
Čmelo et al. J Cheminform            (2021) 13:3  
https://doi.org/10.1186/s13321-020-00483-y

METHODOLOGY

Profiling and analysis of chemical 
compounds using pointwise mutual 
information
I. Čmelo1 , M. Voršilák1,2  and D. Svozil1,2* 

Abstract 

Pointwise mutual information (PMI) is a measure of association used in information theory. In this paper, PMI is used 
to characterize several publicly available databases (DrugBank, ChEMBL, PubChem and ZINC) in terms of association 
strength between compound structural features resulting in database PMI interrelation profiles. As structural features, 
substructure fragments obtained by coding individual compounds as MACCS, PubChemKey and ECFP fingerprints are 
used. The analysis of publicly available databases reveals, in accord with other studies, unusual properties of DrugBank 
compounds which further confirms the validity of PMI profiling approach. Z-standardized relative feature tightness 
(ZRFT), a PMI-derived measure that quantifies how well the given compound’s feature combinations fit these in a 
particular compound set, is applied for the analysis of compound synthetic accessibility (SA), as well as for the clas-
sification of compounds as easy (ES) and hard (HS) to synthesize. ZRFT value distributions are compared with these 
of SYBA and SAScore. The analysis of ZRFT values of structurally complex compounds in the SAVI database reveals 
oligopeptide structures that are mispredicted by SAScore as HS, while correctly predicted by ZRFT and SYBA as ES. 
Compared to SAScore, SYBA and random forest, ZRFT predictions are less accurate, though by a narrow margin (Acc-

ZRFT = 94.5%, AccSYBA = 98.8%, AccSAScore = 99.0%, AccRF = 97.3%). However, ZRFT ability to distinguish between ES and 
HS compounds is surprisingly high considering that while SYBA, SAScore and random forest are dedicated SA models, 
ZRFT is a generic measurement that merely quantifies the strength of interrelations between structural feature pairs. 
The results presented in the current work indicate that structural feature co-occurrence, quantified by PMI or ZRFT, 
contains a significant amount of information relevant to physico-chemical properties of organic compounds.
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Introduction
Information theory is a mathematical approach for the 
quantification, storage and communication of infor-
mation. Information theory concepts, such as Shan-
non entropy [1] or mutual information (MI) [2], are 

used across a wide variety of scientific areas. Due to the 
generic nature of information theory, sometimes even 
very distant scientific fields independently develop meth-
odologies that are built upon the same underlying infor-
mation theory framework. In one such framework, MI is 
used to profile and compare objects based on the inter-
relations between their features. MI is commonly used 
in linguistics to identify unusual word combinations [3] 
with the aim to estimate text complexity [4]. In bioinfor-
matics, gene coinheritance among different organisms, 
expressed by MI, was profiled to elucidate functional 
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linkages among proteins [5]. In medicinal sciences, MI 
was applied to profile relations between stressors, health 
conditions, genes and other factors in order to build 
comorbidity charts useful for disease study and preven-
tive medicine [6–8].

In cheminformatics, the use of information theory 
concepts is widespread [9, 10]. Shannon entropy was 
applied, for example, to design and evaluate molecular 
descriptors [11, 12] and fingerprints [13], to determine 
the information content of chemical structures based on 
their topology and symmetry [14], to create the aggre-
gate fingerprints of whole chemical databases [15] or to 
evaluate the significance of individual fingerprint bits in 
order to improve similarity search methodologies [16]. 
MI was applied to improve feature selection in similar-
ity search [17] and QSAR [18, 19] and to improve per-
formance of topological molecular descriptors in the 
modeling of the physico‐chemical properties of 2-fury-
lethylene derivatives [20]. However, a more straightfor-
ward MI application, the comparison of compound sets 
based on interrelations between their structural features, 
was not reported so far. In this paper, we demonstrate the 
use of pointwise mutual information (PMI) for the pro-
filing of structural feature interrelations within several 
publicly available chemical databases (DrugBank [21], 
ChEMBL [22, 23], PubChem [24] and ZINC15 [25]) using 
PubChem [26] and MDL MACCS [27] structure keys, as 
well as extended connectivity fingerprints (ECFP) [28]. 
Z-standardized relative feature tightness (ZRFT), a PMI-
based measure that quantifies how the given compound 
fits into the particular compound set, is postulated and 
its utility is demonstrated in the analysis of compound 
synthetic accessibility (SA), as well as in the classification 
of compounds as easy (ES) and hard (HS) to synthesize.

