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LigGrep: a tool for filtering docked poses 
to improve virtual‑screening hit rates
Emily J. Ha1, Cara T. Lwin2 and Jacob D. Durrant2* 

Abstract 

Structure-based virtual screening (VS) uses computer docking to prioritize candidate small-molecule ligands for sub-
sequent experimental testing. Docking programs evaluate molecular binding in part by predicting the geometry with 
which a given compound might bind a target receptor (e.g., the docked “pose” relative to a protein target). Candidate 
ligands predicted to participate in the same intermolecular interactions typical of known ligands (or ligands that bind 
related proteins) are arguably more likely to be true binders. Some docking programs allow users to apply constraints 
during the docking process with the goal of prioritizing these critical interactions. But these programs often have 
restrictive and/or expensive licenses, and many popular open-source docking programs (e.g., AutoDock Vina) lack this 
important functionality. We present LigGrep, a free, open-source program that addresses this limitation. As input, Lig-
Grep accepts a protein receptor file, a directory containing many docked-compound files, and a list of user-specified 
filters describing critical receptor/ligand interactions. LigGrep evaluates each docked pose and outputs the names of 
the compounds with poses that pass all filters. To demonstrate utility, we show that LigGrep can improve the hit rates 
of test VS targeting H. sapiens poly(ADPribose) polymerase 1 (HsPARP1), H. sapiens peptidyl-prolyl cis-trans isomerase 
NIMA-interacting 1 (HsPin1p), and S. cerevisiae hexokinase-2 (ScHxk2p). We hope that LigGrep will be a useful tool for 
the computational biology community. A copy is available free of charge at http://durra​ntlab​.com/liggr​ep/.
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Introduction
Traditional high-throughput screening (HTS) is a power-
ful experimental technique for identifying molecules that 
can be further developed into novel pharmaceutics. It 
involves screening a large number of compounds against 
selected disease targets (e.g., disease-relevant proteins) to 
find compounds (i.e., “hits”) that elicit measurable bio-
logical or biophysical responses. HTS does not require 
any prior knowledge of the drug-target structure. But 
the associated hit rates are often low, and it is costly to 
experimentally test so many molecules. HTS is thus lim-
ited primarily to research groups working in the pharma-
ceutical industry [1].

Computer-aided drug discovery (CADD) aims to 
address some of these challenges. Among CADD tech-
niques, structure-based virtual screening (VS) is par-
ticularly popular. VS draws on a library of virtual small 
molecules and a model of the drug target. A docking pro-
gram first predicts how each molecule physically inter-
acts with the target protein, often by binding to a pocket 
on the target surface [2]. The geometry of the bound mol-
ecule relative to the target structure is called the docked 
pose. Based on this pose, the docking program then esti-
mates the strength of binding (the docking score) using 
a pre-determined scoring function [3]. The set of com-
pounds with reasonable docked poses and good docking 
scores is often enriched with true binders. These candi-
date ligands are then prioritized for subsequent experi-
mental testing [1, 4]. This targeted-search approach 
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reduces cost, preparation time, and workload relative to 
HTS.

Assessing candidate ligands by docking score is 
straightforward, but assessing predicted poses is often 
more subjective and time consuming. One objective 
pose-assessment approach is to search for new molecules 
that are predicted to participate in the same critical inter-
actions with the drug target that are typical of known 
ligands. For example, all clinically approved inhibitors 
of influenza neuraminidase interact with certain key 
arginine residues [5], so docked compounds that are not 
predicted to participate in those interactions might be 
discarded regardless of score. Unfortunately, in the case 
of large-scale VS there may be many thousands (or even 
millions) of docked poses, complicating comprehensive 
manual inspection.

To automate pose assessment, some commercial dock-
ing programs (e.g., Schrödinger’s Glide and OpenEye’s 
FRED) automatically reject poses that do not satisfy user-
specified filters. These programs are powerful, but they 
have restrictive and/or expensive licenses that make them 
inaccessible to many groups. Even OpenEye’s free aca-
demic license imposes substantial commercialization and 
intellectual-property restrictions. In contrast, many pop-
ular open-source docking programs (e.g., AutoDock Vina 
[6]) have far more permissive licenses, but they often lack 
a pose-filtering step.

To address this limitation, we have created LigGrep, a 
free, open-source program that filters predicted ligand 
poses that were previously generated during a VS cam-
paign. LigGrep analyzes the pose of each docked com-
pound and discards those poses that do not participate 
in user-specified interactions. Alternatively, it can also 
discard poses that involve unfavorable interactions (e.g., 
interactions with residues known to be involved in resist-
ance mechanisms). LigGrep will help improve VS hit 
rates by allowing the community to focus on high-scor-
ing compounds that also satisfy carefully chosen bind-
ing-pose criteria. A copy is available at http://durra​ntlab​
.com/liggr​ep/, released under the terms of the Apache 
License, Version 2.0.

Implementation
The LigGrep algorithm
LigGrep accepts as input (1) a PDBQT or PDB file of 
the drug-target receptor used for docking, (2) a direc-
tory of PDBQT, PDB, or SDF files containing the docked 
poses of candidate ligands, and (3) a JSON-formatted file 
describing user-specified filters. After evaluating each 
docked pose, it outputs the names of any compounds 
with poses that satisfy all user-defined filters. The follow-
ing sections describe each of these steps in detail.

