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Abstract 

With the rapid improvement of machine translation approaches, neural machine translation has started to play an 
important role in retrosynthesis planning, which finds reasonable synthetic pathways for a target molecule. Previous 
studies showed that utilizing the sequence-to-sequence frameworks of neural machine translation is a promising 
approach to tackle the retrosynthetic planning problem. In this work, we recast the retrosynthetic planning problem 
as a language translation problem using a template-free sequence-to-sequence model. The model is trained in an 
end-to-end and a fully data-driven fashion. Unlike previous models translating the SMILES strings of reactants and 
products, we introduced a new way of representing a chemical reaction based on molecular fragments. It is dem-
onstrated that the new approach yields better prediction results than current state-of-the-art computational meth-
ods. The new approach resolves the major drawbacks of existing retrosynthetic methods such as generating invalid 
SMILES strings. Specifically, our approach predicts highly similar reactant molecules with an accuracy of 57.7%. In 
addition, our method yields more robust predictions than existing methods.
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Background
Although knowledge in organic chemistry has accumu-
lated over decades, designing an efficient synthetic route 
for a target molecule remains a crucial task in organic 
synthesis [1]. The retrosynthetic approach suggests a 
logical synthetic route to generate a target molecule 
from a set of available reactants and reagents [2–4]. This 
approach is both iterative and recursive in nature since a 
sequential computation of retrosynthetic transformation 
is required. Retrosynthetic transformation occurs recur-
sively until much simpler and commercially available 
molecules are identified.

Computational retrosynthetic analysis initially for-
malized in 1969 by Corey and Wipke in an algorithmic 
manner [5]. The algorithm considers all possible discon-
nections with known reaction types, which reduce the 

complexity of a product and progress until chemically 
reasonable pathways are identified. Such disconnections 
were based on handcrafted minimal transformation rules 
known as reaction templates [5–7]. Manual encoding 
of those transformation rules necessitates deep chemi-
cal expertise and intuition. Manual management of syn-
thetic knowledge is a highly complicated task considering 
a large number of transformation rules (> 10,000) that 
must be hand-coded [8–11]. Furthermore, being depend-
ent on reaction templates potentially limits prediction 
accuracy, particularly if a reaction is outside of the tem-
plate domain. Later studies offer valuable help to chem-
ists in finding better routes faster by enabling automated 
extraction of reaction templates [12–18]. However, they 
do not address the above-mentioned limitations inher-
ited from their precedents. Computer-aided synthe-
sis planning has been well summarized in many recent 
reviews [19–24].

Reaction predictor developed by Kayala et  al. [25, 26] 
was the first template-free approach. It was a mechanis-
tic level of strategy that merges the idea of rule-based 

Open Access

Journal of Cheminformatics

*Correspondence:  juyong.lee@kangwon.ac.kr
1 Division of Chemistry and Biochemistry, Department of Chemistry, 
Kangwon National University, Chuncheon, South Korea
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1174-4358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00482-z&domain=pdf


Page 2 of 15Ucak et al. J Cheminform            (2021) 13:4 

modeling and machine learning within its framework. 
Jin et  al. [27] proposed a novel template-free, entirely 
data-driven approach based on the Weisfeiler-Lehman 
networks [28]. Both approaches provide end-to-end solu-
tions to generate candidate products. Theoretical findings 
provided by Cadeddu et  al. [29] have further motivated 
the development of other template-free methods for the 
forward- or retro-reaction prediction tasks using various 
types of neural machine translation (NMT) architectures 
[30–38]. Based on an explicit analogy between sentences 
in a language corpus and molecules in a chemical corpus, 
i.e. chemical space, Cadeddu et al. showed that the rank-
frequency distributions of substructures as the build-
ing blocks of molecules are similar to those of words in 
a natural language corpus. This verification implies that 
the concepts of linguistic analysis are readily applicable 
to tackle the problems of forward- and retro-reaction 
prediction. In this context, a retrosynthetic prediction 
is appropriate for applying the sequence-to-sequence 
framework [39–41] of machine translation.

Sequence-to-sequence learning uses a recurrent neu-
ral network (RNN) layer to map a source sequence of an 
arbitrary length into a fixed dimensional context vector 
consisting of real numbers. The context vector contains 
information about the syntactic and semantic structure 
of the source sequence. In connection with this RNN 
layer, another RNN decodes the context vector to a tar-
get sequence. In this regard, the two RNN units together 
act like a pair of encoder–decoder system. Sutskever 
et al. [41] showed that long short-term memory (LSTM) 
[42]-based architectures can solve general sequence-
to-sequence problems because of their ability to handle 
long-range relations in sequences. Liu et  al. [34] pro-
posed the first multi-layered LSTM-based sequence-to-
sequence model for retrosynthetic prediction. Its gated 
recurrent unit (GRU) [39] variant was proposed by Nam 
and Kim [32] for the forward reaction prediction.

Recently, the best performing NMT models include 
an attention mechanism [40, 43] as a part of their neu-
ral architectures to enhance their performances on 
longer sentences [27, 32–34]. There are also retrosyn-
thetic predictors built on the Transformer architecture 
[31, 37, 44–46], based solely on the attention mechanism. 
Encoder–decoder models, especially once an attention 
mechanism is introduced, all employ similar strategies to 
handle a translation task. The SMILES representations of 
molecular structures are typical inputs for the sequence-
to-sequence based models. However, none of the previ-
ously reported models has focused on translation at a 
substructural, fragment, level.