Methods
Methodology of feature interrelation profiling
In linguistics, PMI is used to expresses the extent to 
which the observed frequency of the co-occurrence of 
two different words differs from what would be expected 
if they were independent [29]. PMI is the measure of the 
strength of the association between words x and y and, 
for a given corpus, it is calculated using the number of 
times the word pair (x, y) is observed in one sentence ver-
sus the number of times words x and y are observed sepa-
rately. The concept of PMI can be easily adopted for the 
analysis of the interrelations between structural features 
(i.e., words) within individual molecules (i.e., sentences) 
from a compound set (i.e., a corpus). In this work, two 
types of structural features are employed: dictionary-
based and hashed structural fragments [30–32]. Diction-
ary-based fragments are used to convert a compound 
into a binary fingerprint called “a structure key”. Though 

fragment dictionaries are constructed from fragments 
perceived as most relevant to the intended purpose, some 
important fragments may be omitted. To circumvent 
this aspect of explicit fragment selection, hashed finger-
prints were developed. They are formed by fitting all frag-
ments present in the molecule up to a defined size into 
the bit-string of the defined length. In the present work, 
PubChem [26] and MDL MACCS [27] structure keys and 
ECFP4 and ECFP6 [28] hashed fingerprints are used to 
decompose molecules into structural features. Structural 
features/fragments will be, in the following text, referred 
to simply as features.

Profiling feature interrelations requires to retain infor-
mation on how many times each feature pair appears in 
the compound set S. This information is stored in the co-
occurrence relation matrix (CORM). If each molecule in 
the compound set S is encoded by the feature vector k, 
CORM is calculated as the sum of the outer products of 
all feature vectors k:

where |S| is the number of molecules in the compound 
set S. CORM is a symmetrical square matrix of nonnega-
tive integers with dimensions equaling to the number of 
features, i.e. to the length of the feature vector k.

The division of co-occurrence counts in CORM by 
compound set size |S| leads to the co-occurrence prob-
ability relation matrix (COPRM):

On its diagonal, COPRM contains probabilities with 
which individual features are observed in the compound 
set S. Its off-diagonal elements contain probabilities of 
the occurrence of feature pairs in the compound set S.

The strength of the interrelation between two features 
x and y can be inferred using pointwise mutual informa-
tion (PMI):

PMI quantifies the divergence between feature pair 
co-occurrence probability p(x, y) and individual occur-
rence probabilities p(x) and p(y). Positive PMI indicates 
the enrichment of feature co-occurrences compared to 
their separate occurrences, e.g., PMI of 1 means that 
both features appear together (i.e., in one compound) 
twice as often as they appear separately (i.e., in two dif-
ferent compounds). PMI equaling to 0 means that two 
features appear together about as often as they appear 

(1)CORM(S) =
|S|
∑

o = 1

ko ⊗ ko =
|S|
∑

o = 1

kok
T
o

(2)COPRM(S) =
CORM(S)

|S|

(3)PMI = log2
p(x, y)

p(x)p(y)
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separately. Negative PMI indicates negative inter-
relation between a pair of features, e.g., a feature pair 
with PMI of -1 appears only half as often as could be 
expected from their individual occurrence probabilities.

From COPRM, a pointwise mutual information rela-
tion matrix (PMIRM) containing PMI values for all 
possible feature pairs can be constructed. Its individual 
elements PMIRM(S)i,j are given as:

PMIRM diagonal contains zeros and feature pairs 
involving features that are never observed in the com-
pound set S have undefined PMI. PMIRM constitutes 
the interrelation profile of the compound set S. PMIRM 
interrelation profile is intrinsically affected by the 
choice of features. For example, overlapping structural 
features can interact in a complementary manner which 

(4)PMIRM(S)i,j = log2
COPRM(S)i,j

COPRM(S)i,iCOPRM(S)j,j

leads to the shift of PMI distribution towards positive 
values. These shifts can be, if desired, corrected by nor-
malizing PMI values into Z-scores (ZPMI) leading to 
the Z-standardized pointwise mutual information rela-
tion matrix (ZPMIRM):

where μ is the mean and σ is the standard deviation of all 
values in PMIRM. The construction of relation matrices 
(RMs) CORM, COPRM, PMIRM and ZPMIRM is sum-
marized in Fig. 1.

Apart from the analysis of interrelations within the 
compound set S, PMI methodology also enables to meas-
ure how tightly the query compound set S matches the 
reference compound set S’ meaning how similar are, on 
average, the query and reference compound sets in terms 
of feature pair co-occurrence probabilities. This is quan-
tified by the relative feature tightness (RFT):

(5)

ZPMIRM(S)i,j =
PMIRM(S)i,j − µ(PMIRM(S))

σ (PMIRM(S))

(6)RFT = µ

(

COPRM(S)× PMIRM
(

S′
))

= µ

(

∑|S|
o=1kok

T
o

|S|
× PMIRM(S′)

)