Input receptor molecule
LigGrep’s first command-line argument is the path to the 
PDB/PDBQT-formatted receptor file used for docking. 
LigGrep uses the Scoria Python library [7] to load the 
receptor file. Because Scoria is a pure-Python library with 
a permissive license, we package a copy together with 
LigGrep itself for convenience.

Input ligand molecules
LigGrep’s second command-line argument is the path to 
a directory containing the docked-compound files. To 
accommodate a broad range of docking programs, we 
designed LigGrep to accept docked poses in three pop-
ular file formats. These include the PDBQT format to 
accommodate docking programs such as AutoDock Vina 
[6], the PDB format to accommodate big-data studies of 
crystallographic poses, and the SDF format to accommo-
date programs such as Schrödinger’s Glide. Researchers 
who wish to examine predicted or experimentally deter-
mined poses saved in other formats can convert to the 
SDF format using open-source programs such as Open 
Babel [8].

In many cases, users will wish to filter poses by consid-
ering only a single ligand atom (e.g., “which poses place 
an oxygen atom in a particular region of the binding 
pocket?”). In other cases, users may wish to filter poses 
using more complex ligand substructures (e.g., “which 
poses place a hydroxyl group in a particular region?”). In 
still other cases, substructures with specific atomic-bond 
specifications may be critical (e.g., “which poses place a 
phenyl group–but not a cyclohexyl group–in a particular 
region?”). Users can run LigGrep in three modes (NONE, 
OPENBABEL, and SMILES) according to their needs.

NONE mode.  In NONE mode (--mode NONE), 
LigGrep does not assign bond orders beyond those 
described in the docked-compound files themselves. In 
the case of PDB/PDBQT files, which do not include any 
information about bond orders, LigGrep assumes that all 
atoms are sp3 hybridized and that all appropriately juxta-
posed atoms are connected by single bonds. In the case 
of SDF files, which do include detailed information about 
atomic bonds, LigGrep instead assigns bond orders based 
on the information present in the SDF files themselves. 
NONE mode is thus ideal when (1) filtering by a single 
atom, (2) filtering by a substructure whose atoms are 
connected only by single bonds, or (3) applying filters of 
any type to SDF-formatted docked poses.

SMILES mode.  In SMILES mode (--mode SMILES), 
LigGrep assigns bond orders to PDB/PDBQT-format-
ted docked-compound files by additionally considering 
user-specified files in the SMILES format. The simplified 
molecular-input line-entry system (SMILES) format is a 
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widely used, compact format that encodes a molecule’s 
connectivity and chirality as a simple, one-line string of 
letters and other symbols. To run LigGrep in SMILES 
mode, the user should save a separate SMILES file for 
each PDB/PDBQT-formatted docked compound, in the 
same compound directory. Each SMILES file should have 
the same filename as the corresponding PDB/PDBQT 
file, plus the “.smi” extension. SMILES mode is ideal 
when (1) SMILES strings are available or can be easily 
generated, (2) filters involve substructures with higher-
order (e.g., double, triple, aromatic) bonds, and (3) the 
docked files are PDB/PDBQT formatted. SMILES mode 
is not appropriate for SDF-formatted files because these 
already include bond-order information.

OPENBABEL mode.    In OPENBABEL mode (--mode 
OPENBABEL), LigGrep uses the Open Babel (obabel) 
executable [8] to try to assign atom hybridization and 
bond orders to docked-compound PDB/PDBQT files. 
Users must specify the path to the Open Babel execut-
able using LigGrep’s --babel_exec /PATH/TO/OBABEL 
parameter. Internally, Open Babel converts PDB/PDBQT 
files to the SDF format, which includes bond-order 
information that the Python library RDKit [9] can then 
process. Unfortunately, PDBQT files do not include non-
polar hydrogen atoms, complicating this process. Lig-
Grep runs Open Babel first using the −h option to add all 
missing hydrogen atoms. If that hydrogen-atom assign-
ment does not match the atoms present in the input 
PDB/PDBQT file, LigGrep reruns Open Babel using the 
−p option, which adds hydrogen atoms as appropriate 
for neutral pH (7.4). If this second attempt fails, LigGrep 
issues a warning and moves on to the next docked-com-
pound file.

We provide OPENBABEL mode for user conveni-
ence. It allows users to process PDB/PDBQT-formatted 
poses using higher-order substructure filters, even when 
SMILES strings are not available. But we recommend 
using OPENBABEL mode cautiously. Given the ambi-
guities associated with assigning hybridization and bond 
orders based on atomic coordinates alone, LigGrep in 
OPENBABEL mode may misclassify some compounds. 
Furthermore, OPENBABEL mode is not appropriate 
when filtering SDF-formatted poses because SDF files 
already include bond-order information.

Input‑filters file
LigGrep’s third command-line argument is the path to a 
JSON file containing a list of filters that the input com-
pounds must satisfy (Fig.  1). LigGrep filters have four 
user-defined components: (1) a ligand-substructure 
specification describing one or more bonded atoms, 

(2) a point in 3D space (the query point), (3) a distance 
cutoff, and (4) an optional “exclude” flag.

