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Abstract 

The specificity of toxicant-target biomolecule interactions lends to the very imbalanced nature of many toxicity 
datasets, causing poor performance in Structure–Activity Relationship (SAR)-based chemical classification. Undersam-
pling and oversampling are representative techniques for handling such an imbalance challenge. However, remov-
ing inactive chemical compound instances from the majority class using an undersampling technique can result in 
information loss, whereas increasing active toxicant instances in the minority class by interpolation tends to introduce 
artificial minority instances that often cross into the majority class space, giving rise to class overlapping and a higher 
false prediction rate. In this study, in order to improve the prediction accuracy of imbalanced learning, we employed 
SMOTEENN, a combination of Synthetic Minority Over-sampling Technique (SMOTE) and Edited Nearest Neighbor 
(ENN) algorithms, to oversample the minority class by creating synthetic samples, followed by cleaning the misla-
beled instances. We chose the highly imbalanced Tox21 dataset, which consisted of 12 in vitro bioassays for > 10,000 
chemicals that were distributed unevenly between binary classes. With Random Forest (RF) as the base classifier and 
bagging as the ensemble strategy, we applied four hybrid learning methods, i.e., RF without imbalance handling (RF), 
RF with Random Undersampling (RUS), RF with SMOTE (SMO), and RF with SMOTEENN (SMN). The performance of 
the four learning methods was compared using nine evaluation metrics, among which F1 score, Matthews correlation 
coefficient and Brier score provided a more consistent assessment of the overall performance across the 12 datasets. 
The Friedman’s aligned ranks test and the subsequent Bergmann-Hommel post hoc test showed that SMN signifi-
cantly outperformed the other three methods. We also found that a strong negative correlation existed between 
the prediction accuracy and the imbalance ratio (IR), which is defined as the number of inactive compounds divided 
by the number of active compounds. SMN became less effective when IR exceeded a certain threshold (e.g., > 28). 
The ability to separate the few active compounds from the vast amounts of inactive ones is of great importance in 
computational toxicology. This work demonstrates that the performance of SAR-based, imbalanced chemical toxicity 
classification can be significantly improved through the use of data rebalancing.

Keywords:  Structure–activity relationship (SAR), Chemical classification, Molecular fingerprints, Random forest (RF), 
Ensemble learning, Bootstrap aggregation (bagging), Class distribution imbalance, Resampling, Synthetic minority 
over-sampling technique (SMOTE), Edited nearest neighbor (ENN), Random undersampling (RUS)
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Introduction
Structure–activity relationship (SAR) has been frequently 
used to predict the biological activities of chemicals from 
their molecular structures. One of the major challenges 
in SAR-based chemical classification or drug discovery 
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is the extreme imbalance between active and inactive 
chemicals [1]. Despite the existence of as many as 107 
commercially available molecules [2], there is almost 
always a skew in the distribution of molecules across the 
bioactivity landscape or toxicity classes. Biomacromol-
ecules such as proteins are often highly selective in their 
binding to small molecular ligands. Regardless of the 
huge chemical space, only a few compounds are likely to 
interact with a target biomacromolecule causing biologi-
cal effects and are consequently labelled as active com-
pounds, whereas the remaining majority are labelled as 
inactive compounds. This gives rise to a common prob-
lem of class imbalance for SAR-based predictive mod-
eling, particularly in chemical classification and activity 
quantification using machine learning approaches [3–5].

In machine learning, classifiers are built on data statis-
tics and require a balanced data distribution to achieve 
optimal performance. Classifiers trained from imbal-
anced data tend to have a bias towards the majority class. 
This leads to low sensitivity and precision for the minor-
ity class [6], even though the minority class is usually of 
greater importance than the majority class [7, 8]. In fields 
such as toxicology and disease diagnosis, bias towards 
the majority class may result in a higher rate of false neg-
ative predictions [1].

The problem of data imbalance has been studied 
in the context of machine learning-based SAR mod-
eling for more than two decades [7, 9, 10]. As a result, 
a plethora of methods have been proposed to alleviate 
the skewness of class distribution. These methods can 
be grouped into three categories: data-level, algorithm-
level, and hybrid [7, 11]. Data-level methods aim to 
rebalance the training dataset’s class distribution either 
by undersampling the majority class or oversampling 
the minority class [12, 13]. They also include meth-
ods that clean overlapping samples and remove noisy 
samples that may negatively affect classifiers [13, 14]. 
Algorithm-level methods attempt to alter a given learn-
ing algorithm by inducing cost sensitivity that biases a 
model towards the minority class. For example, this may 
be achieved by imposing a high misclassification cost 
for the minority class [7, 11]. Recently, Mondrian con-
formal prediction (MCP) has been applied to improve 
the performance of machine learning from imbalanced 
datasets by computing nonconformity scores to model 
the reliability of predictions. This allows for identifying 
reliable predications at user-defined significance and 
confidence levels [15–19]. The MCP approach does not 
require data rebalancing. Hybrid methods combine the 
use of resampling strategies with special-purpose learn-
ing algorithms [11]. Ensemble approaches (e.g., bagging 
and boosting), known to increase the accuracy of single 

classifiers, have also been hybridized with resampling 
strategies [6].

The selection of appropriate metrics plays a key role 
in evaluating the performance of imbalanced learning 
algorithms [11, 20]. In consideration of user preference 
(e.g., identifying rare active chemicals) and data distribu-
tion, a number of metrics have been proposed, including 
precision, recall, Area Under the Precision-Recall Curve 
(AUPRC) [21], Area Under the Receiver Operating Char-
acteristics (AUROC) [22], F-measure, geometric mean 
(G-mean), balanced accuracy, etc. [23–26]. For instance, 
precision is not affected by a large number of negative 
samples because it measures the number of true positives 
out of the samples predicted as positives (i.e., true posi-
tive + false positive). A high AUPRC represents both high 
recall and high precision. High precision relates to a low 
false positive rate, and high recall relates to a low false 
negative rate [21, 27].

