%, 23.2%]90% CI and a top 10% success rate 
of 27.0% ∈ [22.5%, 30.9%]90% CI . Again, the results are 
similar to AutoDock Vina ( 13.7% ∈ [10.5%, 16.8%]90% CI ) 
and slightly worse than the optimistic values reported for 
�vinaRF ( 15.1% ∈ [11.6%, 18.6%]90% CI ) [40].

Ligand‑only affinity prediction
To test the effect of protein information in the binding 
affinity prediction and to elucidate possible biases in the 
dataset [68], we also trained a model with only the ligand 
atoms ( d = 0 Å). The AEVs’ parameters used to describe 
ligand atoms are left unchanged.

For the CASF-2013 dataset we obtained an RMSE of 
1.65 pK units and a Pearson’s correlation of 0.70, while 
for the CASF-2016 dataset we obtained an RMSE of 1.49 
pK units and a Pearson’s correlation of 0.74 (when only 
protein and ligand atoms are kept and systems are auto-
matically protonated). Figure  8 also reports the results 
when hydrogen atoms are removed and when the model 
is trained on a dataset with a protein/ligand/pocket simi-
larity threshold of 95% similarity with the training set.

As shown in Fig.  8 (and, equivalently, in Additional 
file  1: Table  S3; Figure  S10), the performance of the 
model in absence of protein atoms (L) is always worse 
than that obtained when including both ligand and pro-
tein atoms (P + L). This indicates that the model is able 

Fig. 8  Pearson’s correlation coefficient for different models incorporating atoms from the protein and the ligand (P + L, d = 3.5 Å) or atoms of the 
ligand only (L), for the CASF-2013 and CASF-2016 benchmarks. Each box is color-coded by the corresponding RMSE in pK units
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to exploit the additional information about the bind-
ing site provided by the protein atoms to improve bind-
ing affinity predictions. However, the difference is not as 
striking as one might expect.

The same observations apply to the �-learning 
approach, although the difference between protein-
ligand (P + L) and ligand-only (L) models is even less 
pronounced. This suggests that corrections to the Auto-
Dock Vina scoring function mainly stem from the infor-
mation about the ligand and that information about the 
protein target plays a minor role.

The fact that AEScore models using only informa-
tion about the ligand already perform well is in line with 
recent work from Boyles et al. [4] who showed that ligand 
features alone are predictive of the mean protein-ligand 
binding affinity in PDBbind [4]. Additionally, ligand 
information plays a significant role in affinity prediction 
in deep learning models as well [52, 69, 70]. For ligand-
only predictions, AEScore is essentially learning a con-
formation-dependent fingerprint of the active ligand 
and using such information to predict the mean binding 
affinity of said ligand; RDKit descriptors alone, combined 
with a random forest model, can already achieve a Pear-
son’s correlation coefficient of 0.71 on CASF-2013 and of 
0.76 on CASF-2016, as demonstrated by Boyles et al. [4]. 
Our results suggest that the AEScore model presented 
here can use AEVs as 3D ligand fingerprints and use such 
information to predict the average binding affinity of a 
ligand in the same way RDKit descriptors allow.

Work parallel to ours recently investigated the appli-
cation of Smooth Overlap of Atomic Positions (SOAP) 
[30]—another widely used and related structural repre-
sentation for molecules and materials [71]—for 3D QSAR 

[72]. The method is shown to perform competitively with 
fingerprint-based methods as well as state-of-the-art 
graph neural networks.

Visualization
One advantage of working with atomic coordinates 
directly and using an end-to-end differentiable model 
is that the gradient of the output (and, eventually, of 
the loss function) can be computed with respect to the 
atomic coordinates. This technique has been previously 
used to interpret CNN-based scoring functions [73]: the 
gradient of the output with respect to the atomic coordi-
nates indicates where the model would like the atoms to 
“move” to optimise (improve) the binding affinity (see SI 
for details).