Fig. 1 Relation matrices. Co-occurrence relation matrix (CORM) is the sum of the outer products of all feature vectors k. Individual elements of 
co-occurrence probability relation matrix (COPRM) are calculated by dividing corresponding CORM elements by the number of feature vectors 
(i.e., by the size of the compound set S) |S|. Pointwise mutual information relation matrix (PMIRM) consists of PMI between all feature pairs i and j. 
Z-standardized pointwise mutual information relation matrix (ZPMIRM) is obtained from PMIRM by converting its elements into Z-scores
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where COPRM(S) is the co-occurrence probability 
relation matrix (Eq.  2) of the query compound set S, 
PMIRM(S’) is the pointwise mutual information rela-
tion matrix (Eq.  4) of the reference compound S’ and μ 
is the mean of all values in the COPRM(S)× PMIRM

(

S′
)

 
matrix. Based on the choice of S and S’, three different 
cases can occur:

1. The query compound set S consists of only one com-
pound, the reference compound set S’ consists of sev-
eral compounds. In this case, RFT measures how well 
the feature combinations of a compound S fit these 
within the reference compound set S’.

2. Both S and S’ compound sets consist of several com-
pounds. In this case, RFT measures how close are 
feature interrelations within compounds from the 
query compound set S to feature interrelations within 
the reference compound set S’.

3. The reference compound set S’ is the same as the 
query compound set S, i.e., S = S’. In this case, RFT 
measures the “inner tightness” of the compound set 
S, i.e. how strong are the feature interrelations within 
the compound set S.

Generally, the higher RFT is, the more similar are the 
compound sets S and S’ in terms of feature co-occur-
rences. If ZPMIRM is used instead of PMIRM in Eq. 6, 
a Z-standardized relative feature tightness (ZRFT) is 
obtained:

ZRFT is interpreted much like RFT with the added 
convenience of standardization: chemical structures con-
taining predominantly feature pairs that are rated above 
average within the reference interrelation profile will 
receive positive ZRFT values and vice versa. However, it 
must be stressed that neither RFT, nor ZRFT can be con-
sidered as metrics because they are not symmetric: RFT/
ZRFT(A, B) is unlikely to be the same as RFT/ZRFT(B, 
A).

Applications of feature interrelation profiling
The utility of feature interrelation profiling is demon-
strated for chemical database and synthetic accessibility 
analysis.

Chemical database analysis
In this application, the DrugBank 5.0.3 [21], ChEMBL22 
[22, 23], PubChem (downloaded in 12/2016) [24] and 
ZINC15 [25] databases (Fig.  2) are analyzed using their 

(7)ZRFT = µ

(

COPRM(S)× ZPMIRM
(

S′
))

= µ

(

∑|S|
o=1kok

T
o

|S|
× ZPMIRM(S′)

)

PMI profiles. The merged_dbs compound set is created 
by merging all four databases with duplicates removed. 
Feature interrelations are profiled using the RDKit [33] 
cheminformatics toolkit and the ChemFP Python library 
[34, 35]. Compound stereochemistry is removed, com-
pounds are standardized by the IMI eTox standardizer 
[36] and duplicates are identified using InChIKeys. For 
each compound, four fingerprints are generated: the 
PubChemKey (881 bits long) [26], MACCS key (166 bits 
long) [27] and ECFP4 and ECFP6 fingerprints, both 1024 
bits long [28]. To estimate the influence of compound 
set size on PMI profile, a series of five overlapping ZINC 
subsets containing 8000, 32,000, 128,000, 512,000 and 
2,048,000 randomly selected compounds is prepared.

Synthetic accessibility analysis
In this application, ZRFT profiles of several compound 
sets (Table 1, Fig. 2) with easy (ES) and hard (HS) to syn-
thesize molecules are investigated under the premise that 
compounds containing feature pairs common in existing 
molecules are likely to be synthetically accessible.

HS compound set (Additional file  1) is generated by 
the Nonpher methodology [45]. Nonpher is based on the 
molecular morphing algorithm [46] in which new struc-
tures are constructed by the iterative application of sim-
ple structural changes, such as the addition or removal of 
an atom or a bond. In Nonpher, molecular morphing is 
stopped when the proposed structure exceeds the thresh-

old [45] of at least one of four monitored complexity met-
rics (Bertz [41], Whitlock [42], BC [43] and SMCM [44] 
indices). This procedure was previously optimized [45] to 
ensure that though generated molecules can be deemed 
as HS, they are not excessively complex. Nonpher algo-
rithm and compound set construction are described in a 
detail in the Nonpher and SYBA publications [37, 45].

Three ES compound data sets (Additional file  1) are 
obtained from the following sources: the Synthetically 
Accessible Virtual Inventory (SAVI) Database [38, 39], 
Screenable Chemical Universe Based on Intuitive Data 
OrganizatiOn (SCUBIDOO) database [40] and ZINC15 
database [25]. While the SAVI and SCUBIDOO data-
bases were computationally generated by the application 
of selected chemical reactions (11 reactions for SAVI and 
58 reactions for SCUBIDOO generation) to the given set 
of chemical building blocks (~ 230,000 building blocks for 
SAVI and ~ 8000 building blocks for SCUBIDOO genera-
tion), the ZINC15 database contains already synthesized 
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commercially available organic compounds. Therefore, 
compounds in SAVI, SCUBIDOO and ZINC15 databases 
can be considered as ES. The examples of the nonpher, 

savi, scubidoo and random_zinc compounds are shown in 
Additional file 2.