Identifying ligand substructures.  To determine 
whether a given docked pose satisfies the user-specified 
filters list, LigGrep first uses the RDKit Python library 
[9] to check whether the molecule contains the neces-
sary substructures (i.e., the substructures associated 
with all filters that do not have “exclude” flags, Fig.  1a). 
LigGrep rejects all molecules that do not contain each of 
the necessary substructures. Users specify substructures 
via SMILES arbitrary target specification (SMARTS) 
notation (Fig. 1a and d), which is syntactically similar to 
SMILES. When using LigGrep in NONE mode to filter 
PDB/PDBQT-formatted docked molecules, substruc-
tures must include only sp3-hybridized atoms connected 
by single bonds (as in Fig. 1a). Otherwise, the SMARTS 
strings can include more complex substructure descrip-
tions (e.g., aromatic rings, as in Fig. 1d).

Identifying the 3D query point.  For each specified 
filter, LigGrep identifies the appropriate 3D query point 
by examining the corresponding JSON data. If the filter 
JSON contains the key “coordinate”, LigGrep constructs 
the 3D query point directly from the corresponding 
value, a list containing x, y, and z coordinates (Fig. 1e). If 
the filter JSON contains the key “receptorAtom”, LigGrep 
constructs the 3D query point by searching the input 
receptor file for an atom that matches the provided chain, 
residue id (resid), and atom name (atomname) (Fig. 1b). 
The 3D query point is then set to the coordinate of that 
atom.

Accepting or rejecting docked compounds based 
on atomic distances.  Once LigGrep has identified the 
relevant small-molecule substructures and 3D query 
points, it determines whether a given docked pose passes 

Fig. 1  Sample JSON file containing hypothetical filters. Filter #1 
shows a 3D query point specified by a receptor atom. Filter #2 shows 
a 3D query point specified by a coordinate, with the exclude flag set
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or fails each filter. If it passes all filters, the name of the 
compound file is saved to an output text file. If it fails 
any of the filters, the compound file name is not saved. 
The filters are thus combined using a Boolean AND 
(conjunction) operator, though advanced users familiar 
with SMARTS notation can also embed additional logi-
cal operators within their substructure specifications for 
more complex, nested logic.

To apply each filter, LigGrep first calculates the mini-
mum distance between any small-molecule-substructure 
atom and the corresponding 3D query point. It then com-
pares this calculated distance to the cutoff distance asso-
ciated with each filter (Fig. 1c). By default, a given docked 
pose passes a filter if it positions the substructure near 
the query point. If the user includes an optional “exclude” 
flag (Fig. 1f ), a pose passes only if it does not position the 
substructure near the query point. The specific criteria 
used to assess each filter are given in Table 1.

Dependencies and compatibility
We have tested LigGrep on macOS, Ubuntu Linux, and 
Windows 10 (Table 2). LigGrep requires the third-party 
Python libraries RDKit [9], NumPy [10], and SciPy [11], 
which must be installed separately. It comes pre-pack-
aged with the Scoria library [7] for convenience. When 
running LigGrep in the preferred NONE or SMILES 
mode, the Open Babel executable is not required. Users 
who wish to use OPENBABEL mode must install Open 
Babel separately.

Benchmark virtual screens
Preparing the receptors
To demonstrate LigGrep use, we performed VS against 
three proteins: H. sapiens poly(ADP-ribose) polymer-
ase 1 (HsPARP1), H. sapiens peptidyl-prolyl cis-trans 
isomerase NIMA-interacting 1 (HsPin1p), and S. cerevi-
siae hexokinase-2 (ScHxk2p). We downloaded HsPARP1, 
HsPin1p, and ScHxk2p crystal structures (6BHV [12], 
3TDB [13], and 1IG8 [14], respectively) from the RCSB 
Protein Data Bank [15, 16]. We selected the 6BHV 
HsPARP1 structure because its co-crystallized ligand, 
benzamide adenine nucleotide, was the largest by mass 
of 46 co-crystallized ligands considered (Additional file 1: 
Table S1), and some studies suggest that larger binding-
pocket conformations are more amenable to VS [17, 18]. 
We selected the 3TDB HsPin1p structure because its co-
crystallized ligand was the largest by mass of 27 consid-
ered (Additional file 1: Table S2). Finally, we selected the 
1IG8 ScHxk2p structure because it is the only ScHxk2p 
structure with the correct amino-acid sequence. In all 
cases, we used the PDB2PQR server [19–21] to add 
hydrogen atoms to these protein structures and to opti-
mize their hydrogen-bond networks (default parame-
ters, pH 7). We then used Open Babel [8] to convert the 
resulting protonated PQR files to the PDB format. Finally, 
we used MGLTools 1.5.6 [22] to convert the PDB files to 
the PDBQT format, which includes atom types and par-
tial atomic charges.

Preparing the small‑molecule libraries
To prepare a library of small molecules for HsPARP1 
docking, we downloaded the SMILES strings of 46 
known HsPARP1 ligands (Additional file 1: Table S1) and 
1515 diverse small molecules (presumed decoys). The 
known ligands were taken from HsPARP1 crystal struc-
tures deposited in the RCSB Protein Data Bank, and the 
decoys were taken from the NCI Diversity Set VI, a set 
of freely available compounds provided by the National 
Cancer Institute (NCI) [23]. We created a similar small-
molecule library of known ligands and NCI decoys for 
HsPin1p docking, using 27 co-crystallized HsPin1p 
ligands (Additional file  1: Table  S2). For ScHxk2p 

Table 1  LigGrep criteria for assessing user-defined filters

Has substructure Exclude flag 
set

Any substructure atom 
within cutoff distance

Result

No No N/a Fail

No Yes N/a Pass

Yes No No Fail

Yes No Yes Pass

Yes Yes No Pass

Yes Yes Yes Fail

Table 2  We have tested LigGrep on various operating systems, using various versions of Python 3, RDKit, NumPy, SciPy, 
and Open Babel