The present study was motivated by the scarcity of 
reported efforts in the application of the above-men-
tioned methods to the SAR-based chemical classifica-
tion domain. We conducted a literature survey which 
only identified a few studies in this domain where cost-
sensitive learning [28, 29], resampling [29, 30], confor-
mal prediction [18] and extreme entropy machines [1, 
31] were employed to specifically deal with data imbal-
ance. Although predictive modeling was improved for 
certain datasets, a consistent performance enhancement 
was not observed as a result of resampling and algorithm 
modification. Apparently, more studies are warranted 
to further examine such questions as: (1) Does imbal-
ance ratio (IR), i.e., inactive-to-active sample ratio, affect 
the effectiveness of data-level methods (particularly 
resampling methods)? (2) Would different data rebal-
ancing techniques affect the performance of a classifier 
differentially, and does the combination of undersam-
pling and oversampling techniques, such as SMOTEENN 
(SMOTE + ENN) [32], outperform an undersampling or 
oversampling technique alone? (3) What metrics can bet-
ter evaluate the results of imbalanced learning in SAR-
based chemical classification? This study attempted to 
address all three of these questions.

To address the first question, we selected twelve binary 
datasets of 10  K compounds with varying degrees of 
imbalance, which were generated within the Toxicology 
in the 21st century (Tox21) program [33] and used for the 
Tox21 Data Challenge 2014 [34, 35] (https​://tripo​d.nih.
gov/tox21​/chall​enge/about​.jsp). To address the other two 
questions, we chose nine evaluation metrics, compared 
three resampling algorithms integrated with the base 
classifier (random forest—RF), and performed statistical 
analysis to rank the metrics.

https://tripod.nih.gov/tox21/challenge/about.jsp
https://tripod.nih.gov/tox21/challenge/about.jsp
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In this work, we selected RF as the base classifier 
and bagging as the ensemble learning algorithm to 
improve the stability and accuracy of  model predic-
tions. Then, we applied three representative resam-
pling methods for data imbalance handling, i.e., random 
under-sampling (RUS), the synthetic minority over-
sampling technique (SMOTE) and SMOTEENN (i.e., a 
combination of SMOTE and Edited Nearest Neighbor 
(ENN) algorithms). Consequently, four hybrid learn-
ing methods, i.e., RF without imbalance handling (RF), 
RF with RUS (RUS), RF with SMOTE (SMO), and RF 
with SMOTEENN (SMN) were tested. Here, we did 
not intend to conduct a comprehensive or exhaus-
tive comparative investigation of all existing imbalance 
handling methods, but rather to use this case study to 
demonstrate that appropriate handling of imbalanced 
data and the choice of appropriate evaluation metrics 
could improve SAR-based classification modelling. 
We also investigated the performance of these existing 
approaches and highlighted their limitations regard-
ing imbalance ratio. The rest of the paper is organized 
as follows: “Materials and methods” section covers the 
study design, data curation and preprocessing steps, 
imbalance handling methods, and performance metrics. 
“Results and discussion” section presents our classifica-
tion performance results, statistical analysis, and a com-
parison with published results for the Tox21 datasets. 
Lastly, “Conclusions” section briefly summarizes the 
major findings from this study and concludes with some 
remarks on future research needs.

Materials and methods
Study design
The workflow of our study design is outlined in Fig.  1. 
It consists of data preprocessing, feature generation and 

selection, resampling, model training (ensemble learn-
ing), model testing and performance evaluation. The data 
preprocessing and feature generation steps were applied 
to a total of 12,707 compounds in the raw dataset of 12 
assays. However, feature selection, resampling and train-
ing of classifiers were conducted separately for each indi-
vidual assay. For each assay, the preprocessed compounds 
in the training set were split into N stratified bootstrap 
samples with replacement (i.e., samples were randomly 
selected but retained the same imbalance ratio). This was 
followed by ensemble learning either without resampling 
(RF) or with the application of a resampling technique 
(RUS, SMOTE, or SMOTEENN). Optimal parameters 
for each base learner were obtained via grid search with 
fivefold cross validation. Optimized base learners were 
combined to form the final ensemble learner. Evalua-
tion metrics were calculated using the prediction results 
of RF, RUS, SMO and SMN to statistically compare their 
performance. Details of the workflow are presented 
below.

Chemical in vitro toxicity data curation
The Tox21 Data Challenge dataset used in this study 
consisted of 12 quantitative high throughput screening 
(qHTS) assays for a collection of over 10 K compounds 
(with redundancy within and across assays). The 12 
in vitro assays included a nuclear receptor (NR) signal-
ing panel and a stress response (SR) panel. The NR panel 
comprised 7 qHTS assays for identifying compounds 
that either inhibited aromatase or activated androgen 
receptor (AR), aryl hydrocarbon receptor (AhR), estro-
gen receptor (ER), or peroxisome proliferator-activated 
receptor γ (PPAR-γ). The SR panel contained 5 qHTS 
assays for detecting agonists of antioxidant response 
element (ARE), heat shock factor response element 

Fig. 1  Workflow of structure–activity relationship (SAR)-based chemical classification with imbalanced data processing designed for this study
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(HSE) or p53 signaling pathways, disruptors of the 
mitochondrial membrane potential (MMP), or genotox-
icity inducers in human embryonic kidney cells express-
ing luciferase-tagged ATAD5. There were three sets of 
chemicals: a training set of 11,764 chemicals, a leader-
board set of 296 chemicals and a test set of 647 chemi-
cals [35]. For this study, we merged the leaderboard 
set with the original training set to form our “training 
set” and retained the original test set as our “test set”. 
The Tox21 dataset was downloaded in SDF format at 
https​://tripo​d.nih.gov/tox21​/chall​enge/data.jsp. There 
were four possible assay outcomes for each compound: 
active, inactive, inconclusive or not tested. Only those 
chemicals labeled as either active (1) or inactive (0) 
were retained for this study.

Compound preprocessing and chemical descriptor 
(feature) generation
Chemical structures were also downloaded at https​://
tripo​d.nih.gov/tox21​/chall​enge/data.jsp as SMILES 
files. Data standardization/cleaning was carried out 
using MolVS [36], a publicly available tool built on 
RDKit [37]. Standardization involved a fragmentation 
step as described in [25] where compounds possessing 
distinct structures not linked by covalent bonds were 
split into separate “compound fragments”. Then, sol-
vent fragments, salts and problematic molecules with 
inconsistent resonance structures and tautomers [38], 
which should not contribute to the biological effect 
of a compound [39], were removed. The resulting 
SMILES entries were canonicalized by standardizing 
chemotypes such as nitro groups and aromatic rings, 
and the largest uncharged fragments of the compound 
were retained. After standardization, the resulting 
fragments were merged based on their reported activ-
ity to exclude replicates and conflicting instances. Spe-
cifically, only one instance of a set of duplicates was 
retained with the most frequent activity label, while 
duplicates with ambiguous activity labels (i.e., an equal 
number of active and inactive outcomes for the same 
chemical) were removed. Three types of molecular fea-
tures (> 2000 in total), i.e., RDKit descriptors, MACCS 
(Molecular ACCess System) keys and Extended-Con-
nectivity Fingerprints (ECFPs) [40] with a radius of 2 
and a fixed bit length of 1024, were generated using 
RDKit [37] to characterize the final set of compounds. 
All features with zero variance were dropped.