In this paper, we propose a template-free approach 
for retrosynthetic reaction prediction by learning the 

chemical change at a substructural level. Our approach 
represents a molecule as a sentence based on a set of 
substructures corresponding to a word by using the 
MACCS keys [47]. We also present a unique tokeniza-
tion scheme that properly eliminates problematic issues 
originate from SMILES-based tokenization. Our model 
consists of bidirectional LSTM cells [48], and is trained 
in a fully data-driven and end-to-end fashion without 
prior reaction class information. We thoroughly discuss 
all the aspects of our methodology, including dataset 
and descriptor curation steps. Evaluation results are pre-
sented based on three datasets derived from the United 
States Patent and Trademark Office (USPTO) reaction 
dataset [49].

This paper is organized as follows. In "Method" sec-
tion, we suggest a new way of tokenization followed by 
curation together with the analysis of the dataset and 
descriptor. We briefly describe the model architecture 
and evaluation procedure for accuracy calculations. In 
"Results and discussion" section, the results of a set of 
translation experiments are discussed with an emphasis 
on the benefits of the MACCS key-based molecular rep-
resentation. Finally, the strengths and limitations of our 
approach are concluded in "Conclusion" section.

Method
Dataset
In this study, we used the filtered US patent reaction 
dataset, USPTO, which is obtained with a text-min-
ing approach [49, 50]. Schwaller et  al. [33] eliminated 
the duplicated reaction strings in the dataset without 
atom-mapping. They also removed 780 reactions due to 
SMILES canonicalization failures with RDKit [51]. The 
inherent limitation of the data is that the vast majority 
of entries are single product reactions. Thus, only single 
product cases corresponding to 92% of the dataset are 
used in this study.

The SMILES line notation [52] represents molecular 
structures as a linear sequence of letters, numbers, and 
symbols. Hence, from a linguistic perspective, SMILES 
can be regarded as a language with grammatical speci-
fications. However, in our approach, molecules are rep-
resented as a set of fragments using the MACCS keys 
consisting of 166 pre-defined substructures [47]. This 
binary bit-based molecular descriptor converts a mol-
ecule into a 166 bit vector, in which each bit indicates the 
presence of a feature taken from a predefined dictionary 
of SMARTS patterns [53].

Descriptor curation
In our approach, a molecule is represented as a set 
of fragments using the MACCS keys. The number of 
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occurrences of each MACCS key in our dataset was 
investigated. Also, we compared the results obtained for 
1 million randomly sampled drug-like small molecules, a 
subset of the Generated Data Base-13 (GDB-13) consist-
ing of 975 million molecules [54, 55]. Figure 1 shows the 
normalized frequency distributions of the MACCS keys 
on both databases. A direct pairwise comparison ration-
alizes reducing the number of MACCS keys (Fig.  1). In 
this study, five keys that never occurred and nine keys 
that are not frequently observed in the USPTO database 
are omitted. Based on the comparison, additional 26 keys 
that are never or hardly ever observed in the GDB-13 
database are also excluded.

The molecules belong to different compound databases, 
such as drug-like or natural products, exhibit different 
characteristics in their fingerprint profiles. Thus, we nar-
rowed our analysis to drug-like molecules and modified 
our fingerprint representation accordingly by tuning it 
with 1 million drug-like small molecules in GDB-13. 
Removing redundant keys based on the occurrence anal-
ysis has apparent advantages. It shortens the lengths of 
source and target sentences and provides a better rank 
distribution of the keys used in the translation process. 
In our approach, every molecule is represented by 126 
MACCS keys, which are able to represent 98% of the 1 

million randomly sampled subset of GDB-13 adequately. 
In machine translation tasks that chemists are dealing 
with, source and target molecules are placeholders corre-
sponding to reactants and products interchangeably. The 
selection is dependent on the intended analysis. For a ret-
rosynthetic prediction task, source and target sentences 
refer to products and reactants, respectively.

Reaction preprocessing
Our model considers only the non-zero indices of 
curated MACCS keys. English letters were assigned to 
the ranked non-zero MACCS keys based on their ranks 
of frequencies to form unique artificial “words”. This fur-
ther encoding transforms product and reactant sen-
tences into the frequency-based sorted version of the 
lettered keys, which imply position-wise information 
of the words, and make our scheme suitable for using 
the sequence-to-sequence architecture. Single-lettered 
words were generated using the upper- and lower-cases 
of the most frequent 21 letters in English. Double-let-
tered words were constructed by adding “x” and “z” for 
every 42 single letters, which allowed us to cover all 126 
MACCS keys. Thus, our lettered fragment vocabulary 
has a fixed length of 126. The generation process of an 

Fig. 1 Descriptor curation based on the rate of occurrences. Filtered US patent reaction dataset and 1 million randomly sampled drug-like small 
molecules as a subset of the enumerated database (GDB-13) are compared to investigate the MACCS keys probability distribution profiles
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example product–reactant pair is illustrated in Fig. 2. The 
same procedure was applied to all reactions of the data-
set. The complete mappings of the MACCS keys to artifi-
cial words are listed in Additional file 1.