Multiprocessing is not supported on Windows. Note that LigGrep is designed to work with Python 3, not Python 2

Operating system Python RDKit NumPy SciPy Open babel Multiprocessing

macOS Mojave 10.14.5 3.6.7 2019.03.3 1.17.4 1.3.1 2.4.1 Y

Ubuntu 18.04.4 LTS 3.6.5 2019.03.1 1.16.3 1.3.0 3.1.0 Y

Ubuntu 18.04.2 LTS 3.7.3 2020.03.3 1.18.1 1.4.1 2.3.2 Y

Windows 10 Home 1903 3.7.4 2020.03.2 1.16.5 1.3.1 2.3.1 N
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docking, we identified 41 glucose analogues known to 
bind hexokinase and glucokinase proteins from various 
species (presumed ScHxk2p ligands; eight from the RCSB 
Protein Data Bank, and 33 from the BindingDB database 
[24, 25]; Additional file 1: Table S3). As ScHxk2p decoys, 
we selected 1652 glucose analogues with molecular 
weights less than 500 Daltons, taken from the ChemDiv 
and eMolecules databases (presumed inactives).

We used the open-source program Gypsum-DL [4] to 
generate 3D small-molecule models from these SMILES 
strings. To account for alternate ionization, tautomeric, 
chiral, isomeric, and ring-conformational forms, we 
instructed Gypsum-DL to generate two molecular vari-
ants per input compound (min_ph: 7.4; max_ph: 7.4; 
pka_precision: 0). We also used Gypsum-DL’s --use_dur-
rant_lab_filters flag to remove molecular variants judged 
improbable. The output small-molecule PDB files were 
again converted to the PDBQT format using MGLTools 
1.5.6 [22].

Docking
To prepare for docking, we used AutoDockTools [22] and 
Webina [26] to identify a docking box centered on the 
ligand-binding pockets of the respective crystal struc-
tures. In the case of the 6BHV HsPARP1 structure, we 
retained all four catalytic domains present in the 6BHV 
asymmetric unit for simplicity’s sake, but the docking box 
(23 Å x 17 Å x 20 Å) encompassed only chain-A atoms. 
The HsPin1p and ScHxk2p docking boxes were 20 Å x 20 
Å x 20 Å and 20 Å x 19 Å x 15 Å, respectively. We docked 
all compounds into their respective receptors using 
AutoDock Vina [6], with Vina’s default parameters.

Defining LigGrep filters
To construct LigGrep filters suitable for the HsPARP1 
VS,PARP1 VS, we reviewed a recently published table 
of predicted HsPARP1/ligand interactions that were fre-
quently identified in a large-scale de novo CADD cam-
paign [27]. Two of the most frequent interactions were 
also observed in crystal structures of HsPARP1 bound 
to the clinically approved inhibitor niraparib (4R6E:A 
[28]) and a 4(3H)-quinazolinone derivative (1UK0:A 
[29]): a hydrogen bond with G863, and a π-π interaction 
with Y907. Based on our analysis of these structures, we 
defined two structural (“receptorAtom”) filters to capture 
the two interactions. To capture the hydrogen bond, we 
required that a docked-compound nitrogen or oxygen 
atom (SMARTS: [#7,#8]) come within 5.5 Å of the G863 
alpha carbon (resid: 863; atomname: CA). To capture the 
π-π interaction, we required that a docked-compound 
carbon-carbon aromatic bond (SMARTS: cc) come 
within 5.5 Å of the most distal Y907 carbon atom (resid: 
907; atomname: CZ).

To construct filters suitable for the HsPARP1 VS, we 
examined multiple co-crystallized ligands deposited in 
the RCSB Protein Data Bank. Many of these positioned 
peptide-backbone-like substructures (e.g., imidazole- and 
furan-carboxylic-acid moieties) near where endogenous 
peptides bind [30]. We therefore defined one “coordi-
nate” filter to identify docked poses that positioned [N,O]
CCO substructures within 4.0 Å of this position. We used 
a SMARTS string with only sp3-hybridized atoms (sin-
gle bonds) to ensure compatibility with LigGrep’s NONE 
mode.

To construct filters suitable for the HsPin1p VS, we 
again considered known ligands. Many hexokinase 
ligands are glucose analogues, so we defined a single 
“coordinate” filter to identify docked poses that posi-
tioned a tetrahydro-2H-pyran moiety (C1OCCCC1) 
within 1.0 Å of the 3D position where glucose typically 
binds.

Measuring virtual screen performance
To evaluate the performance of our VS in terms of both 
the docked poses and the associated docking scores, we 
first selected a single candidate pose for each unique 
input molecule in our library. Given that Gypsum-DL 
generated up to two molecular variants for each molecule 
and that Vina predicted up to 9 poses for each variant, 
each unique molecule was associated with at most 18 
poses. In practice this number was smaller on average 
because in some cases Gypsum-DL generated only one 
variant, and LigGrep (when applied) filtered out those 
poses that failed to meet our user-specified criteria. 
To assess the VS before applying LigGrep, we consid-
ered only each ligand’s single, top-scoring pose, without 
regard for pose geometry. To assess the VS after apply-
ing LigGrep, we considered the top-scoring pose from 
among the poses with geometries that matched our user-
defined LigGrep filters.