Sampling and classification methods
Here we briefly describe the three resampling techniques 
(i.e., RUS, SMOTE and SMOTEENN) that we used for 
handling imbalanced data with RF chosen as the base 
classifier.

RUS
RUS is a widely used undersampling technique which 
randomly removes samples from the majority class. In 
our study, RUS was used to randomly remove inactive 
compounds. While RUS alleviates imbalance in the data-
set, it may potentially discard useful or important sam-
ples and increase the variance of the classifier. Recent 
studies have shown that the integration of RUS with 
ensemble learning can achieve better results [6, 41]. To 
overcome its drawbacks, we combined RUS with bagging 
(an ensemble learning algorithm) for SAR-based chemi-
cal classification.

SMOTE
SMOTE is an oversampling technique that creates 
synthetic samples based on feature space similarities 
between existing examples in the minority class [12]. It 
has shown a great deal of success in various applications 
[20]. To create a synthetic data sample, we first took a 
sample from the dataset of the minority class and consid-
ered its k-nearest neighbors based on Euclidian distance 
to form a vector between the current data point and one 
of those k neighbors. The new synthetic data sample was 
obtained by multiplying this vector by a random number 
α between 0 and 1 and adding the product to the cur-
rent data point. More technical details on how to create 
synthetic samples are described in the Additional file 1: 
Figure S1 and in [12, 20]. Applying SMOTE to the minor-
ity class instances can balance class distributions [12] and 
augment the original dataset in a manner that generally 
significantly improves learning [20].

SMOTEENN
Despite many promising benefits, the SMOTE algo-
rithm also has its drawbacks, including over generaliza-
tion and variance [20]. In many cases, class boundaries 
are not well defined since some synthetic minority class 
instances may cross over to appear in the majority class 
space, especially for nonlinear data with a large feature 
space [42]. As a result, some new synthetic samples in the 
minority class may be mislabeled and attempting to learn 
from such datasets often results in a higher false predic-
tion rate [43]. To remove the mislabeled samples created 
by the SMOTE technique, we applied SMOTEENN [32], 
a combination of SMOTE and the Edited Nearest Neigh-
bor (ENN) [44] algorithm, to clean the synthetic data 
samples.

In the ENN algorithm, the label of every synthetic 
instance is compared with the vote of its k-nearest neigh-
bors. The instance is removed if it is inconsistent with its 
k-nearest neighbors; otherwise, it remains in the data-
set. The process of removing mislabeled samples and 
retaining the valid synthetic instances is illustrated in 

https://tripod.nih.gov/tox21/challenge/data.jsp
https://tripod.nih.gov/tox21/challenge/data.jsp
https://tripod.nih.gov/tox21/challenge/data.jsp
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the Additional file 1: Figure S1c. A higher k value in the 
edited nearest neighbors algorithm leads to a more strin-
gent cleaning rule that allows more synthetic instances to 
be eliminated. Applying SMOTEENN to an imbalanced 
dataset does not automatically result in a perfectly bal-
anced set after resampling, but it creates more meaning-
ful synthetic samples in the minority class and reduces 
the imbalance ratio to a more manageable level.

RF and  ensemble learning  RF is a robust supervised 
learning algorithm that has been widely used for clas-
sification in many applications in data science [45]. An 
RF model consists of many individual decision trees that 
operate as an ensemble. The individual decision trees are 
generated using a random selection of features at each 
node to determine the split. During classification, each 
tree votes and the class with most votes becomes the 
model’s prediction.

RF can be built [46] and improved [47] using bagging 
(short for bootstrap aggregation). Bagging is a common 
ensemble method that uses bootstrap sampling in which 
several base classifiers are combined (usually by averag-
ing) to form a more stable aggregate classifier [48]. Each 
base classifier (RF in this study) in the ensemble is trained 
on a different subset of the training dataset obtained by 
random selection with replacement, thus introducing 
some level of diversity and robustness. It is well known 
that the bagging classifier is more robust in overcom-
ing the effects of noisy data and overfitting, and it often 
has greater accuracy than a single classifier because the 
ensemble model reduces the effect of the variance of 
individual classifiers [6, 48, 49].

In our case, the Tox21 dataset was both highly dimen-
sional and highly imbalanced [6, 50]. For datasets with 
such a large feature space and a small number of minority 
class samples, classification often suffers from overfitting. 
Because bagging is less susceptible to model overfitting, 
we chose it as the ensemble method. Combining the 
base classifier RF with three sampling techniques (RUS, 
SMO and SMOTEENN) and bagging, we assembled four 
hybrid classification methods: (1) RF without resampling, 
(2) RF + RUS, (3) RF + SMO, and (4) RF + SMOTEENN. 
For more convenient result analysis, the four meth-
ods were simply denoted as RF, RUS, SMO and SMN, 
respectively.

Here we use SMN as an example to illustrate the algo-
rithm that integrates resampling with ensemble learn-
ing (see Algorithm  1 and Fig.  1). First, a subset, Si , was 
obtained by taking a stratified bootstrap sampling from 
the training set, X . This sampling process was repeated 
N times, where i = 1 to N, with N ranging between 5 and 
100 in steps of 5. Stratification was employed to ensure 
that each bootstrap had the same class distribution as 
the entire training set. Each subset is used to train a clas-
sifier in the ensemble, hence N is also equivalent to the 
number of classifiers. Then, the SMOTEENN algorithm 
was applied to Si to oversample the minority class and 
obtain an augmented training subset S′i , which was used 
to train a random forest classifier fi(x) . The parameters 
for each classifier in the ensemble were selected using a 
grid search with a fivefold cross-validation. This would 
give every individual classifier a chance to attain its best 
performance and contribute optimally to the ensemble. 
The final ensemble model was a bagged classifier that 
would count the votes of the N classifiers and assign the 
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class with the most votes to a chemical in the test data-
set. The other three methods RF, RUS and SMO also 
employed Algorithm  1 with the only difference being 
the resampling technique, i.e., no resampling, RUS and 
SMOTE, respectively. All classifiers were implemented 
using the Scikit-learn package [51] and Imbalanced-learn 
in a Python toolbox [52].