Figure  9a shows the magnitude of the gradients for 
ligand and protein atoms for the complexes of the 
CASF-2016 test set with the lowest absolute error (PDB 
ID 3ZT2): the gradients are small everywhere, with the 
exception of a particular functional group of the ligand.

In future iterations of the model, the gradients of the 
output with respect to the atomic coordinates could be 
employed as fictitious “forces” for a local geometry opti-
misation: atoms can be displaced along the gradient with 
standard optimisation techniques in order to obtain new 
configurations that optimise (increase) the binding affin-
ity [74].

Since the model prediction comes from atomic contri-
butions, it is interesting to visualize such contributions as 
well. To compute atomic contributions, a single evalua-
tion of the protein-ligand binding affinity is required. This 
is in contrast with the use of masking for non-additive 
models, where a forward pass is needed after removing, 
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Fig. 9  Visualization of a the norm of the gradient of the predicted binding affinity with respect to atomic coordinates, and b the atomic 
contributions to the total binding affinity for a small molecule inhibitor bound to HIV type 1 integrase (PDB ID 3ZT2). Ligand contributions go from 
orange (negative) to blue (positive) while protein contributions go from red (negative) to green (positive); white represents the zero
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in turn, each ligand atom and residue in the binding 
site, at a greater computational expense [73]. Figure 9(b) 
shows the atomic contributions of both ligand and pro-
tein atoms to the total binding affinity. As expected from 
the analysis of the ligand-only model, protein contribu-
tions have a small magnitude compared to atoms in the 
ligand.

Discussion
Figure  10 compares the performance of our model—
denoted AEScore—in terms of binding affinity prediction 
for the CASF-2013 and CASF-2016 benchmark datasets, 
with other state-of-the-art machine learning and deep 
learning models. The performance of the other methods 
is taken directly from the references reported. The same 
results are also reported in Additional file  1: Table  S4, 
together with RMSEs and additional information about 
models and training datasets.

In the literature there is some confusion about the 
CASF benchmark and the PDBbind Core set, as indi-
cated on the PDBbind website [79]. In Additional file 1: 
Table  S4 we indicate which dataset has been used for 

testing. The CASF-2016 benchmark set contains 285 
protein-ligand complexes while the PDBbind Core 
2016 set contains 290 protein-ligand complexes (com-
plexes 4MRW, 4MRZ, 4MSN, 5C1W, 4MSC, and 3CYX 
in PDBbind Core 2016 are not included in CASF-2016, 
while 1G2K is an additional complex not present in the 
Core set) [66].

Our results compare favourably with other state-of-
the-art deep learning models based on feed-forward NNs 
or CNNs and machine learning scoring functions based 
on random forests on both the CASF-2016 and PDBbind 
Core 2016 test sets. However, a quantitative and statisti-
cally sound comparison with other methods is somewhat 
difficult because error bars and confidence intervals are 
often not reported.

One of the main advantages of the AEV-based approach 
is that it is translationally and rotationally invariant, thus 
removing an additional source of variability. This is not 
the case for scoring functions based on standard CNNs, 
where random translations and rotations of the input 
protein-ligand systems give different results, while our 
results would remain unchanged. Additional file  1: Fig-
ure S11 shows the variation in CNN-based predictions as 

Fig. 10  Performance of different machine learning and deep learning models for binding affinity prediction on the CASF-2013 and CASF-2016 
benchmarks as well as for the Core 2016 set. Our results, shown in orange, include 90% confidence intervals. Numerical values for the Pearson’s 
correlation coefficient and the RMSE are reported in Table S3, together with references for all the different methods [4, 11, 20, 22–25, 52, 65, 66, 
75–78]
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a function of the angle of rotation for a particular com-
plex. Data augmentation with random translations and 
rotations has proved to be essential to prevent overfitting 
and significantly improve training in CNN-based scor-
ing functions [20, 21], but this is computationally expen-
sive—another advantage of our approach.