The MACCS non-zero indices serve as good tokens and 
inputs for an LSTM model. The model further encodes 
the products and reactants into “language representa-
tion” by assigning one or two letters to each index in the 
MACCS keys. Applying further encoding is efficient, par-
ticularly given the relatively small size of curated MACCS 
keys. It gives a rank-order, enhances readability, and pro-
vides visual comprehension.

Reaction dataset curation
The product–reactant pair dataset was further curated 
before being processed by our translation machine. After 
representing every molecule with the 126 truncated 
MACCS keys, a series of filters were applied to remove 
identical product–reactant pairs and internal twins. 
Internal twins are the pair of data entries whose prod-
uct and reactant sentences are identical. They appeared 
whenever the chemical changes were beyond the sensi-
tivity of our MACCS key-based representation. Because 
we associate molecules with MACCS keys to operate 

on a substructural subspace, a certain amount of infor-
mation is lost. Our preprocessing procedure resulted in 
5748 internal twins, and they are removed from our data-
set. In addition, the reactions with three or more reac-
tants were excluded. The length of the longest pair was 
set to 100 to avoid lengthy fragment sequences, as shown 
in Additional file 2: Figure S1.

The product–reactant pairs were then put into an 
injective map generator to guarantee one-to-one cor-
respondence between product and reactant sentences. 
If a reactant sentence is composed of two reactants, 
we sorted them in descending order according to their 
sequence length. Reactants were separated by the “–” 
sign. The curated dataset, containing a total of 352,546 
product–reactant pairs, was further subdivided by the 
number of the reactant molecules in each pair into two 
disjoint subsets: single reactant and double reactant data-
sets. Organizing the dataset in this manner was essential 
to assess model performance independently. These data 
sets are freely available online, and curation steps along 
with the dataset sizes are summarized in Fig. 3.

Model architecture
Our sequence-to-sequence neural network comprises 
two bidirectional LSTMs: one for an encoder and the 

Fig. 2 Data preparation procedure to obtain product and reactant sentences for a retrosynthetic prediction task
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other for a decoder. Besides, we used unidirectional 
LSTMs to quantify the improvement in model’s perfor-
mance with the use of bidirectional LSTMs. The encoder 
and decoder layers were connected through Luong’s 
global attention mechanism [56], which captures non-
local relations between all elements of source sequences. 
The attention mechanism allows neural networks to 
focus on different parts of a source sentence, and to 
consider non-linear relationships between words dur-
ing a training process. The global attention mechanism 
used in this study, in essence, is similar to the first atten-
tion mechanism suggested by Bahdanau et  al. [40], for 
machine translation tasks. The global approach focuses 
the “attention” on all the words on the source sentence to 
compute a global context vector for each target word at 
each time step in the decoder unit. Therefore, the global 
context vector represents the weighted sum over all the 
source hidden states. This context information leads to 
improved prediction accuracy.

Training details
Our curated datasets were randomly split into 9:1 to 
generate training and testing sets. The validation sets 
were randomly sampled from training sets (10%). The 
word embeddings were used to represent lettered frag-
ments in the vocabulary. After the embedding layer was 
created, a trainable tensor holding 126-dimensional 
fixed-length dense vectors was randomly initialized. A 
method of embedding class then accessed the embedding 
of each word through a lookup on the tensor. We used 
the stochastic gradient descent algorithm [57] to train all 
parameters of the encoder–decoder model. The cross-
entropy function was used as a loss function.

For each dataset, we performed a series of tests within 
the range of hyper-parameter space as described in Addi-
tional file  8: Table  S1, to achieve optimal performance. 
Based on the preliminary experiments, we generated an 
encoder and a decoder with two Bi-LSTM layers contain-
ing 2000 hidden units at each layer. A dropout layer with 
a dropout rate of 0.1 was included following the hidden 
layer to avoid overfitting. To avoid a potential explod-
ing gradient problem, we introduced gradient clipping 
[58] to guarantee that the norm of the gradients did not 
exceed a threshold (0.25) during backpropagation. The 
initial learning rate was set to 4.0, and it decayed with a 
factor of 0.85 every three epochs [33].

With these hyper-parameters, the average training 
speed was approximately 3300 words per second, with a 
batch size of 64 on a single NVIDIA RTX 2080Ti GPU 
card. Larger batch sizes were not tested due to memory 
constraints, which likewise apply to the hidden layer’s 
size. We trained our models for a minimum of 30 epochs, 
and each epoch took about 2 h for the curated dataset 
consisting of 320 K sentence pairs. The details of our 
key hyper-parameters are available in Additional file  8: 
Table S1.

Our model was implemented in Python version 3.6.8 
together with PyTorch [59] version 1.3.0. The open-
source RDKit module version 2020.03.1 [51] was utilized 
to obtain MACCS keys and similarity maps [60].