Table 1  Class distribution and imbalance ratio (IR) of the preprocessed training and test chemical datasets from Tox21 
Data Challenge

The highest and lowest IRs for the training and test sets are in bold

In vitro qHTS assay ID Total number 
of chemicals

Training set Test set

Inactive Active IR Inactive Active IR

NR-AR 6436 5698 166 34.3 560 12 46.7

NR-AR-LBD 5931 5223 143 36.5 557 8 69.6
NR-AhR 5596 4445 561 7.9 520 70 7.4

NR-Aromatase 4901 4193 193 21.7 478 37 12.9

NR-ER 5171 4167 500 8.3 455 49 9.3

NR-ER-LBD 6043 5239 221 23.7 563 20 28.2

NR-PPAR-γ 5712 5005 120 41.7 558 29 19.2

SR-ARE 4808 3669 603 6.1 448 88 5.1
SR-ATAD5 6320 5515 203 27.2 568 34 16.7

SR-HSE 5529 4733 206 23.0 573 17 33.7

SR-MMP 4955 3763 666 5.7 472 54 8.7

SR-p53 6009 5110 303 16.9 558 38 14.7

Performance evaluation metrics
The output of a binary classification model can be pri-
marily represented by four terms: (1) true positive (TP) 
defined as the number of true active chemicals that are 

correctly predicted as active by the model; (2) false posi-
tive (FP) as the number of true inactive chemicals incor-
rectly predicted as active; (3) true negative (TN) as the 
number of true inactive chemicals correctly predicted 
as inactive; and (4) false negative (FN) as the number of 
true active chemicals incorrectly predicted as inactive. 

Most evaluation metrics are derived from these four 
terms. True positive rate (TPR), also referred to as sen-
sitivity or recall, represents the fraction of correctly pre-
dicted active chemicals. In SAR modeling, recall is also 
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considered as a measure of the accuracy of the active 
(minority) class. True negative rate (TNR) or specific-
ity provides a similar measure (accuracy) for the inactive 
(majority) class. Precision estimates the probability of a 
model to make a correct active class prediction. F1 score 
is the harmonic mean of precision and recall. Similarly, 
balanced accuracy (BA) is the average of correct predic-
tions for both classes. Matthews correlation coefficient 
(MCC) offers a good index for the performance of imbal-
anced classification tasks as it incorporates all the compo-
nents of the confusion matrix [53]. MCC has been widely 
used to evaluate the performance of SAR-based chemical 
classification [34, 54]. The MCC value varies in the range 
of [− 1, 1] with − 1 implying disagreement, 1 complete 
agreement and 0 no correlation between the prediction 
and the known truth. The Brier score is a measure of the 
average squared difference between the predicted prob-
abilities and the known value for a class, and it assesses 
the overall accuracy of a probability model. The formulas 
of these evaluation metrics are given as follows:

Recall = Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

where N is the total number of chemicals in a data-
set, pi ( ∈ [0, 1]) is the predicted probability, and oi is the 
ground truth for the ith chemical (equal to 1 for active 
and 0 for inactive).

In addition, the two widely used metrics AUROC and 
AUPRC were also calculated using Scikit-learn [51] to 
evaluate and compare the overall performance of a clas-
sifier against another. Finally, sensitivity–specificity gap 
(SSG), calculated as the absolute value of the difference 
between sensitivity and specificity, was introduced as a 
metric to evaluate how balanced a classifier was in terms 
of its performance on these two metrics [13].

We performed statistical analysis to assess if there 
existed significant differences among the four investi-
gated classification methods in terms of their perfor-
mance metrics across the twelve bioassays (Table  1). 
We adopted a nonparametric test for multiple com-
parisons as described in Garcia et  al. [55]. Using the 

F1 score = 2×
Precision× Recall

Precision+ Recall

Balanced accuracy (BA) =
Sensitivity+ Specificity

2

MCC =
TP × TN−FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Brier score =
1

N

∑N

i=1
(pi − oi)

2
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Fig. 2  A spot check of six popular machine learning algorithms: performance of classifiers trained using the preprocessed Tox21 training datasets 
as evaluated using F1 score
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Statistical Comparison of Multiple Algorithms in Multi-
ple Problems (scmamp) library in R [56], we conducted 
a Friedman’s aligned-rank test [57]. The Friedman test 
was chosen over other statistical tests such as ANOVA 
because it does not require the assumption of data nor-
mality. The Bergmann-Hommel post-hoc test was car-
ried out for pairwise comparisons between SMN and the 
other three methods (RF, RUS and SMO) [54].

Results and discussion
In this section, we present (1) a summary of the curated 
and preprocessed Tox21 dataset, (2) the preliminary 
comparative results to justify the selection of RF as the 
base classifier, (3) parameter optimization for RF and 
ENN algorithms, (4) performance metrics of four classi-
fication methods for the twelve imbalanced Tox21 data-
sets, (5) the impact of IR and classification methods on 
prediction performance, and (6) a comparison between 
this study and published Tox21 studies.

Data curation and preprocessing
A summary of the preprocessed training and test datasets 
of chemicals and their activities measured by 12 qHTS 
in vitro assays is presented in Table 1. Although the origi-
nal raw Tox21 datasets contained more than 12 K chemi-
cals, approximately 50% of them or fewer were retained 
for each assay after preprocessing. This was primarily due 

to duplication and the absence of testing data for individ-
ual assays. The imbalanced ratio (IR), defined as the ratio 
of the number of the majority class (inactive compounds) 
to that of the minority class (active compounds) [42], var-
ied widely between assays and between the training and 
the test sets. Such large disparities offered a great oppor-
tunity to investigate the performance of different ensem-
ble-resampling approaches as a function of IR (see below 
for detailed results). In the training datasets, the high-
est IR of 41.7 appeared in the dataset of the NR-PPAR-γ 
assay, whereas the lowest IR of 5.7 was observed with 
the SR-MMP assay. The test datasets generally had IRs 
larger than or equivalent to those of their correspond-
ing training datasets, e.g., measuring as high as ~ 70 for 
NR-AR-LBD (except for NR-Aromatase, NR-PPAR-γ, and 
SR-ATAD5).