Though savi and scubidoo compound sets are expected 
to contain only ES compounds, some of these are 

Fig. 2 List of compound sets. Synthetic accessibility interrelation patterns are analyzed for one set of HS compounds (nonpher compound set) 
and three sets of ES compounds (zinc_random, savi and scubidoo compound sets). Extremely complex compounds in these data sets (_complex 
compound subsets) are also considered to be HS. zinc_random compound set does not contain any excessively complex compound. nonpher and 
zinc_random compound sets are augmented into the training set S used to train the RF classifier
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extremely complex as they exceed all complexity met-
ric (Bertz [41], Whitlock [42], BC [43] and SMCM [44] 
indices) thresholds [45] at once. Therefore, their savi_
complex and scubidoo_complex subsets containing such 
extremely compounds are formed (Table 1, Fig. 2, Addi-
tional file 1). Because no extremely complex compounds 
are found in the zinc_random set, the additional complex 
compound set is constructed from the publicly avail-
able subset of 50,000,000 molecules from the GDB-17 
database [47]. Similarly, extremely complex compounds 
selected from the nonpher compound set form nonpher_
complex subset. A smaller size of _complex compound 
sets enables their more detailed analysis.

Each compound set is characterized by its ZRFT pro-
file calculated (Eq.  7) against the reference merged_dbs 
compound set using ECFP4 fingerprint 1  024 bits long. 
ZRFT profiles are compared with the distribution of two 
fragment based synthetic accessibility measures: SAScore 
[48] and SYBA [37]. SAScore is calculated by the RDKit 
toolkit [33] and SYBA by the syba Python package [49].

In addition, following our previous work on synthetic 
accessibility assessment [37, 45], ZRFT is also applied 
for the classification of compounds as either ES or HS. 
ZRFT classification results are compared with random 
forest (RF) classifier, SAScore and SYBA using the TMC 
and TCP test sets [37] (Additional file 3). The TMC test set 
was manually curated from the literature and it consists 
of 40 HS compounds assessed by experienced medicinal 
chemists [48, 50–52] and of 40 ES compounds randomly 

selected from the ZINC15 database [25]. Because small 
TMC size may bias results, 30 different TMC data set 
instances were generated using the same HS compounds, 
but different ES compounds [37]. The computationally 
picked TCP test set consists of 3 581 excessively complex 
(i.e., HS) compounds from the GDB-17 database [53] 
supplemented by 3 581 ES compounds randomly selected 
from the ZINC15 database [25]. The performance of 
classification models was assessed by the classification 
accuracy (Acc), sensitivity (SN), specificity (SP) and area 
under the ROC curve (AUC ) calculated for the TMC and 
TCP test sets. For each model, its optimum classification 
threshold was calculated using the Youden index [54, 55].

SAScore was calculated by the RDKit toolkit [33] and 
SYBA by the SYBA Python library [49]. The RF classi-
fier was implemented in Scikit-learn [56]. RF model was 
trained using the training set S with compounds encoded 
by 1024-bits long Morgan fingerprint with radius 2. The 
training set S consists of the zinc_random (693 353 ES 
compounds) and nonpher (693 353 HS compounds) com-
pound sets. Two RF hyperparameters were optimized 
in a grid search: the number of trees (50, 100, 300 and 
500) and the maximum number of features considered 
when looking for the best split (10% out of 1024 = 102, 
25% = 256, 50% = 512, 75% = 768, 100% = 1024, √
1024 = 32 and log2(1024) = 10 ). The final setting used 

in this work (100 trees and 32 features) represents the 
best trade-off between computational efficiency and pre-
diction accuracy [57]. More detailed description of data 
set construction and of testing methodology is given in 
the original publication [37].

Results and discussion
Chemical database analysis
The number of all and unique standardized compounds 
in the DrugBank, ChEMBL, PubChem, ZINC and 
merged_dbs compound sets is shown in Table 2 and the 
overlaps between individual compound sets in Table 3.

PMI profiles of increasingly larger randomly selected 
ZINC subsets are shown in Fig. 3.