Evaluation procedure
Association coefficients such as Tanimoto, Sörensen–
Dice, and asymmetric Tversky indexes are considered 
efficient similarity measures for structural similarity 
benchmarks, and thus they are widely used. To evalu-
ate the performance of our retrosynthetic model, the 
Tanimoto coefficient was selected as a similarity met-
ric, which is identified as one of the best metrics to 
compute structural similarity [61]. Pairwise similari-
ties between the predicted sequences and ground truth 

Fig. 3 Dataset curation process and obtaining training/test pairs. P 
Product, R Reactant. Details to the different steps are given in the text
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of all test molecules were calculated. Tanimoto coef-
ficient ( Tc ) measured between two chemical struc-
tures have a value between 0 and 1. The coefficient is 
zero if molecules share no common fragments while 
identical molecules have a Tanimoto coefficient of 
unity. Though these are the cases for the two ends of 
the Tanimoto similarity metric, there is no single crite-
rion that defines similar and non-similar molecules. We 
defined three threshold values (0.50, 0.70, and 0.85) to 
assess the quality of translation experiments. The simi-
larity between predicted and ground truth sentences 
was computed at the end of each epoch for every pair 
appear in the validation set using the Tanimoto similar-
ity measure (Eq. 1).

(1)Tc(R,P) =

∑

i

RiPi

∑

i

(Ri)
2
+

∑

i

(Pi)
2
−

∑

i
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Our machine yields predictions either with one or 
two reactants as all reactions are contained in the com-
bined dataset. There are thus multiple possibilities for 
comparing predicted sequences with ground truths. 
The potential pairs for evaluation corresponding to 
the number of reactants are listed in Table  1. Tani-
moto similarities between all possible pairs of predicted 
sequences and ground truths were calculated. Then, the 
pair(s) with the highest similarity was selected based on 
the assumption that more similar structures are more 
likely to be matched.

Results and discussion
Prediction accuracy
The performance of our model was assessed based on 
three datasets: single reactant, double reactant, and the 
combined test set. Evaluation results on the test sets 
are summarized in Table  2. The quality of predictions 
of each test dataset is expressed in terms of pairwise 
Tanimoto similarity values. We introduced three cri-
teria for evaluating the success rates of our translation 
models: (1) the number of exact matches ( Tc = 1.0 ), 
(2) the number of bioactively similar matches 
( 0.85 < Tc < 1.00 ) and (3) the overall success rate pre-
sented as the average Tanimoto similarity between pre-
dicted and true sequences (a series of fragments) over 

all the test molecules.
For the single reactant reactions, our bidirectional-

LSTM model achieved an accuracy of 57.7% based 
upon the combined use of the first two criteria. The 

Table 1 The possible pairs between  predicted sequences 
and ground truths are presented

The similarity of each pair is computed with the Eq. 1

Ground truth Predictions List of possible pairs

P → R A + R B P → P A + P B [(RAPA ; RBPB ), ( RAPB ; 
RBPA)]

P → P C [RAPC , RBPC]

P → R C P → P A + P B [RCPA , RCPB]

P → P C [RCPC]

Table 2 Success rate over molecules on three test datasets

a  Bioactively similar molecules
b  Average similarity

Datasets
Single Double All

Size

88,151 229,141 317,292

9794 25,460 35,254

9794 50,911 55,958

74 73 74

Success rate

Bi-LSTM

29.0% 27.9% 25.3%

28.7% 10.5% 12.9%

0.84 0.66 0.68

LSTM

22.9% 21.6% 19.4%

29.7% 10.2% 12.5%

0.82 0.62 0.64
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percentages of exact and bioactively similar matches 
were 29.0% and 28.7%, respectively. The average Tc value 
between predicted and true sequences was 0.84. These 
results demonstrate that our machine predicts single 
reactant reactions with high accuracy. For the double 
reactant reactions, the success rate of the exact matches 
(27.9%) was almost identical to that of the single reactant 
reactions. However, the success rate of highly similar pre-
dictions deteriorated to 10.5% from 28.5%. For the com-
bined set, 25.3% of predictions were accurate, and 12.9% 
of them were highly similar. Similarly, the average Tc val-
ues dropped from 0.84 to 0.66 and 0.68 for datasets con-
taining double and combined reactants.

One reason for the worse accuracy of the double and 
combined sets is that the “–” sign should be appropriately 
predicted. Another reason is the frequent occurrence 
of small molecules represented with a small number of 
MACCS keys in these datasets. In fact, 477 molecules 
represented with less than 7 MACCS keys appeared 
in 61822 different reactions. To be more specific, 3944 
reactions contain a reactant represented with one of the 
seven MACCS keys described in Additional file 3: Figure 
S2. The number of unique structures corresponding to 
those keys was, however, only 29. Because such small and 
simple structures were dense in these datasets, wrongly 
predicted fragments contributed significantly (a value of 
zero in 1-bit cases) to the success rate.

Our result also demonstrates that the bidirectional 
LSTM-based model outperforms the unidirectional 
LSTM-based model. The success rates of exact matches 
become lower by about 6% for all the datasets consist-
ently. This is possibly due to the fact that our MACCS 
key-based representation of a molecule does not depend 
on the order of keys. In other words, most information 
about molecules and chemical reactions are embedded 
into the co-occurences of keys.

Global vs. local attention
We investigated the model performance on longer 
sequences with both global and local attention mecha-
nisms. As a matter of fact, it may not be practical to 
use Luong’s global attention  [56] for longer sequences 

since it has to attend to all words on the encoder side for 
each target word. For our dataset, the average length of 
a reactant–product pair is 74. To investigate if the local 
attention may improve prediction quality, we augment 
the dataset with more complex molecules, and perform 
experiments by applying both the local and global atten-
tion mechanisms. As shown in Table  3, the local atten-
tion mechanism yields marginally better results than 
the global attention mechanism for longer sequences, 
containing more than 100 fragments. However, the per-
formance of the model trained with sequences up to 
100 fragments do not improve with the local attention 
mechanism.