Pose accuracy.  To assess how well Vina predicts the 
poses of known HsPARP1 ligands, we used UCSF Chi-
mera [31] to align the 46 apo HsPARP1 crystal structures 
listed in Additional file 1: Table S1 to the HsPARP1 struc-
ture used for docking. We then used the obrms program, 
included in the Open Babel package [8], to calculate the 
root-mean-square deviation (RMSD) between the top-
scoring docked pose of each known ligand and the cor-
responding crystallographic pose (Additional file  1: 
Table S1). We used this same protocol to assess how well 
Vina predicts the poses of known HsPin1p and ScHxk2p 
ligands (Additional file  1: Tables S2 and S3), though in 
the case of ScHxk2p only one crystallographic ligand was 
available.

Scoring (ranking) accuracy.  We used several meth-
ods to assess how well the three VS ranked known 
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ligands above decoy molecules, both before and after 
applying LigGrep. First, we ordered the compounds of 
the three VS by their docking scores and calculated the 
percentile ranks of the known ligands (Additional file 1: 
Tables S1–S3). Second, we counted the number of pos-
itive-control compounds that ranked in the top 10, 20, 
and 40 compounds for each VS (Table 3). Third, we cal-
culated enrichment factors. Given a VS of T total small 
molecules including PT positive-control compounds, the 
enrichment factor, EFn , of the n top-ranked compounds 
is the number of positive-control ligands present, Pn , 
divided by the number of positive controls that would 
be expected if the compounds were randomly ordered, 
i.e., EFn = Pn/(nPT /T ) . Finally, though LigGrep is best 
used to enrich the set of top-ranked compounds, we also 
assessed the impact of LigGrep filters on the entire set of 
ranked compounds using receiver operating characteris-
tic (ROC) metrics (see Additional file 1: Figure S1).

Results and discussion
Benchmark virtual screen: HsPARP1
To demonstrate utility, we first used LigGrep to enrich 
a VS targeting the HsPARP1 catalytic pocket. HsPARP1 
is a highly conserved, multifunctional enzyme that plays 
important roles in the DNA-damage response. It post-
transcriptionally attaches a negatively charged polymer 
termed poly(ADP-ribose) (PAR) to various protein tar-
gets (including itself ). These PAR chains recruit proteins 
that contribute to DNA repair, to the stabilization of 
DNA replication forks, and to the modification of chro-
matin structure [32]. HsPARP1 is over-expressed in vari-
ous carcinomas, making it a potential therapeutic target. 
Additionally, multiple preclinical research studies and 
clinical trials demonstrate that HsPARP1 inhibition can 
repress tumor growth and metastasis [33].

Although a few HsPARP1 inhibitors have been 
approved for clinical use (e.g., olaparib, niraparib, and 
rucaparib) [34], clinical trials have revealed a number 
of therapeutic limitations. These limitations include (1) 

toxicity due to promiscuous binding, given that most 
HsPARP1 inhibitors resemble NAD+ [35]; (2) activa-
tion of viral replication, especially the replication human 
T-cell lymphotropic virus (HTLV) or Kaposi’s sarcoma-
associated herpes virus (KSHV) [35]; and (3) acquired 
resistance that limits long-term use [36]. There is thus an 
urgent need for novel ligands that can be further devel-
oped into clinically useful HsPARP1 inhibitors.

Unfiltered HsPARP1 virtual screen
We first performed a standard VS on HsPARP1 to estab-
lish baseline performance. The screen involved 46 co-
crystallized (known) HsPARP1 catalytic inhibitors, as 
well as 1515 additional molecules that served as decoys 
(presumed inactives). We evaluated our Vina-based 
docking protocol both in terms of pose-prediction accu-
racy and the ability to distinguish between known inhibi-
tors and decoy molecules. To evaluate the accuracy of 
the predicted poses, we calculated heavy-atom RMSDs 
between the top-scoring docked and crystallographic 
poses of the 46 known inhibitors included in our small-
molecule library. The average RMSD value was 2.82 Å (± 
2.04 Å stdev), ranging from 0.48 Å (4OPX:A) to 12.14 Å 
(4HHY:A). Thirty-one of the known HsPARP1 inhibitors 
had top-scoring docked poses within 3 Å of the crystal-
lographic pose (Additional file 1: Table S1). These RMSD 
calculations indicate that Vina is reasonably adept at pos-
ing the known ligands correctly.

To evaluate how well the  Vina-based docking proto-
col can distinguish between known inhibitors and decoy 
molecules, we ranked the compounds of our small-mol-
ecule library by the docking scores of their top-scoring 
poses. We found that 45 of 46 known catalytic inhibitors 
ranked in the top 40%, and 28 ranked in the top 10%. The 
single highest-scoring compound was in fact a known 
HsPARP1 catalytic inhibitor (“compound 33” from the 
4HHY structure [37]); five known ligands were in the top 
10 compounds, seven in the top 20, and 13 in the top 40 
(Table 3 and Additional file 1: Table S1).

LigGrep‑filtered HsPARP1 virtual screen
To show how LigGrep can further improve the hit rate 
of this high-performing VS, we filtered the docked poses 
of all library compounds to identify those predicted to 
participate in a hydrogen bond with the HsPARP1 G863 
residue and a π-π interaction with Y907 (Table  3, see 
“Implementation” for details). LigGrep filtered out 435 
of the 1561 unique compounds (ligands + decoys) in the 
virtual library. We ranked (by docking score) the remain-
ing 1126 unique compounds with poses that matched our 
filter criteria.