Table 1 Compound sets used in  synthetic accessibility 
assessment

ES compounds are easy to synthesize, HS compounds are hard to synthesize. 
The nonpher compound set corresponds to the  S- data set from the SYBA 
publications [37] in which its construction is described in a detail. savi 
compounds form the alpha version of the Synthetically Accessible Virtual 
Inventory (SAVI) Database [38, 39] released on July 2015. scubidoo compounds 
form the L representative sample of the Screenable Chemical Universe Based 
on Intuitive Data OrganizatiOn (SCUBIDOO) database [40]. zinc_random 
compounds are randomly selected from the ZINC15 database [25] and their 
molecular weight distribution is the same as in the nonpher compound 
set. The zinc_random compound set corresponds to the  S+ data set in the 
SYBA publication [37]. Compounds in _complex sets exceed four complexity 
thresholds, given by Bertz [41], Whitlock [42], BC [43] and SMCM [44] indices, at 
once

Compound set Type Number 
of compounds

nonpher HS 693,353

savi ES 610,245

scubidoo ES 999,794

zinc_random ES 693,353

nonpher_complex HS 161

savi_complex HS 2930

scubidoo_complex HS 104

gdb_complex HS 3581

Table 2 The number of  all and  unique standardized 
compounds

Compounds are standardized using IMI eTox standardizer [36] and duplicates are 
identified using InChIKey calculated after compound standardization

All compounds Unique compounds

DrugBank 6768 6496

ChEMBL 1,666,863 1,512,302

PubChem 91,221,617 69,081,967

ZINC 285,732,863 157,914,301

merged_dbs 378,628,111 213,777,358
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With increasing compound set size, MACCS and 
PubChemKey PMI interrelation profiles are mostly 
unchanged (Fig.  3a, b) and the overall number of 
bits set to 1 remains constant (~ 145 out of 168 for 
MACCS, ~ 645 out of 888 for PubChemKey). In con-
trast, ECFP interrelation profiles become, with increas-
ing compound set size, more rounded and shifted 
towards negative PMI values (Fig. 3c, d). Compared to 
ECFP4, ECFP6 profiles are smoother, because ECFP4 
fragment space is a subset of ECFP6 fragment space. 
Also, ECFP6 profiles shift towards negative values to a 
lesser extent than ECFP4 profiles (Fig. 3d) meaning that 
ECFP6 specific interrelations contribute positively.

The use of MACCS, PubChemKey, ECFP4 and ECFP6 
fingerprints for the calculation of PMI profiles of the 
DrugBank, ChEMBL, PubChem and ZINC databases 
results in 16 interrelation profiles (Fig. 4).

PMI profiles derived from MACCS and PubChemKey 
structural keys peak around zero (Fig. 4a, b). ChEMBL, 
PubChem and ZINC PMI profiles all show similar neg-
atively skewed distribution indicating that most fea-
tures are less likely to appear together than separately. 
In contrast, MACCS and PubChemKey PMI profiles 
of DrugBank show pronounced right tails indicating 
the existence of positive interrelations. This is likely 
due the presence of structural motifs shared within the 
same classes of drugs. The sharp shape of structural key 
PMI profiles reflects the fact that fragment dictionar-
ies vary greatly in the scope and overlap. For example, 
MACCS key defines features as generic as a nitrogen 
atom (bit #161) alongside features as specific as a meth-
anetriamine substructure (bit #25) (Fig. 5a). Also, some 
MACCS features imply one another, such as methan-
etriamine fragment that implies the following features: 
a nitrogen atom (bit #161), more-than-one-nitrogen 
atom (bit #142) and nitrogen-any_atom-nitrogen sub-
structure (bit #77) (Fig. 5a).

Still, meaningful conclusions can be drawn from 
explicitly defined structural features. MACCS PMI 

range between 0.2 and 0.5 (Fig. 4a), that is more popu-
lated in DrugBank compared to other databases, con-
tains 2 306 interrelations with 1 674 being DrugBank 
exclusive. A majority of these involve various aromatic 
features (e.g., bit #162), nonaromatic six-membered 
rings (bit #163) and an NA(A)A pattern (bit #156) 
(Fig. 5b). Similarly, PubChemKey PMI profile of Drug-
Bank contains, within the range of 0.3 and 1.0 (Fig. 4b), 
47 907 interrelations with 36 057 interrelations exclu-
sive to DrugBank. These involve mainly aromaticity-
related features (Fig.  5c), such as small substructures 
with explicit aromatic bonds (e.g., bits #355, #370, 
#371) and with heteroatoms (bits #145 or #146).

Compared to MACCS and PubChemKey, ECFP inter-
relation profiles are more regular (Fig.  4c, d) because 
ECFP fingerprints contain all circular fragments of the 
given radius. For example, ECFP6 dictionary consists of 
all possible circular fragments of the radius of 0, 1, 2 and 
3 bonds. While PubChem, ZINC and ChEMBL ECFP 
profiles are negatively skewed, DrugBank ECFP profiles 
are symmetric and contain more positive PMI values. 
The flat shape of DrugBank ECFP profile is due to lower 
DrugBank size (see Fig. 3c and d). The shift of DrugBank 
ECFP profile to the right is the demonstration of unusual 
structural properties of drugs that were also described in 
several previous studies using different methodologies 
[58–60].