Comparison with existing models
We compared the prediction accuracy of our approach 
with other retrosynthetic prediction methods without 
considering reaction class labels because no prior reac-
tion class information was provided to our model. Several 
recent reports summarized the prediction accuracy of 
various models [37, 62]. According to reproduced results 
presented by Lin et al. [37], Top-1 accuracy ranges from 
28.3% (Liu et al. [34] LSTM model over the USPTO 50 K 
dataset) to 54.1% (Transformer model over the USPTO 
MIT dataset by Lin et al. [37]). In the most recent report 
by Tetko et  al. [46], an augmented Transformer model 
has reached Top-1 accuracy of 53.5% trained with 100 
times augmented USPTO-50 K dataset with beam size 
10. Tetko et  al. also trained their model using a fivefold 
augmented filtered USPTO-full training set, approx. 
3.8M training data, and Top-1 accuracy is reported as 
46.2%. These results are superior to our model’s predic-
tive accuracy of perfect predictions, 29%, but inferior 
overall, 57.7%, if highly similar predictions are consid-
ered. As an alternative approach, Coley’s similarity-based 
model [63] achieved a Top-1 accuracy of 37.3% on the 
USPTO 50 K dataset.

Table 3 Comparison of model accuracy based on selected 
attention mechanism on combined datasets

Maximum reactant–product pair length

100 120 140 160

Dataset size 350 K 489 K 588 K 637 K

Testset size 55 K 79 K 96 K 105 K

Global ( Tc ≥ 0.85) 38.2% 37.5% 37.2% 37.2%

Local ( Tc ≥ 0.85) 38.3% 39.6% 38.6% 38.6%

Table 4 Comparison of model accuracy on single reactant 
reaction dataset using ECFP and MACCS keys

MACCS ECFP (Radius, nBits)

1,1024 1,2048 2,1024 2,2048

Encoder 126 1024 2016 1024 2048

Decoder 126 1024 2027 1024 2048

Ave. length 74 56 56 74 74

Accuracy

Tc = 1.0 29.0% 35.6% 37.6% 9.1% 10.1%

Tc ≥ 0.85 57.7% 50.7% 52.0% 28.4% 30.0%

Tc 0.84 0.80 0.80 0.66 0.66
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Fingerprint dependency
We trained our Bi-LSTM model with Extended Connec-
tivity Fingerprints (ECFP, Morgan fingerprint as RDKit 
implementation) on the single reactant reaction dataset 
following the same preprocessing steps. We selected four 
types of ECFP with a fixed-length folding of 1024 and 
2048 bits (nBits), and for a radius of 1 and 2. Compared 
to the MACCS key-based model, the models trained 
with the ECFP with a radius of 1 are showing higher 
percentage of exact matches (see Table  4). The highest 
percentage of exact matches is observed with the model 
with ECFP of radius 1 and nBits 2048. The percentage 
increased by 8.6% compared to the MACCS key-based 
model. However, the percentage of bioactively similar 
reactions, Tc ≥ 0.85, 52%, remains comparable to that of 
the MACCS key-based model, 57.7%. These results sug-
gest that ECFP with a radius of 1 provides better resolu-
tion than the MACCS keys.

However, the models trained with ECFP with a radius 
of 2 show dramatic decreases in accuracy of the exact 
matches, 9.1% and 10.1%. To identify the origin of such 
performance drop, we performed further analysis of frag-
ments embedded in one bit of ECFP of various radii over 
the single reactant reaction dataset. The numbers of sub-
structures associated with bits activated by atom environ-
ments of radius 1 and 2 are investigated (see Additional 

file 4: Figure S3). The set of regular expressions embed-
ded in one token becomes more complex, suggesting 
that the recognition of chemical changes becomes more 
challenging in the same dataset. From the analysis, it is 
identified that the model becomes confused due to a high 
number of fragments embedded in one bit. With a radius 
of 1, each bit of ECFP contains 11 fragments on average. 
However, with a radius of 2, each bit includes 113 frag-
ments on average, i.e., a large degeneracy of each bit. This 
large degeneracy makes the patterns of bits of chemical 
reactions highly complicated, which becomes too hard 
to learn. These analyses suggest that curating the optimal 
set of fragments and their proper representations is criti-
cal in improving retrosynthesis prediction quality.

Learning behavior
To identify how our model learns the grammar of chemi-
cal reactions, the evolution of prediction accuracy with 
respect to threshold values along training epoch for the 
single reactant validation set is illustrated in Fig.  4. In 
particular, it is demonstrated that the network success-
fully learned reaction rules by capturing the alterations of 
molecules at a substructural level. The number of exact 
matches ( Tc = 1.0 ) increased rapidly during the first 10 
epochs. After 20 epochs, the value became almost tri-
pled. The likelihood of making a better prediction for 

Fig. 4 Number of matches at different ranges of similarity.  Tc refers to Tanimoto similarity coefficient
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each fragment becomes higher during training. This is a 
clear indication of successful training. The improvement 
in exact matches appears to be a result of the respective 
declines in non-exact matches except extremely bad pre-
dictions ( Tc < 0.50 ). The quality of bad predictions (ca. 
5% of the validation set) did not improve probably due to 
the insufficient information, complexity, and noise con-
tained in the data. This observation similarly repeated for 
all the other datasets.