Selecting RF as the base classifier
A comparison of six popular machine learning algo-
rithms, i.e., RF, K-nearest neighbors (KNN), decision 
trees (CART), Naïve Bayes (NB), support vector machine 
(SVM) and multilayer perceptron (MLP), was performed 
using the training datasets of all twelve assays and a strat-
ified fivefold cross validation. These algorithms were all 
implemented in Scikit-learn [51] with default parameter 
settings. The purpose of this preliminary study was to 
select a base classifier from these algorithms. F1 score 
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Fig. 3  The relationship between model performance and the number of classifiers in the RF base classifier
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was calculated and used as the metric to evaluate clas-
sification performance. As shown in Fig.  2, RF was the 
frontrunner for four of the 12 assay datasets, including 
NR-AR-LBD, SR-ARE, SR-HSE, and SR-MMP. RF was 
the second best performer for another five assays (i.e., 
NR-AR, NR-ER, NR-ER-LBD, NR-PPAR-γ, and SR-p53). 
The average F1 score of RF for all 12 assays was the high-
est (0.2783) among all six algorithms, and the runner-up 
was MLP with an average F1 score of 0.2487. Clearly, RF 
outperformed the other five algorithms on the Tox21 
dataset, which informed our decision to proceed with 
choosing RF as the base classifier and to focus our study 
on imbalance handling methods.

Furthermore, the RF classifier was widely used by the 
participating teams in the Tox21 Data Challenge [28, 
48]. Two of the winning teams developed RF models 
that achieved the best performance in predicting com-
pound activities against AR, aromatase, and p53 [58] as 
well as ER-LBD [59]. Using the same RF classifier and the 
same dataset made it convenient to compare our results 
with those from the participating teams and allowed us 
to better investigate the impact of resampling methods 
on improving imbalanced learning and, consequently, 
improving classification performance (see “Comparison 
with Tox21 Data Challenge winners” section below for 
more info).

Parameter optimization for the RF classifier
It is generally accepted that the accuracy of a classifier 
ensemble is positively correlated with ensemble diver-
sity [60]. Here, we adjusted the ensemble diversity by 
randomly selecting data instances to create the boot-
strap samples (see Fig. 1) and by increasing the number 
of classifiers included in the ensemble. Figure  3 shows 
that the performance of classifier ensembles measured by 
the average F1 score, AUPRC, AUROC and MCC for all 

four methods changes with the varying number of clas-
sifiers in the ensemble. A plateau was encountered when 
the number of classifiers reached 30, which may have 
been the optimal number of classifiers in this situation. 
After this point, there was little improvement in per-
formance as the number of classifiers increased. Even if 
minor improvements were noticed using 100 classifiers 
for some metrics (e.g., MCC), this dramatically increased 
the computational time and resources needed to train the 
model. The relationship between performance and the 
number of classifiers may be explained by the importance 
of diversity in ensemble learning. With every bootstrap 
sample being different from another in terms of chemi-
cal composition and fingerprint features, diversity in the 
bagging ensemble was inherent. However, as the number 
of classifiers increased, the number of times (frequency) 
that a sample was selected from the same population also 
increased. This would result in a decline in the variance 
between such bootstrap samples or a flat line in ensem-
ble diversity. Consequently, a flat line was observed in 
performance metrics as the number of classifiers in an 
ensemble increased from 30 to 100 (Fig. 3). In the subse-
quent experiments, we adopted the optimal number of 30 
classifiers for ensemble learning.

Optimal number of nearest neighbors (k) in the ENN 
algorithm of SMN models
Another parameter we optimized was the k value in the 
ENN algorithm. The choice of a synthetic instance to 
be removed from the training set is determined by the 
voting of its k neighbors. As shown in Fig.  4, we varied 
the number of nearest neighbors k from 1 to 5, and 3 
appeared to be the optimal k value for most of the five 
measured performance metrics. F1 score and AUPRC 
peaked at k = 3, BA plateaued when k = 3 or 4, whereas 
MCC peaked earlier at k = 2. AUROC was the only met-
ric not affected by the change in k value. Thus, the k value 
was set at 3 for SMN in this study.

By setting k at this optimal value, ENN may help 
increase the classifier’s generalizability by removing 
noisy (mislabeled) synthetic instances introduced in the 
SMOTE step. By reducing the amount of noise in the 
dataset while reducing imbalance, it is expected that the 
class boundaries between active and inactive compounds 
can be better defined. A reduction in noisy instances can 
also reduce the chance of over-fitting. This is essentially 
where the power of SMN lies. However, further incre-
ments in the k value beyond the optimum led to a decline 
in classifier performance.

Performance evaluation metrics
Table  2 reports nine performance metrics and their 
average values for four classification methods (RF, RUS, 
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SMO and SMN) for 12 bioactivity assays, with the best 
performer highlighted in bold for each evaluation met-
ric and assay. The derived specificity results are reported 
alone with sensitivity and SSG results in Additional 
file  1: Table  S1. For each assay, the training dataset was 
employed to train a classifier using four different algo-
rithms, and then the trained classifier was applied to 
the test dataset to determine performance metrics as 
described in the “Materials and methods” section (also 
see Fig. 1). The reported values varied greatly depending 
on metrics, assays and algorithms. For instance, AUROC 
has the highest values averaged at 0.8049, whereas MCC 
has the lowest mean value of 0.2945. This is not surpris-
ing as different metrics measure different aspects of 
learning algorithm performance and trained model qual-
ity [61].