The presence of a higher amount of negative interrela-
tions in ZINC ECFP profile (Fig.  4c, d) means that 
ZINC contains less co-occurring structural fragments 
than any other database. This indicates that, in terms of 
feature interrelations, ZINC contains the most diverse 
set of compounds. On the other hand, considering that 
the average database Tanimoto coefficient 

−
TC is calcu-

lated from 12,497,500 pairwise comparisons generated 
exhaustively from 5000 compounds, ZINC 

−
TC value of 

0.14, which is the highest of all databases (Table  4), 
means that ZINC structures share 14% of ECFP features 
on average. ZINC can, thus, be considered as the least 
structurally diverse database. Seemingly contradictory 
conclusions regarding ZINC diversity are only the man-
ifestation of the fact, that both measures capture differ-
ent compound properties and reflect, thus, different 
views of reality. Tanimoto similarity quantifies how are 
individual features shared between compounds com-
pared to all features present in a compound set S. On 
the other hand, PMI quantifies (Eq.  3) how often fea-
tures x and y occur together in the same compound 
(given by the feature pair co-occurrence probability p(x, 
y)) compared to the chance that they appear in the same 
compound if they are independent (given as p(x)·p(y)). 
So, if x and y are present in all compounds in S, they 
positively contribute to pairwise Tanimoto coefficients 

Table 3 Overlaps between compound sets

The counts of unique overlapping compounds are shown in the lower triangle, 
compound set size on the diagonal and the overlap between two compound 
sets, given as the Jaccard index, in the upper triangle. The Jaccard index J(A, B) 
between compound sets A and B is calculated as the size of the intersection 
between A and B divided by the size of the union of A and B: J(A, B) = |A∩B|

|A∪B|

DrugBank ChEMBL PubChem ZINC

DrugBank 6496 0.307% 0.008% 0.002%

ChEMBL 4647 1,512,302 1.895% 0.279%

PubChem 5854 1,313,209 69,081,967 6.280%

ZINC 3421 443,794 13,412,856 157,914,301
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between structures in S. However, their PMI will be zero 
because p(x,y) = 1, p(x) = 1, p(y) = 1 and 
PMI = log2

p(x,y)
p(x)p(y) = log21 = 0 . This means that a com-

pound set can have a high average Tanimoto similarity 
between the structures and, at the same time, low PMI 

values. In the case of ZINC compounds, while a high 
pairwise Tanimoto similarity indicates that they have, 
out of all studied compound sets, most fragments in 
common, their low PMI values mean that these frag-
ments are less mutually interrelated.

Fig. 3 The dependence of PMI profile on compound set size. 5 randomly selected ZINC subsets that contain 8000, 32,000, 128,000, 512,000 and 
2,048,000 compounds are profiled using MACCS, PubChemKey, ECFP4 and ECFP6 fingerprints
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Synthetic accessibility analysis
ZRFT, SAScore and SYBA distributions, of the non-
pher, savi, scubidoo and zinc_random compound sets 
are shown in Fig. 6.

While ZRFT profiles (Fig. 6a) and SYBA distributions 
(Fig.  6c) are smooth, SAScore distributions (Fig.  6b) 
shows more complex shapes that are likely the result of 
heuristic complexity penalty used in SAScore calculation 

Fig. 4 PMI profiles of the DrugBank, PubChem, ChEMBL and ZINC databases using MACCS, PubChemKey, ECFP4 and ECFP6 fingerprints. Dashed 
rectangles in MACCS and PubChemKey profiles highlight the regions where DrugBank significantly differs from other databases. In this region, 1674 
interrelations not present in other databases were identified
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[48]. ZRFT profiles (Fig.  6a) show a clear separation 
between ZINC (i.e., ES) and Nonpher (i.e., HS) [45] com-
pounds. ZRFT values of the computationally generated 
ES compounds sets, i.e. SAVI and Scubidoo, fall between 

those of Nonpher and ZINC, closer to ZINC. The same 
trends can be observed in SYBA and SAScore distribu-
tions, albeit SAScore distributions show less distinction 
between ZINC and SAVI compounds.

Fig. 5 Examples of MACCS and PubChemKey fragments. Generic and specific MACCS fragments (a), MACCS (b) and PubChemKey (c) fragments 
excusive for DrugBank
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ZRFT profiles and SYBA and SAScore distributions of 
the nonpher_complex, savi_complex, scubidoo_complex 
and gdb_complex compound sets are shown in Fig. 7.