Importantly, LigGrep allowed us to effectively consider 
all the poses associated with each docked compound, 

Table 3  The number of  known ligands caught in  the  top 
10, 20, and  40 highest-scoring compounds of  each VS 
when docking with Vina only vs. Vina + LigGrep

Protein Screen type Top 10 Top 20 Top 40

HsPARP1 Vina only 5/46 7/46 13/46

HsPARP1 Vina + LigGrep 7/46 11/46 19/46

HsPin1p Vina only 2/27 3/27 5/27

HsPin1p Vina + LigGrep 3/27 4/27 8/27

ScHxk2p Vina only 2/41 4/41 6/41

ScHxk2p Vina + LigGrep 4/41 6/41 7/41
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not just the top-scoring pose. Given our Gypsum-DL/
Vina protocol (see “Implementation”) [4, 6], each unique 
compound in our library was associated with up to 18 
predicted poses. Manually inspecting so many poses is 
impossible. Our approach in the past has been to con-
sider only the top-scoring pose associated with each Vina 
run, and then to visually inspect only the poses of the 
top-ranked docked compounds. LigGrep now allows us 
to consider all docked poses associated with each candi-
date ligand, not just the top-scoring pose.

After we used LigGrep to filter out less-likely poses, 
seven known ligands ranked in the top 10 highest-
scoring compounds, 11 in the top 20, and 19 in the top 
40 (Table  3 and Additional file  1: Table  S1). In fact the 
top four ranked compounds were all known HsPARP1 
inhibitors. LigGrep thus improved the hit rate among 
the top-scoring compounds over that obtained using 
the unfiltered VS. Similar improvements can be seen in 
enrichment factors (Fig.  2) and areas under the pROC 
curve (Additional file 1: Figure S1 and Table S4).

Benchmark virtual screen: HsPin1p
To further demonstrate utility, we also applied LigGrep 
to a VS targeting HsPin1p. HsPin1p binds to proteins 
with phosphorylated serine/threonine-proline (pSer/
Thr-Pro) motifs and accelerates the cis–trans isomeriza-
tion of the proline residue. Peptidyl-prolyl isomerization 
can be seen as a kind of post-translational modification 
that impacts how many proteins fold, localize, activate, 
and interact [38–41]. HsPin1p is upregulated in many 
cancers, likely because many of its targets contribute to 
cancer pathogenesis. Reduced HsPin1p activity protects 
against cancer progression [38, 42–44], so much effort 
has been invested in developing HsPin1p inhibitors [38].

Unfiltered HsPin1p virtual screen
As with HsPARP1, we first performed a standard HsPin1p 
VS to establish baseline performance. The screen 
involved 27 co-crystallized (known) HsPin1p inhibi-
tors, as well as 1515 additional molecules that served as 
decoys (presumed inactives). The average heavy-atom 
RMSD between the top-scoring docked and crystal-
lographic poses of the 27 known inhibitors was 3.43 Å 
(± 2.33 Å stdev), ranging from 0.26 Å (2XP6:A) to 8.63 
Å (3TDB:A). Fourteen of the known HsPin1p inhibitors 
had top-scoring docked poses within 3 Å of the crystal-
lographic pose (Additional file 1: Table S2).

We again ranked the compounds of our small-mole-
cule library by the docking scores of their top-scoring 
poses. We found that 23 of 27 known inhibitors ranked 
in the top 40%, and 12 ranked in the top 10%. Two known 
ligands were in the top 10 compounds, three in the top 

20, and five in the top 40 (Table 3 and Additional file 1: 
Table S2).

LigGrep‑filtered HsPin1p virtual screen
To show how LigGrep can further improve the hit rate 
of the HsPin1p VS, we filtered the docked poses of all 
library compounds to identify those that positioned 
peptide-backbone-like substructures near where endog-
enous peptides bind (Table  3, see “Implementation” for 
details) [30]. Given that this substructure is very specific, 

Fig. 2  Enrichment factors associated with our HsPARP1,HsPin1p, and 
ScHxk2p VS, before (blue) and after (orange) applying LigGrep filters. 
To calculate the enrichment factors of the LigGrep-filtered VS, any 
compound that did not pass the filter(s), whether a positive control or 
decoy, was moved to the bottom of the ranked list
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LigGrep filtered out 1029 of the 1542 unique ligands and 
decoys. We ranked (by docking score) the remaining 513 
unique compounds with poses that matched our filter 
criteria, including 25 of the known ligands.

After LigGrep filtering, three known ligands ranked 
in the top 10 highest-scoring compounds, four in the 
top 20, and eight in the top 40 (Table  3 and Additional 
file  1: Table  S2). LigGrep thus improved the hit rate 
among the top-scoring compounds. In fact the top-
ranked compound after LigGrep filtering was the known 
HsPin1p inhibitor 3-(6-fluoro-1H-benzimidazol-2-yl)-N-
(naphthalen-2-ylcarbonyl)-D-alanine, with a measured Ki 
of 80 nM [45]. The enrichment factors (Fig. 2) and areas 
under the pROC curve similarly improved (Additional 
file 1: Figure S1 and Table S4).

Benchmark virtual screen: ScHxk2p
As a final demonstration, we applied LigGrep to a VS 
targeting ScHxk2p. Hexokinases perform the first step 
in glucose metabolism, transferring an ATP γ phosphate 
to a glucose C6 carbon atom to produce glucose-6-phos-
phate (Glc-6P) [46]. This activated Glc-6P is critical for 
downstream catabolic processes such as anaerobic fer-
mentation [47] and aerobic oxidative phosphorylation 
(OXPHOS) [47], as well as anabolic pathways such as the 
pentose–phosphate shunt [48–50].