We excluded accuracy (the ratio of correct predictions 
to the total number of chemicals) and specificity from the 
metrics panel presented in Table 2 because accuracy may 
be misleading in evaluating model performance for highly 
imbalanced classification [22]. Specifically, a high accu-
racy does not translate into a high capability of the pre-
diction model to correctly predict the rare class, whereas 
specificity is less relevant since we are more interested 
in the positive class (active minority). However, the nine 
chosen metrics in the panel are not necessarily the ideal 
ones for evaluating the performance of classification with 
a skewed class distribution. For instance, both AUROC 
and AUPRC can provide a model-wide evaluation of 
binary classifiers [27]. Although AUROC, proposed as an 
alternative to accuracy [22], is unaffected by data skew-
ness [62], it may provide an excessively optimistic view 
of an algorithm’s performance on highly imbalanced 
data [21]. AUPRC, on the other hand, is affected by data 
imbalance [62], but it is a more informative and more 
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Table 3  Correlation coefficients (CCs) between  log2IR 
and  six performance metrics plus  the  average of  nine 
metrics in Table 2 for all four classification algorithms

Insignificant CCs are highlighted in bold and are those whose absolute values 
are smaller than 0.5760, the critical value at α = 0.05 significance level for the 
degree of freedom df = 10 (i.e., n−2, where n = 12 assays)

Metrics Algorithms

RF RUS SMO SMN

F1 score − 0.7217 − 0.7394 − 0.6941 − 0.9817

MCC − 0.5778 − 0.6180 − 0.6419 − 0.9761

BA − 0.6539 − 0.6274 − 0.6227 − 0.9461

AUPRC − 0.7034 − 0.7148 − 0.8418 − 0.9628

AUROC − 0.277 − 0.1589 − 0.3713 − 0.7417

SSG 0.7158 0.7072 0.7006 0.9195

Average − 0.6536 − 0.8421 − 0.7725 − 0.9822
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realistic measure than AUROC for imbalanced classifica-
tion [27]. Another example is precision and recall, both 
of which depend on a threshold selected to determine if a 
chemical compound is active or inactive. A higher recall 
may be obtained by setting a lower threshold (increasing 
the number of TP predictions and decreasing the num-
ber of FN predictions), which results in a lower precision 
(more FP predictions). On the other hand, raising the 
threshold for labeling active chemicals may benefit preci-
sion but hurt recall. Optimizing both precision and recall 
occurs with a tradeoff, especially with imbalanced data. 
F1 score appears to be a balanced trade-off between pre-
cision and recall. Nevertheless, like AUPRC, F1 score is 
also attenuated by data skewness [62]. SSG, a good indi-
cator of balance between sensitivity and specificity [13], 
may become an inefficient performance metric when 
both sensitivity and specificity are low. For such appli-
cations as predictive toxicology and drug discovery, one 
may be more interested in improving sensitivity instead 
of reducing SSG due to the rarity of positive instances. 
Given the pros and cons of these metrics, it is neces-
sary to use a suite of metrics for performance evaluation. 
Hence, we calculated the “average” of the nine metrics 
(Table 2) which may serve as a comprehensive indicator 
of model performance. However, its formula (e.g., mem-
bership composition, weight of each component metric, 
and normalization method) and applicability still require 
further investigation.

Impact of imbalance ratio on performance metrics
The variation in the same performance metrics between 
different assay datasets is as high as 87% CV (Table  2), 
suggesting that dataset properties (IR in particular) have 
a significant impact. Nevertheless, systematic assess-
ment of the impact of IR on prediction accuracy remains 
a challenging problem. The IRs in our assay datasets 
varied from 5 to 70 (Table 1). We calculated correlation 
coefficients (CCs) between log2(IR) and the score of five 
evaluation metrics (Table 3). Except for the CCs between 
AUROC and RF/RUS/SMO, there exists a significant 
negative correlation between IR (of the test datasets) and 
the performance evaluation metrics F1 score, MCC, BA, 
AUPRC, AUROC, and the average of all 9 chosen met-
rics. This is consistent with earlier reports on the adverse 
effects of IR on these metrics [62]. The statistically sig-
nificant positive correlation between IR and SSG sug-
gests that higher IRs would increase SSG, which is also 
undesirable.

To investigate how IR affects the extent of performance 
improvement obtained by different resampling tech-
niques, the scores of four metrics (F1 score, MCC, SSG 
and the average of 9 metrics) of all twelve assays are plot-
ted against their log2IR (see Fig.  5). For MCC, F1 score 

and the average of 9 metrics, the trend line of SMN is well 
above those of SMO, RUS and RF, indicating that SMN 
performed better than other classifiers. The trend lines 
of SMO and RUS intertwine with that of RF, suggesting 
that both SMO and RUS did not consistently improve 
the performance metrics over the base classifier RF. In 
addition, the SMN trend line intercepts with the other 
three at about log2IR = 4.8 (for average), 5.5 (for MCC) 
or 6.1 (for F1 score), suggesting that a metric-specific IR 
between 28 and 70 is likely the threshold at which SMN 
can outperform other classifiers. The lower the IR value 
is, the more improvements SMN can achieve, compared 
to the RF, RUS and SMO classifiers. When IR approaches 
the threshold, the improvements are insignificant. These 
results demonstrate the limitation of data rebalancing 
techniques and also provide useful feedback for data 
acquisition. If evaluated by the SSG metric (the smaller, 
the better), RUS outperformed SMN and the other two 
algorithms, suggesting that SMN had limited power in 
narrowing the gap between sensitivity and specificity. 
Whenever possible, we should increase the number of 
active compounds to reduce the imbalance ratio in order 
to obtain more accurate predictions in SAR-based chemi-
cal classification.

Impact of resampling techniques on classifier performance
The effect of algorithm choice is partially reflected by a 
change of 0.1263 in the average metrics score from RF 
(0.1854) to SMN (0.3116) (Table  2). We also calculated 
the average Friedman ranking of each classifier [55] by 
ranking the four algorithms from 1 to 4 based on their 
performance on each assay dataset. The best classifiers 
were assigned a rank of 1 and the worst classifiers were 
assigned a rank of 4. The algorithm with the lowest aver-
age rank is considered the best for a specific metric. As 
shown in Fig. 6, SMN outperformed the other algorithms 
(RF, RUS and SMO) in terms of four metrics (F1 score, 
AUPRC, AUROC and MCC) and was only slightly sur-
passed by the frontrunner RUS for the BA metric. Taking 
F1 score as an example, SMN performed better in seven 
of the 12 assay datasets, followed by RUS which was the 
best performer for three assays (Table 2). More interest-
ingly, the magnitude of improvement offered by SMN 
from the next best method ranged from approximately 
8% for the NR-ER-LBD dataset to as much as 27% for the 
SR-ARE and NR-Aromatase datasets. Understandably, 
the baseline classifier RF had the worst average perfor-
mance even though its parameters were also optimized. 
SMN demonstrated a better F1 score in most cases 
because of its ability to improve recall without excessively 
lowering precision. A moderately higher recall value with 
comparable precision positively impacts the F1 score.
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Fig. 5  The relationship between imbalance ratio (Log2IR) and prediction performance metrics calculated for four classification methods (SMN, SMO, 
RUS and RF): a F1 score, b MCC, c SSG, and d the average of 9 metrics
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The Friedman’s Aligned Rank Test for Multiple Com-
parisons [55] was performed to further examine the 
statistical significance of the algorithmic effects of resa-
mpling techniques. Our null hypothesis was that all four 
algorithms had similar capability in classification meas-
ured by nine metrics for 12 datasets. Results shown in 
Table 4 suggest that all metrics except AUPRC were sig-
nificantly affected by the resampling algorithm (p < 0.05). 
The Bergmann-Hommel post hoc analysis was applied to 
compare pairwise performance metrics of SMN against 
the other three classifiers. SMN differed more from RF 
than from SMO and RUS because one, two, and five met-
rics were insignificantly different (p > 0.05) between SMN 
and RF, SMN and SMO, and SMN and RUS, respectively. 
F1 score, MCC and Brier score showed significant dif-
ference among the four classifiers in both multiple and 
pair-wise comparisons. For instance, SMN had the lowest 
average Brier score of 0.3312 ± 0.0509 (average ± stand-
ard error) in comparison with SMO (0.4109 ± 0.0627), 
RUS (0.3894 ± 0.0361), and the baseline classifier RF 
(0.3967 ± 0.0395). A lower Brier score indicates that the 
predictions of a classifier are more accurate because they 