SYBA, SAScore and ZRFT distributions of the scubi-
doo_complex compound set are shifted toward posi-
tive values and contain more values associated with 
synthetically accessible structures than any other com-
plex compound set. Strong scubidoo_complex peaks 
at ZRFT ~ 0.25 (Fig.  7a), SAScore ~ 3.7 (Fig.  7b) and 
SYBA ~ 10 (Fig.  7c) are composed mostly by the same 
66 structures with five or six membered heterocycles. 
savi_complex compounds are rated differently by all 
three methods with their SAScore and SYBA distri-
butions being particularly irregular and widespread. 
Based on their high ZRFT (> 0.3) and SYBA (> 180) val-
ues (Fig.  7a, c), 499 SAVI complex compounds should 
be considered as ES. However, their SAScore higher 
than 8.5 (Fig.  7b) would rate these compounds as HS. 
A closer inspection reveals that all these compounds 
are oligopeptides (Fig.  8) and can be, therefore, syn-
thesized by connecting individual amino acid residues 
[61]. Because SAScore is designed [48] to assess the SA 
of drug-like [62] compounds, oligopeptides lie outside 
its applicability domain. Their structural complexity, 
incorporated into SAScore using the heuristic com-
plexityScore [48], outweighs individual fragment con-
tributions and contributes unfavorably to their SAScore 
values. In contrast, both SYBA and ZRFT predict these 
compounds correctly as ES. Oligopeptides include 
a large number of fragments that are highly scored 
because they appear more often in ES than in HS com-
pounds, which is reflected in their high SYBA values. 
Also, oligopeptides contain ECFP feature pair combina-
tions that fit well within the ZRFT profile of known SA 
compounds in merged_dbs.

The smallest overlap between ZINC and Nonpher com-
pounds and, therefore, the best differentiation between 
ES and HS compounds was achieved by the SYBA model, 
followed by SAScore and ZRFT (Fig. 9). ZRFT is strongly 
correlated (Fig.  9) both with SYBA (r = 0.82) and SAS-
core (r = − 0.83) which demonstrates that ZRFT contains 
a significant amount of information about compound SA.

In addition, the separation between ES and HS com-
pounds in ZRFT density plots (Fig. 9) suggests that ZRFT 
can be used as a classifier. The comparison between the 
RF, SYBA, SAScore and ZRFT classification of the  TMC 
and  TCP tests sets is given in Tables 5 and 6, respectively.

Though ZRFT classification is inferior to SYBA, SAS-
core and RF, its ability to distinguish, using the Youden 
index optimized threshold of 0.2, between ES and HS 
compounds is surprisingly high considering that ZRFT 
is a generic measurement based only on interrelations 
between structural feature pairs compared to the refer-
ence compound set, while SYBA and SAScore are dedi-
cated models trained to estimate compound SA.

Conclusions
The methodology of pointwise mutual information 
(PMI) profiling is introduced and its utility is demon-
strated for the analysis of structural feature interrela-
tions in publicly available chemical databases and for 
the analysis and prediction of synthetic accessibility 
of organic compounds. Interrelation profiles are con-
structed both from dictionary-based (MACCS and 
PubChemKey) and hashed circular fragments (ECFP). 
PMI interrelation profiles of the PubChem, ZINC, 
ChEMBL and DrugBank databases indicate the pres-
ence of both positive and negative feature interrela-
tions. ECFP structural fragments are more suitable for 
fragment co-occurrence profiling than dictionary-based 
fragments as they provide more regular interrelation 
profiles. Unusual favorable fragment combinations 
of DrugBank compounds manifest themselves by the 
shift of DrugBank PMI profile to positive values mean-
ing that DrugBank compounds have stronger positive 
feature interrelations than any other chemical data-
base. Z-standardized relative feature tightness (ZRFT), 
a PMI-derived measure that quantifies how tightly the 
query compound set matches the reference compound 
set, is used to characterize five compound sets with 
varying degree of synthetic accessibility. Synthetically 
accessible compounds possess a higher amount of frag-
ment pairs occurring in known molecules. ZRFT pro-
files are compared with the distributions of SYBA [37] 
and SAScore [48], two dedicated models for the estima-
tion of synthetic accessibility. In addition, ZRFT is also 
applied to the classification of compounds as easy (ES) 
or hard (HS) to synthesize and compared to the results 
of the random forest (RF), SYBA and SAScore. Though 
ZRFT classification is inferior to SYBA, SAScore and 
RF, its ability to distinguish between ES and HS com-
pounds is surprisingly high. Therefore, we may con-
clude that compound synthetic accessibility is given, to 
a large extent, by structural feature combinations that 

Table 4 Average pairwise Tanimoto similarities 
−

TC

From each compound set, 5000 compounds are selected randomly and all 
12,497,500 Tanimoto pairwise similarities TC are calculated using MACCS, 
PubChemKey, ECFP4 and ECFP6 fingerprints, were averaged

Compound set MACCS PubChemKey ECFP4 ECFP6

ChEMBL 0.38 0.44 0.12 0.10

DrugBank 0.30 0.32 0.10 0.08

PubChem 0.35 0.40 0.12 0.10

ZINC 0.44 0.45 0.14 0.12
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can be quantified by ZRFT. However, we would like to 
stress that ZRFT is not a dedicated measure of synthetic 
accessibility. Instead, ZRFT is a generic method that 
only detects interrelations between structural feature 
pairs and quantifies their match to interrelations in the 

reference compound set. ZRFT interpretation depends 
on the context. For example, comparing a compound 
with the interrelation profile of synthetically accessible 
compounds will be interpreted differently than compar-
ing it with the interrelation profile of natural products.