Similarity measure dependency
As an extension of our Tanimoto-based analyses, the 
effects of using other similarity metrics on our model’s 
accuracy is investigated. We select the Sörensen–Dice 
similarity as a special case of the Tversky index, and 
three asymmetric Tversky variants that include α and β 
parameters. As illustrated in Additional file 5: Figure S4, 
we find that the model performance remains independ-
ent regardless of the choice of similarity metric. The 
number of similar molecules, however, changes across 
different regions based on how similarity is quantified. 
The Sörensen–Dice similarity behaves in a similar way as 
Tversky index when parameters α and β are 0.1 and 0.9, 
respectively. Predicted sequences make larger contribu-
tions to their similarity to true sequences with smaller 
values of α.

Examples of retrosynthetic predictions
In this study, we assumed that candidate reactants with 
Tc > 0.85 are similar enough to their true counterparts. 
To validate this assumption, we assessed the quality of 
candidate reactants by comparing them with true reac-
tants. We investigated whether the following factors were 
correct: functional group interconversion (FGI) or bond 
disconnection, reactive functional group, and core struc-
ture. The accuracy of side-substituents is regarded as 
less significant for matching the reactants’ functionality, 
especially when they are simple alkyls. Randomly chosen 
predictions exemplifying possible prediction cases are 
presented in Fig. 5. Similarity maps are presented to visu-
alize similarities between candidates and true reactants.

Reaction 1 resulted in a reactant where the main chain 
composed of eight carbons, and an α,β-unsaturated alde-
hyde group in the correct position was derived accurately 
(Fig.  5). Although an ester was expected rather than an 
aldehyde, an aldehyde reduction could also provide the 
same target alcohol. This indicates that our prediction 
identified the functional group interconversion correctly. 
On the other hand, one olefin was missing and the posi-
tion and number of two methyl groups out of four were 
misinterpreted. In reaction 2, aside from the location of 

an ester group, core heterocyclic rings, pyridine and thia-
zole, and their connections were accurately generated. In 
the true reactant, a methyl ester group was attached to C6 
of pyridine, whereas the ethyl ester group was attached to 
C4 of the thiazole ring in our candidate. If the position 
of the ethyl ester group was accurate, it would require a 
single-step reduction to obtain alcohol group. In reaction 
3, the core structure of pyrazole ring and its methyl ester 
group were predicted accurately. However, there was no 
chloride, one of the reactive functional groups, and sub-
stituents on the pyrazole ring as well as structure of thiol 
were misinterpreted.

The result of reaction 4 showed that our model cor-
rectly predicted the core structures, bond disconnec-
tions, and reactive functional groups. However, the 
number and position of halides were wrong. In the case 
of reaction 5, one reactant was predicted precisely, but 
the other was partially incorrect. In wrongly predicted 
candidate, a (phenyl)methyl group appeared instead of 
a (2-naphthyl)vinyl group, but the reactive functional 
group, acylhydrazine, was correctly produced. The result 
of reaction 6 revealed the exact match for N-Hydroxyph-
talimide as a precursor for O-hydroxylamine. However, 
the structure of the alkyl halide lacked a phenylene group. 
The core structure estimation failed to a great extent for 
this reaction. On the other hand, the reactive functional 
groups and bond disconnection are suggested correctly.

The quantitative summary of the assessment above 
is given in Table  5. The three criteria: functional group 
interconversion or bond disconnection, core structure, 
and reactive functional group are weighted equally. They 
are utilized to form a chemically reasonable score along 
with similarity scores. The evaluation was carried out by 
following procedure. First, we identified less significant 
parts of candidate molecules by comparing them with the 
product and true reactants. Second, core structures were 
identified; true reactants were separated into fragments, 
e.g., functional group, chain, ring. Afterwards, each 
fragment of a candidate molecule was evaluated against 
fragments found in second step in terms of the core 
structure, type and positions of side-substituents in an 
equally weighted manner. Finally, equal weight was given 
to the correctness of fragments’ positions within candi-
date reactants. Concerning the core structure, the longest 
chain of carbons and/or a ring, either of which may pos-
sess heteroatoms such as O, N, S, were taken into account 
together with important side-substituents and their posi-
tions. Because functional group interconversion or bond 
disconnection as well as reactive functional groups are 
the most significant factors of retrosynthetic analysis, the 
correct positions of reacting sites are scored strictly as 
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Fig. 5 Non-exact candidates varied in their degree of similarity. *Similarity score calculations and similarity maps using the Morgan fingerprints and 
the Tanimoto metric are shown. Colors indicate atom-level contributions to the overall similarity (green: increases similarity score, red: decreases 
similarity score, uncolored: has no effect
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true/false values corresponding to 1 and 0, respectively. 
We scored each candidate reactant individually and aver-
aged the results to obtain a final score for each criterion.