In addition to being translationally and rotation-
ally invariant, atomic environment vectors also require 
minimal information about the system. Only elements 
and atomic coordinates are needed by the model. Other 
methods often require additional information such as 
force-field parameters or specific atom types and are 
therefore limited by these parameters and underlying 
assumptions.

Compared to “classical” machine learning scoring func-
tions, our method performs similarly to RF Score and 
other RF-based scoring functions [11, 77]. Despite recent 
advances in deep learning architectures, which consist-
ently outperform “classical” machine learning algorithms 
in image recognition and natural language processing 
[15–19], RFs remain very competitive for binding affin-
ity predictions. All top-performing machine learning and 
deep learning methods considered here achieve similar 
performance on the CASF benchmarks—as measured 
by Pearson’s correlation coefficient. This is likely due to 
the fact that errors in the experimental measurements of 
the binding affinity and the X-ray crystallographic coor-
dinates of the protein-ligand complex set a theoretical 
upper limit on the maximal performance of scoring func-
tions trained on such noisy data [38].

It is instructive to also compare the performance of 
our model with standard docking scoring functions. 
Here we used the AutoDock Vina [10] scoring function 
as implemented in smina [80] as a baseline. We see that 
our model outperforms the Vina scoring function for 
protein-ligand affinity predictions, as do other machine 
learning and deep learning approaches. This is expected 
since previous studies show that standard scoring func-
tions do not perform very well in scoring and ranking 
power tests [38].

The removal of the systems in the CASF test set from 
the PDBbind Refined set used for training is common 
practice with machine learning and deep learning scor-
ing functions and therefore ensures a fair comparison 
with other methods. However, it has been previously 
noted that the performance on the CASF set is not nec-
essarily very indicative of a model’s ability to generalize, 
since this dataset samples the same regions of the chemi-
cal and target spaces as the PDBbind dataset [41, 52]. In 
order to better evaluate the ability of a model to general-
ize, we tested its performance when trained on a recently 
developed non-redundant training set [41]. We showed 
in Fig.  5 that the performance of AEScore deteriorates 

gradually when the similarity between the training set 
and the test set is reduced, in contrast with many other 
machine learning scoring functions that are severely 
inhibited by removing structurally redundant samples 
from the training set [41].

When we tested AEScore for docking power we 
obtained poor results. This is not surprising since the 
model was trained to predict binding affinities given the 
correct binding pose and it was not trained explicitly 
to distinguish low- from high-RMSD poses. However, 
we showed that by combining AEScore with the clas-
sical scoring function AutoDock Vina using a �-learn-
ing approach improves the performance in terms of 
docking and screening while maintaining good scoring 
and ranking performance. As already demonstrated by 
�vinaRF , this is a good approach for developing a scor-
ing function that works well on all four tasks: scoring, 
ranking, docking, and screening. Usually, machine 
learning and deep learning scoring functions work very 
well for scoring but not as well for docking and vir-
tual screening, while classical scoring functions have 
the opposite behaviour. Figure  11 collects most of the 
results of AEScore and �-AEScore on the CASF-2016 
benchmark, together with the results for �vinaRF and 
AutoDock Vina (our baseline) as reported by Su et  al. 
[40]. We also added the best- and worst-performing 
scoring functions for each of the CASF-2016 bench-
marks reported in Su et  al. [40], whenever these scor-
ing function were different from �vinaRF or AutoDock 
Vina. We see that both AEScore and �-AEScore per-
form well in scoring and ranking power tests, but AES-
core performance for docking is low. However, the �
-learning approach is able to recover a good docking 
power (similar to the AutoDock Vina baseline) while 
retaining a good performance in scoring and ranking. 
The performance of �-AEScore in forward screening 
is rather poor as measured by EF 1% or top 1% success 
rate but greatly improves for EF 5% and the top 5% suc-
cess rate.

Given the good performance of our ligand-only 
model—which was nonetheless consistently worse than 
that of the protein-ligand model—it is clear that the 
model is extracting a lot of information from the ligand. 
Finding strategies to force the model to rely more on 
protein information could further improve the model 
and make it more transferable. This is a known problem 
[68–70] and strategies to force the model to rely more 
on the protein structure are an active area of research 
[81].