Fig. 6 ZRFT profiles and SAScore and SYBA distributions of the nonpher, zinc_random, savi and scubidoo compound sets. The nonpher compound 
set contains HS compounds, zinc_random, savi and scubidoo are the compound sets containing ES compounds. ZRFT profiles are calculated using 
1024-bits ECFP4 fingerprint with merged_dbs as the reference compound set
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For the comparison of chemical databases, PMI inter-
relation profiles (Eq. 4) are favored over ZPMI profiles 
(Eq. 5) because Z-score standardization removes infor-
mation about the absolute PMI values which is usually 

undesirable for this application. On the other hand, 
ZRFT is more suitable for the analysis and predic-
tion of compound properties such as synthetic acces-
sibility. While RFT (Eq.  6) captures the strength of 

Fig. 7 ZRFT profiles and the distribution of SAScore and SYBA of the nonpher_complex, savi_complex, scubidoo_complex and gdb_complex 
compound sets. ZRFT values are calculated using 1024-bits ECFP4 fingerprint with merged_dbs as the reference set. Dashed rectangles highlight the 
regions with interesting SCUBIDOO (green rectangle) and SAVI (blue rectangle) complex compounds
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interrelations in absolute numbers that can vary widely 
depending on the reference interrelation profile, ZRFT 
(Eq. 7) quantifies how well the observed feature pairings 
match the reference interrelation profile in the units of 
standard deviation, leading to better interpretability.

The results presented in the current work indicate that 
structural feature co-occurrence, quantified by PMI or 
ZRFT profiles, contains a significant amount of informa-
tion relevant to physico-chemical properties of organic 
compounds. It must be stressed that neither PMI nor 
ZRFT are models. PMI is simply the representation of 
interrelations between feature pairs within a compound 
set and ZRFT is the measure of a similarity, in terms of 
feature co-occurrences, between two compound sets 
(though ZRFT is not a metric as it is not symmetric). 
This is akin to structural fingerprints, where a finger-
print is the representation of structural features within a 
compound and the Tanimoto coefficient is the measure 
of similarity between two fingerprints. The possible use 
cases of interrelation profiles will be, due to these con-
ceptual parallels, similar to these of binary fingerprints. 
Consequently, feature interrelation profiles can be poten-
tially used to introduce additional information rich layer 
to established fingerprint-based methodologies. How-
ever, the construction of meaningful interrelation profiles 
is computationally intensive, which we perceive as one of 
the biggest limitations of feature interrelation profiling. 

The study of the influence of the number of compounds 
on the interrelation profile (Fig.  3) indicates that the 
number of compounds necessary to yield a meaningful 
interrelation profile is in the order of  105–106 for ECFP 
feature vectors. Finally, the interrelation profile is defined 
by the choice of a feature vector. For an intended use, it 
may not be straightforward to choose the appropriate 
feature vector and it may be required to construct a mul-
titude of different interrelation profiles for different fea-
ture vectors.

In the future, we plan to further experiment with differ-
ent types of feature vectors and to adapt the methodology 
of sparse vectors and matrices in order to decrease com-
putational demands. Furthermore, we will design feature 
vectors with structural features corresponding to specific 
functional groups, pharmacophore features etc. with the 
aim to improve the interpretability of the resulting inter-
relation profiles. Later, we will also investigate the utility 
of hybrid feature vectors containing interrelation profiles 
concatenated with, for example, QAFFP biological finger-
prints [63, 64] or with other features of interest. We plan 
to use interrelation profiling in various cheminformatics 
applications, such as in biological activity classification 
or potency prediction, focused chemical library con-
struction, diversity data selection or ensemble modeling 
using RFT together with domain-specific models for, e.g., 
natural product likeness assessment [65–67]. Given that 

Fig. 8 The example of an oligopeptide with ZRFT = 0.35, SAScore = 9.55 and SYBA = 207.54
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Fig. 9 Correlation between ZRFT, SYBA and SAScore. On the diagonal, distributions of individual SA scores for the nonpher (i.e., HS) and zinc_
random (i.e., ES) compound sets are plotted. Above the diagonal, correlations between all SA score pairs are shown. Below the diagonal, pairwise 
kernel density estimations between all SA score pairs are depicted. Distributions were calculated for 10 000 randomly selected compounds from 
Nonpher and ZINC databases
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interrelation profiles are matrices of numeric values, they 
can also be used to train machine learning models and to 
identify and leverage specific feature interrelations that 
provide most information about the estimated property.
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