It is noticeable that our model correctly predicted func-
tional group interconversion or bond disconnection of all 
six reactions. Except for reaction 3, reactive functional 
groups are correctly reflected. We observe that predic-
tion errors that affect the score are mainly associated 
with core structures. We applied this knowledge-based 
scoring strategy to a more specific set containing ten ran-
domly chosen reactions where candidate reactants, on 
average, lies within bioactively similar region  (Tc = 0.87) 
(Additional file  6: Figure S5A, Additional file  7: Figure 
S5B and Additional file  8: Table  S2). The results clearly 
show that our model is highly accurate in predicting 
functional group interconversion or bond disconnection 
as well as reactive functional group for bioactively simi-
lar reactant candidates. A similar argument can also be 
made regarding the prediction errors, since they mainly 
originate from core structures.

The chemical inspection of reactions indicates that 
average similarity scores and knowledge-based scores 
are closely related. Our scoring approach offers a clear 
idea about the quality of candidate reactants and simi-
larity scores are in good agreement with those manually 
inspected. Similarity measurements yield lower scores 
than knowledge-based scores possibly due to the inclu-
sion of side chains and geometrical factors (more detailed 
topological exploration is provided by Morgan finger-
print). Although the interpretation of the similarity score 
is rather difficult to assess objectively, it can be used 
for assessing the quality of retrosynthetic predictions. 
Higher similarity scores indicate that the desired mol-
ecules are more synthetically accessible according to the 
rules of organic chemistry.

Characteristics of our model
The key advantage of our word-based MACCS keys 
model over the character-based SMILES methods is that 
the network needs to learn relatively simpler grammati-
cal rules: ascending order and co-occurence of keys, to 
yield meaningful results. In the SMILES-based methods, 
a network has to comprehend not only the complicated 
grammar of SMILES but also the canonical representa-
tion to predict synthetically correct sequences. As sum-
marized by Liu et  al. [34], the difficulty of learning the 
syntactic structure of SMILES notation possibly causes 
problematic outcomes such as invalid SMILES strings. In 
general, existing character-based models suffer from the 
generation of literally invalid, literally valid but chemi-
cally unreasonable, or literally and chemically valid but 
unfeasible candidates. We avoided this problem by pro-
jecting the SMILES representation of a molecular struc-
ture into a substructural domain. Our approach can be 
an effective solution to these technical problems at a fun-
damental level.

In general, the likelihood of making correct retrosyn-
thetic predictions remains rather low. Indeed, the accu-
racy of retrosynthetic planning tasks is twice as much 
lower than the level of accuracy achieved at forward 
reaction prediction tasks [17, 27, 31]. This is especially 
true assuming that several possible synthetic routes are 
available for the forward reaction. It is worth noting that 
the content of the dataset used in the reverse mapping, 
could also be responsible for the network’s behavior [62]. 
Mapping a reactant from a reactant domain to a prod-
uct domain and then reversing it does not necessarily 
produce the original reactant considering the level of 
abstraction used to describe the molecules in our data-
set. There is a chance that the presence of one-to-many 
mappings from a product to a reactant domain may cre-
ate confusion during the learning process. Equipped with 

Table 5 Summary of quality assessment of candidate reactants

a  The functional group interconversion (FGI) or bond disconnection and reactive functional group columns represent the correctness in a True(1)/False(0) fashion
b  The core structure column presents the averaged accuracy of the core structures of candidate molecules by capturing the correctness of core structures themselves 
as well as the type and positions of side-substituents. The source of errors are given inside the parenthesis e.g., “C2=0.33, 2/3 fragments” implies that the accuracy of 
candidate reactant 2 is 0.33 because 2 out of 3 fragments are wrongly predicted. C1: Candidate 1, C2: Candidate 2
c  The average of the three criteria
d  The averaged  Tc values of candidate reactants

Reaction 
number

FGI or bond 
 disconnectiona

Core  structureb Reactive functional group Avg.c Tc
d

1 1.00 0.33 (2/3 fragments) 1.00 0.78 0.64

2 1.00 0.67 (1/3 fragment’s positions) 1.00 0.89 0.85

3 1.00 0.69 (C1 = 0.88, fragment’s side subst.; C2 = 0.5, 1/2 fragments) 0.50 (1 for thiol, 0 for chloride) 0.73 0.57

4 1.00 0.96 (C1 = 0.92, position of side subst.; C2 = 1.0, Cl is omitted) 1.00 0.99 0.87

5 1.00 0.83 (C1 = 0.67,1/3 fragments; C2 is exact) 1.00 0.94 0.84

6 1.00 0.67 (C1 is exact; C2 = 0.33, 2/3 fragments) 1.00 0.89 0.73
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these observations, a simple idea is adopted to assure a 
stronger pairwise functional relationship between the 
domains. To achieve this, we identified all one-to-many 
mappings and collapsed them into an injective mapping 
(see Fig. 3, "Reaction dataset curation" section) by select-
ing the molecule with the shortest sequence length (pre-
sumably the reactants with the lowest level of structural 
complexity).