The advantage of using an end-to-end differenti-
able model is that the gradient of the scoring function 
with respect to the input parameters can be read-
ily obtained by backpropagation. Since the TorchANI 
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AEVComputer is fully differentiable and its inputs 
are atomic coordinates [34], the gradient of the scor-
ing function with respect to atomic coordinates can 
be computed. This can be used for visualization, which 
could help to understand the behaviour of the scoring 
function. In future iterations of the model, such gradi-
ents could be employed in the context of a local geom-
etry optimization of the binding pose [74].

Finally, it is worth noting that we exploited the repre-
sentation and architecture commonly used to develop 
NNP to predict a different endpoint, namely the pro-
tein-ligand binding affinity, and corrections to classical 

scoring functions. However, given the success of NNPs 
[28, 33] one could use them in a MM/PBSA- or MM/
GBSA-style approach [82] to directly compute the free 
energy of binding on more physical grounds. In fact, 
approaches to combine NNP with molecular mechanics 
for drug discovery applications are already starting to 
appear [83–85].

Conclusions
We demonstrated that AEVs are a promising representa-
tion of the protein-ligand binding site (and of the ligand 
alone, for ligand-based model) amenable to machine 

Fig. 11  Performance of AEScore, �-AEScore, �vinaRF , and AutoDock Vina. The best- and worst-performing scoring functions on CASF-2016 (as 
reported by Su et al. [40]) are also added for comparison. The results include 90% confidence intervals (where they were available)
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learning-based predictions of the protein-ligand binding 
affinity, and of corrections to classical scoring functions. 
This representation is rotationally and translationally 
invariant and, in contrast to CNN-based scoring func-
tions, does not require data augmentation. The results 
reported here for AEScore show similar or better perfor-
mance than other state-of-the-art machine learning and 
deep learning methods on the CASF-2013 and CASF-
2016 benchmarks (as well as the Core 2016 set) in bind-
ing affinity prediction.

One of the major shortcomings of our model, however, 
is the over-reliance on ligand features as demonstrated 
by the good performance of the ligand-only model. This 
is a common problem with deep learning scoring func-
tions [4, 52, 69, 70] and strategies to force the model to 
rely more on protein and ligand atoms involved in bind-
ing need to be developed [81].

Using training sets with decreasing similarity to the 
test set, first introduced by Boyles et al. [4] and later by 
Su et  al. [41], we showed that our model is not com-
pletely hindered by the removal of systems with high 
similarity, but that AEScore’s performance deteriorates 
only gradually. This is in contrast with other machine 
learning and deep learning scoring functions, where a 
performance drop is observed as soon as a similarity 
threshold is introduced [4, 41]. This property could be 
useful in real drug discovery applications, where data 
on similar or related systems (such as a congeneric 
series of ligands) is acquired gradually.

In this work, we did not optimise the ANI parameters 
for radial and angular symmetry functions, and we did not 
explore the full flexibility of the angular symmetry func-
tions. Bayesian optimisation of ACSFs’ hyperparameter 
space could lead to further improvements of the scoring 
function.

We also showed that the AEScore model presented here 
can be exploited in tandem with standard docking scor-
ing functions using a �-learning approach, in order to 
improve the performance in docking and virtual screen-
ing (in which AEScore does not perform well, since it has 
not been explicitly trained for such task). �-AEScore out-
performs the �vinaRF scoring function by a good margin 
on the CASF-2013 test set and performs similarly on the 
CASF-2016 test set (notwithstanding the training/test 
set overlap in �vinaRF reported performance). �-learning 
has the advantage of partially retaining the good docking 
and screening power of standard scoring functions while 
improving affinity predictions using machine-learning 
corrections, allowing the development of a scoring func-
tion that works reasonably well on all four tasks of early-
stage structure-based drug discovery applications.
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