Glucose metabolism is often dysregulated in cancer. 
Cancer cells tend to use glycolysis and lactic acid fer-
mentation to generate ATP from glucose, even when 
adequate oxygen is available for the more efficient 
OXPHOS [49, 51–55]. To maintain ATP levels, cancer 
cells must increase glycolytic flux [50], often by upregu-
lating hexokinase II (HsHK2p) [48, 49, 56, 57]. Sev-
eral groups have developed small-molecule HsHK2p 
ligands that bind to the catalytic pocket [48, 58–63], but 
acquired resistance [64–71] and unacceptable toxicities 
[72] require the development of additional hexokinase 
inhibitors.

Unfiltered ScHxk2p virtual screen
We first performed a standard ScHxk2p VS to estab-
lish baseline performance. We designed this VS to 
determine whether LigGrep can enhance performance 
even in challenging circumstances. First, rather than 
limit our set of positive controls (“known ligands”) to 
ScHxk2p ligands, we selected 41 glucose analogues 
known to bind hexokinases and glucokinases from any 
of several species. It is therefore likely that some of 
our “positive controls” are not true ScHxk2p ligands, 
effectively injecting noise into our VS signal. To fur-
ther exacerbate this challenge, we selected molecules 
that are chemically similar to the positive controls to 
serve as presumed inactive decoys (i.e., 1652 glucose 

analogues present in the ChemDiv and eMolecules 
databases).

Second, we of necessity had to limit our pre-VS assess-
ment of pose accuracy. Only one of the selected positive-
control compounds (ortho-toluoylglucosamine [73]) 
has been co-crystallized with ScHxk2p. The heavy-atom 
RMSD between the top-scoring and crystallographic 
poses of this compound was 1.90 Å, suggesting that Vina 
is well suited to ScHxk2p docking, but the available struc-
tures permit only this one data point as validation.

We again ranked the compounds of our small-molecule 
library by the docking scores of their top-scoring poses. 
We found that 26 of 41 positive-control compounds 
ranked in the top 40%, and 12 ranked in the top 10%. Two 
were in the top 10 compounds, four in the top 20, and six 
in the top 40 (Table 3 and Additional file 1: Table S3).

LigGrep‑filtered ScHxk2p virtual screen
To show how LigGrep can improve the hit rate of the 
ScHxk2p VS, we filtered the docked poses of all library 
compounds to identify those that positioned a glucose-
like (tetrahydro-2H-pyran) moiety near the location 
where glucose, the endogenous substrate, binds (Table 3, 
see “Implementation” for details) [74]. LigGrep filtered 
out 428 of the 1693 unique compounds in the virtual 
library. We ranked (by docking score) the remaining 1265 
unique compounds with poses that matched our filter 
criteria, including 40 of the positive-control compounds. 
After LigGrep filtering, the number of positive controls 
in the top 10 highest-scoring compounds doubled to four. 
Six positive controls ranked in the top 20, and seven in 
the top 40 (Table 3 and Additional file 1: Table S3). The 
enrichment factors (Fig.  2) and areas under the pROC 
curve also improved (Additional file  1: Figure S1 and 
Table S4).

LigGrep advantages and disadvantages
To illustrate the advantages and disadvantages of the Lig-
Grep approach, we now consider in detail several of the 
docked poses from our HsPARP1 VS.

Examples that illustrate LigGrep advantages
LigGrep can improve hit rates by (1) eliminating com-
pounds that are less likely to bind the target protein, and 
(2) allowing researchers to consider all poses (rather than 
only the top-scoring pose) when searching for poten-
tial ligands. The low-nanomolar HsPARP1 inhibitor 
olaparib [28] illustrates the first advantage (Fig. 3a). The 
docked and crystallographic poses of olaparib were simi-
lar (RMSD: 2.7 Å; Fig. 3a in green and pink, respectively) 
[75]. Prior to LigGrep filtering, olaparib ranked third in 
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our VS (−12.1 kcal/mol), behind a presumed decoy in 
second place. But none of the poses associated with the 
second-place compound passed the filters, so olaparib 
moved from third to second.

Tricinolone acetophenonide (NSC37641), a high-scor-
ing decoy molecule, illustrates the second advantage of 
the LigGrep approach (Fig.  3b). The top-scoring pose 
of this compound (in pink) has a Vina docking score of 
−10.4 kcal/mol, but it does not position an oxygen or 
nitrogen atom close enough to the HsPARP1 G863 res-
idue, as required by one of our LigGrep filters. Had we 
manually inspected only the top-scoring pose associ-
ated with each ligand, we may therefore have discarded 
this compound, despite its impressive docking score (top 
∼ 3% of all compounds). But LigGrep allowed us to iden-
tify a second, slightly lower-scoring pose (−10.2 kcal/
mol) that did in fact position a compound hydroxyl group 
near the G863 residue. Of course, tricinolone acetophe-
nonide is not known to inhibit HsPARP1, and it was in 
fact included in the screen as a decoy (presumed inactive) 
compound. But this example nevertheless illustrates how 
LigGrep allows researchers to identify reasonable albeit 

lower-scoring docked poses, even when the top-scoring 
pose is implausible.