Notably, our model yields robust predictions. For each 
independent run of the same input molecule, our model 
gives the same output consistently. This robustness of 
our model may be due to the low complexity and good 
interpretability of our molecular descriptor. Generally, 
retrosynthetic models have employed the top-N accuracy 
score to assess overall model performances [11, 34–37, 
45, 63]. However, as recently discussed by Schwaller [38], 
top-N accuracy score may not be an adequate metric 
for assessing retrosynthetic models because with each 
suggestion, the model tends to yield expected answers 
from the dataset rather than making chemically more 
meaningful predictions. Although MACCS keys have 
been criticized for their poor performance on similar-
ity benchmarks [64], an advantage of such descriptor is 
that there is an one-to-one correspondence between a bit 
and a substructure compared to fingerprints obtained by 
an exhaustive generation algorithm followed by a hash-
ing procedure. Thus, MACCS keys were a natural choice 
to test the proof-of-concept level of our translation 
methodology.

The diversity of reactant candidates is one of the 
important aspects of a retrosynthesis prediction. In the 
recently published paper [46], the diversity of the reac-
tant candidates is discussed within the context of top-5 
performance analysis. One of the goals of a retrosynthetic 
model is to obtain multiple precursor suggestions, and 
the top-N approach may suggest other probable reactant 
candidates. Our model is robust in terms of the number 
of predictions made, i.e., always yields the identical pre-
diction, resulting in an absence from the top-N concept. 
However, our model has a certain level of flexibility. Since 
the model predicts fingerprints instead of the exact struc-
tures, multiple structures can be retrieved for a predicted 
sequence. We verify that the average number of mol-
ecules represented with the same modified (126-keys) 
MACCS keys are three within 154 million compounds in 
PubChem. In other words, we could find three valid reac-
tant candidates on average using PubChem. This leads to 
a flexible interpretation because choices between reac-
tion candidates enable us to use chemical expertise and 
intuition.

By design, our model predicts the MACCS keys rep-
resentations rather than SMILES strings. Converting 
predicted sequences of structural fingerprints to valid 

molecules requires a dictionary to look up the reactant 
candidates that match the fingerprint. Fortunately, for 
MACCS keys, the reference SMARTS value of any bit 
is preserved during translation. Unlike hash-based fin-
gerprints, there is always a one-to-one correspondence 
between a key and its definition. We, therefore, take 
advantage of using a fingerprint built upon the prede-
fined substructures and constructed a lookup table using 
the USPTO [49] and PubChem [65] databases to retrieve 
the molecules that match with predicted MACCS keys. 
If a perfect match is not found from the table, the clos-
est match is selected as the candidate of a real molecule. 
Each object within the lookup table contains SMILES, 
MACCS keys, and “language representation” in our 
retrieval mechanism. A query is sent based on the “lan-
guage representation”.

We investigated the success rate of retrieving a reactant 
candidate within the PubChem database (Table 6). More 
than 20 K medium length reactant predictions were com-
pared with 154 million molecules of the database. Sixty-
two percent of predictions matched with the existing 
molecules. The success rate increased to 91% when up 
to 2 key difference was allowed. Considering the aver-
age length of keys, 42, this difference corresponds to  Tc 
of 0.94, which is reasonably high enough. Also, the maxi-
mum number of discrepant keys is four, corresponding to 
a  Tc of 0.9. In other words, all predicted reactants were 
successfully retrieved from the database with up to 4 dis-
crepant keys,  Tc  >  0.9. In summary, these results dem-
onstrate that our approach is practical enough because 
all predicted reactants could find the exact molecules or 
highly similar molecules with a  Tc threshold of 0.94.

Figure 6 depicts the seven candidates for the first reac-
tant of the fourth reaction in Fig.  5 retrieved from the 
USPTO reaction dataset. All of the seven candidates 
are associated with different reactions in the database. 
The MACCS key representation of the retrieved mol-
ecules are identical. This implies that it is possible to find 
more than one match corresponding to the predicted 

Table 6 Success rate of  retrieving a  reactant candidate 
from the PubChem database

Average length of a molecule in PubChem DB is 42. Test set size = 21,827, 
PubChemDB size is approximately 154 M

Tanimoto coefficient Ratio (%) No. 
of discrepant 
keys

1.00 62 None

≥.97 70 1

≥.94 91 2

≥.90 100 3 or 4
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sequence. These closely related analogs can be ordered by 
computing the Tanimoto coefficients using path-based or 
circular fingerprints as they will be different for the same 
set. For this purpose, we used the circular fingerprint [66] 
with radius 2 as a bit vector. We selected the molecule 
with the highest similarity value among candidates as our 
final result.

Conclusion
We developed a sequence-to-sequence NMT model to 
extract the reaction rules of a chemical reaction auto-
matically by learning the relationships at substructural 
level. By constructing an abstract language with a small 
size fixed-length vocabulary of non-zero elements of 
MACCS keys, three conceptual problems are addressed 
and resolved jointly: (1) erratic predictions: SMILES-
based representation makes model outcomes prone 
to error, (2) synthetic availability: predicted molecules 
may not be synthetically accessible, and (3) top-N accu-
racy metric: suggestions made by the model may vary 
by model run. The comparison and quality inspec-
tions showed that our method successfully produced 
candidate reactants within a region 0.90 <  Tc ≤ 1.00, 
achieving a high level of overall accuracy, particularly 
at functional group interconversion or bond disconnec-
tions and reactive functional groups. We believe that 
this proposed approach has a high potential for broad 
applications in organic chemistry. For the future ver-
sion, it is essential to develop a better defined structural 
key suitable for reaction prediction purposes.
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