are closer to the ground truth. MCC, a metric widely 
used to evaluate the performance of SAR-based chemi-
cal classification [63, 64], embodies all the components of 
the confusion matrix and hence presents a reliable sum-
mary of the performance of models trained on imbal-
anced data.

On the contrary, AUPRC was the sole metric that did 
not differ significantly in any of the comparisons. AUPRC 
computes the area under the precision-recall curve that is 
obtained by using the output of the precision function at 
different recall levels to assess the overall performance of 
a prediction model [51]. SMN showed improved AUPRC 
scores compared to the other algorithms. However, this 
improvement was not very substantial. Unlike F1 score, 
which benefits from a varied classification threshold, 
minor improvements in the probabilities for each class 
do not translate to a marked improvement in the AUPRC 
score. This is because, being a threshold-independent 
metric, AUPRC computes the entire area under the 
curve for the plot of precision versus recall at all possi-
ble thresholds. Nevertheless, SMN still showed the best 
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Fig. 6  Average Friedman ranks of the four classification methods (RF, RUS, SMO and SMN) with respect to five metrics (F1 score, AUPRC, AUROC, 
MCC and BA). Error bars represent standard errors. See Table 4 for statistical significance in the difference between classifiers

Table 4  Friedman’s aligned rank test and  Bergmann-Hommel post  hoc analysis results showing corrected p-values 
for multiple and pair-wise comparisons between SMN and the other three classifiers, respectively

Insignificant statistics (p > 0.05) are highlighted in bold

Comparisons F1 score AUPRC AUROC MCC BA Precision Recall Brier score SSG

All four classifiers 0.0005 0.1322 0.0462 0.0111 5.4e−06 9.0e−05 1.8e−06 0.0017 2.0e−06

SMN vs RF 0.0003 0.5253 0.0168 0.0088 0.0001 0.0278 0.0013 0.0009 0.0010

SMN vs RUS 0.0051 0.1008 0.0504 0.0062 1.0000 0.0948 0.2307 0.0022 0.0274

SMN vs SMO 0.0003 0.7818 0.3320 0.0088 0.0001 0.0278 0.013 0.0007 8.4e−04
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performance in 33% (4/12) of cases tested, RF and SMO 
in 25% (3/12) each, and RUS in 16% (2/12).

The above results suggest that AUPRC is not sensitive 
to algorithmic effects, whereas F1 score, MCC and Brier 
score are sensitive metrics that can distinguish among 
the classifiers by their performance. These results also 
indicate that SMN was the best performer, followed by 
RUS, while SMO and RF had the poorest performance 
with the Tox21 datasets. When looking at the average 
of all 9 metrics (Table 2), SMN and RUS ranked the best 
for 6 and 5 assays, separately, whereas RF only had the 
best performance with the NR-AR assay and SMO always 
underperformed across all 12 assays. These results led 
us to speculate that the activity landscape of the major-
ity class (inactive compounds) may be more continuous 
and smooth than that of the minority class (active com-
pounds) [65]. Consequently, removing some instances 
from the majority class would not affect class boundaries. 
On the contrary, adding synthetic instances to the minor-
ity class (SMOTE) may introduce noise along the border-
lines, leading to the loss of activity cliffs and mislabeling 
of the synthetic instances [66]. The ENN algorithm may 
effectively remove those synthetic outliers and restore the 
activity cliffs and class boundaries, leading to enhanced 
prediction performance for SMOTEENN (SMN) [67]

Comparison with Tox21 Data Challenge winners
In this section, we compared the prediction performance 
of the four classifiers in this study with those developed 
by the winning teams for each of the assays in the Tox21 
Data Challenge [34]. The winning team for each sub-
challenge was judged by AUROC (and BA if there was a 
tie in AUROC [35]). The AUROC and BA scores of the 
top ten ranked teams are posted at (https​://tripo​d.nih.
gov/tox21​/chall​enge/leade​rboar​d.jsp). The 12 assay sub-
challenges were won by four teams: Bioinf@JKU, Amaziz, 
Dmlab and Microsomes. Bioinf@JKU developed Deep-
Tox models using deep learning [25] and won six out 
of the 12 assay sub-challenges (NR-AhR, NR-AR-LBD, 
NR-ER, NR-PPAR-γ, SR-ARE, and SR-HSE) in addition to 
the Grand Challenge and two additional sub-challenges 
for the Nuclear Receptor Panel and the Stress Response 
Panel. Amaziz [68] employed associative neural networks 
to develop winning models for SR-ATAD5 and SR-MMP 
assays, and had the best overall BA score. Dmlab [58] 
used multi-tree ensemble methods, such as Random 
Forests and Extra Trees, to produce winning models for 
three assays (i.e., NR-AR, NR-aromatase and SR-p53). 
Microsomes [59] chose Random Forest for descriptor 
selection and model generation, and produced the best 
performing NR-ER-LBD model. For the purpose of com-
parison, we selected Dmlab and Microsomes because 
they used Random Forest. We also compared our best 

classifier with the winner of each assay sub-challenge. 
Given the over-optimistic nature of AUROC, the BA 
metric provides a more realistic and reliable measure for 
performance comparison. The titles of the best BA scores 
were shared by five teams: Kibutz (1 assay), Bioinf@JKU 
(2), Amaziz (2), T (3), and StructuralBioinformatics@
Charite (4). The AUROC and BA scores of the winning 
teams are shown in Table 5 side by side with those of our 
best performing classifiers because they are the only met-
rics available for the Tox21 Data Challenge.