Examples that illustrate LigGrep disadvantages
By way of disadvantages, we note that (1) some incorrect 
poses nevertheless pass LigGrep filters, and (2) some true 
ligands may not contain the substructures required to 
pass, regardless of pose accuracy. “Compound 33,” a low-
nanomolar benzo[de][1,7]naphthyridin-7(8H)-one inhib-
itor [37], illustrates the first disadvantage. Though it was 
the top-scoring compound in our VS (−13.4 kcal/mol) 
and passed our LigGrep filters, its pose is notably incor-
rect (12.1 Å RMSD from the crystallographic pose). The 
inhibitor coincidentally has similar substructures at both 
its ends: phthalazin-1(2H)-one and 3,4-dihydroisoquino-
lin-1(2H)-one, respectively. In the docked pose (Fig.  3c, 
green), the compound was flipped in the binding pocket 
relative to the crystallographic pose (Fig. 3c, pink), such 
that the phthalazin-1(2H)-one substructure satisfied the 
filters rather than the (correct) 3,4-dihydroisoquinolin-
1(2H)-one substructure.

Fig. 3  Example poses taken from a benchmark HsPARP1 VS. Docked ligand poses are shown in green, and the HsPARP1 receptor (PDB: 6BHV) is 
shown in blue. The atoms used to define the hydrogen-bond and π-π LigGrep filters (metallic spheres) are labeled with an asterisk and dagger, 
respectively. a Olaparib, with a generally correct docked pose that passed all LigGrep filters. The crystallographic pose is shown in pink. b 
Tricinolone acetophenonide (NSC37641), a high-scoring decoy molecule, had a top-scoring docked pose did not pass LigGrep filters (in pink), but a 
lower-scoring pose that did (in green). c Compound 33, with an incorrect docked pose that nevertheless passed LigGrep filters. The crystallographic 
pose is shown in pink. d Amitriptyline, a true ligand that could not have passed LigGrep filters, regardless of pose accuracy. The crystallographic 
pose is shown in pink
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Amitriptyline provides an example of the second disad-
vantage of the LigGrep approach. This low-micromolar 
HsPARP1 ligand ranked 229th out of 1561 compounds 
(−9.2 kcal/mol, 15th percentile) in our pre-LigGrep VS, 
and its docked and crystallographic poses were fairly 
similar (RMSD 3.8 Å, Fig.  3d, green and pink, respec-
tively) [76]. But amitriptyline lacks a nitrogen/oxygen 
atom adjacent to an aromatic ring and so could not ever 
pass our LigGrep filters, regardless of its pose.

Comparison with existing programs
Several powerful commercial docking programs also 
allow users to filter docked poses or to otherwise apply 
constraints during the docking process. LigGrep’s main 
advantage is that it can be applied to VS performed with 
free, open-source docking programs that often lack built-
in pose filters. In contrast, commercial programs are 
often expensive and have restrictive licenses that impose 
substantial commercialization and intellectual-property 
restrictions. Furthermore, in some cases license eligibility 
is regularly re-evaluated, making long-term access uncer-
tain. We here compare two commercial programs to Lig-
Grep and describe how LigGrep can complement their 
native functionality.

Schrödinger Glide
Schrödinger’s Glide [77, 78] is a state-of-the-art commer-
cial docking program that allows the user to apply con-
straints both during the docking process (such that they 
impact poses and scores) or after docking (as post-VS 
filters similar to LigGrep). Glide can account for (1) posi-
tional filters, which require a given docked-compound 
atom to occupy a user-defined spherical region; (2) 
excluded volumes, which require the compound to avoid 
defined regions of space; (3) nuclear Overhauser effect 
(NOE) constraints, which require a given protein/ligand 
atom-atom distance to fall within a user-provided range; 
and (4) hydrogen-bond/metal/metal-coordination con-
straints, which require the candidate ligand to form key 
interactions with receptor functional groups [79]. The 
positional and excluded-volume filters are notably similar 
to those that LigGrep implements.

We anticipate that most Glide users will prefer to use 
Glide’s built-in constraints, but it is certainly possible 
to apply LigGrep filters to Glide-docked poses as well. 
Schrödinger’s Maestro Suite can export protein receptor 
and small-molecule models as PDB and SDF files, respec-
tively [78], formats that LigGrep can in turn accept as 
input.

OpenEye FRED
OpenEye’s FRED is another popular commercial dock-
ing program that includes both protein and custom filters 

[80, 81]. A FRED protein filter is satisfied when a docked 
compound is predicted to participate in a user-specified 
interaction (hydrogen bond, metal-chelator, contact, etc.) 
with a given protein atom. A custom filter is satisfied 
when a SMARTS-specified small-molecule substructure 
occupies a user-specified sphere. This last filter type in 
particular is very reminiscent of the LigGrep approach. 
As with Glide, FRED can also output docked poses in the 
SDF format, so LigGrep filters can be applied to FRED-
docked poses as well.

Conclusion
LigGrep allows researchers performing VS to improve hit 
rates by leveraging prior knowledge about key receptor/
ligand interactions known to correlate with activity. Our 
results demonstrate that LigGrep can effectively filter out 
decoy molecules while retaining known ligands. In three 
separate test cases, LigGrep filtering improved hit rates 
over those obtained using AutoDock Vina alone. Lig-
Grep will be a useful tool for the CADD community. We 
release it under the terms of the Apache License, Version 
2.0. A copy is freely available at http://durra​ntlab​.com/
liggr​ep/.
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