Although the AUROC and BA metrics are not ideal for 
evaluating imbalanced classification, we made the com-
parison to demonstrate that the improvement obtained 
from imbalance pre-processing enabled our classifiers to 
perform equally well or outperform the winning models 
of the Tox21 Data Challenge. This is primarily reflected 
by the following observations: (1) our best classifiers 
outperformed Dmlab and Microsomes in terms of both 
AUROC and BA by large margins with only four excep-
tions (NR-AR, NR-PPAR-γ, SR-ATAD5 and SR-MMP), 
where Dmlab exceeded our best classifiers in AUROC 
by less than 4%; (2) our best classifiers had the same or 
higher AUROC and a higher BA than challenge win-
ners for six and three assays, respectively, with less than 
8% (AUROC) or 17% (BA) difference for the remaining 
assays; and (3) on average, our best classifiers performed 
almost equally as well as the challenge winners as a whole 
(Table  5). The last two columns in Table  5 report the 
comparison between our best classifier and the winner 
of Tox21 Challenge in terms of BA and AUROC ratios, 
with a value greater than 1 indicating that our model per-
formed better than the Challenge winning model. These 
results (particularly the BA scores) not only establish 
the validity, credibility and scientific soundness of the 
approach, methodology and algorithms implemented in 
this study, but also demonstrate that the excellence of our 
work reached levels comparable to that of the Tox21 Data 
Challenge winners.

It is also worth noting that Banerjee et  al. [13] per-
formed similar work on three Tox21 datasets (AhR, ER-
LDB, and HSE). They employed RF as the base classifier 
(without ensemble learning) and applied eight different 
undersampling or oversampling techniques (including 
random undersampling and SMOTE). Similar to this 
study, their work also demonstrated that dataset and 
resampling techniques had significant impacts on classi-
fication outcome and that such impacts varied from one 
metric to another with sensitivity and F-measure being 
more sensitive than AUROC and accuracy.

Another study worth mentioning described how 
Norinder and Boyer [16] achieved balanced prediction 
performance with sensitivity and specificity (for the 
external test dataset) both attaining 0.70 − 0.75 when they 

https://tripod.nih.gov/tox21/challenge/leaderboard.jsp
https://tripod.nih.gov/tox21/challenge/leaderboard.jsp
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applied MCP to the similar ToxCast and Tox21 datasets 
of estrogen receptor assays and used SVM as the classi-
fier. These results are far superior to those obtained using 
SVM or RF alone without resampling or MCP [16, 69], 
but they are only slightly better than the performance of 
RUS with sensitivity at 0.69 or 0.55 (Table 2) and specific-
ity at 0.61 or 0.84 (Additional file 1: Table S1) obtained in 
our study. Therefore, it warrants further in-depth inves-
tigations to compare side-by-side resampling with MCP 
and MCP + resampling using the same machine learning 
algorithms, the same raw datasets, and the same preproc-
essing procedure.

Conclusions
Due to the specificity of toxicant-target biomolecule 
interactions, SAR-based chemical classification stud-
ies are often impeded by the imbalanced nature of many 
toxicity datasets. Furthermore, class boundaries are often 
blurred since active toxicants often appear in the minor-
ity class. In order to address these issues, common resa-
mpling techniques can be applied. However, removing 
majority class instances using an undersampling tech-
nique can result in information loss, whereas increas-
ing minority instances by interpolation tends to further 
obfuscate the majority class space, giving rise to over-fit-
ting. In order to improve the prediction accuracy attained 
from imbalanced learning, SMOTEENN, a combination 
of SMOTE and ENN algorithms, is often employed to 
oversample the minority class by creating synthetic sam-
ples, followed by cleaning the mislabeled instances. Here, 
we integrated an ensemble approach (bagging) with a 
base classifier (RF) and various resampling techniques to 
form four learning algorithms (RF, RUS, SMO and SMN). 
Then, we applied them to the binary classification of 12 
highly imbalanced Tox21 in vitro qHTS bioassay datasets.

We generated multiple sets of chemical descriptors or 
fingerprints and down-selected small groups of features 
for use in class prediction model generation. After data 
preprocessing, parameters were optimized for both resa-
mpling and classifier training. The performance of the 
four learning methods was compared using nine evalua-
tion metrics, among which F1 score, MCC and Brier score 
provided more consistent assessment of the overall per-
formance across the 12 datasets. The Friedman’s aligned 
ranks test and the subsequent Bergmann-Hommel post 
hoc test showed that SMN significantly outperformed the 
other three methods. It was also found that there was a 
strong negative correlation between prediction accuracy 
and IR. We observed that SMN became less effective 
when IR exceeded a certain threshold (e.g., > 28). There-
fore, SAR-based imbalanced learning can be affected by 
the degree of dataset skewness, resampling algorithms, 
and evaluation metrics. We recommend assembling a 

panel of representative, diversified and imbalance-sensi-
tive metrics, developing a comprehensive index from this 
panel, and using the index to evaluate the performance of 
classifiers for imbalanced datasets.

The ability to separate the small number of active 
compounds from the vast amounts of inactive ones is 
of great importance in computational toxicology. This 
work demonstrates that the performance of SAR-based, 
imbalanced chemical toxicity classification can be signifi-
cantly improved through imbalance handling. Although 
the best classifiers of this study achieved the same level 
of performance as the winners of the Tox21 Data Chal-
lenge as a whole, we believe that there is still plenty of 
room for further improvement. Given the exceptionally 
outstanding performance of DeepTox [25] and our own 
experience with deep learning-based chemical toxicity 
classification [70], our future plan is to replace RF with 
a deep learning algorithm like deep neural networks as 
the base classifier and combine it with class rebalancing 
techniques to build novel deep learning models for SAR-
based chemical toxicity prediction. We are also interested 
in pursuing a novel approach by integrating MCP, resa-
mpling and ensemble strategies to further improve the 
robustness and performance of imbalanced learning.
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