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Abstract 

Molecular generative models trained with small sets of molecules represented as SMILES strings can generate large 
regions of the chemical space. Unfortunately, due to the sequential nature of SMILES strings, these models are not 
able to generate molecules given a scaffold (i.e., partially‑built molecules with explicit attachment points). Herein 
we report a new SMILES‑based molecular generative architecture that generates molecules from scaffolds and can 
be trained from any arbitrary molecular set. This approach is possible thanks to a new molecular set pre‑processing 
algorithm that exhaustively slices all possible combinations of acyclic bonds of every molecule, combinatorically 
obtaining a large number of scaffolds with their respective decorations. Moreover, it serves as a data augmentation 
technique and can be readily coupled with randomized SMILES to obtain even better results with small sets. Two 
examples showcasing the potential of the architecture in medicinal and synthetic chemistry are described: First, 
models were trained with a training set obtained from a small set of Dopamine Receptor D2 (DRD2) active modula‑
tors and were able to meaningfully decorate a wide range of scaffolds and obtain molecular series predicted active 
on DRD2. Second, a larger set of drug‑like molecules from ChEMBL was selectively sliced using synthetic chemistry 
constraints (RECAP rules). In this case, the resulting scaffolds with decorations were filtered only to allow those that 
included fragment‑like decorations. This filtering process allowed models trained with this dataset to selectively deco‑
rate diverse scaffolds with fragments that were generally predicted to be synthesizable and attachable to the scaffold 
using known synthetic approaches. In both cases, the models were already able to decorate molecules using specific 
knowledge without the need to add it with other techniques, such as reinforcement learning. We envision that this 
architecture will become a useful addition to the already existent architectures for de novo molecular generation.
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Introduction
Deep generative models have become a widely used tool 
to generate new data from limited amounts. They have 
been applied successfully to generate text [1], images [2], 
video [3], and music [4]. Additionally, they have been 
applied to drug discovery and have enabled many new 
ways to explore the chemical space [5–7]. For instance, 

Recurrent Neural Networks (RNNs), comprised of sev-
eral interconnected layers of Long Short-Term Memory 
(LSTM) cells [8], trained with the ChEMBL database [9] 
(around 1.8 million compounds), can generate billions 
of drug-like molecules [10]. Techniques such as trans-
fer learning [11, 12], and reinforcement learning [13] 
can then be used on the trained model to refine it and 
obtain molecules of interest (i.e., activity to a particular 
target, physicochemical property optimization). Other 
architectures, such as Variational Autoencoders (VAEs) 
[14, 15], Conditional RNNs (cRNNs) [16], or Generative 
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Adversarial Networks (GANs) [17, 18] have also reported 
success in generating molecules.

One specific feature of a large number of architectures 
is the use of the SMILES molecular representation [19]. 
The use of the full molecular graph has been reported in 
the literature [20, 21], but SMILES-based models have a 
simpler architecture and can be trained faster. Moreo-
ver, using a randomized SMILES representation [10, 22] 
instead of a unique (or canonical [23]) during training 
improves the results substantially and makes the models 
converge better and overfit less. Nevertheless, up to now, 
SMILES generative model architectures do not allow 
molecular generation from scaffolds (i.e., a partially-built 
molecule with explicit attachment points) mainly due to 
the restrictions of the SMILES syntax. An approach was 
published that could generate molecules by completing 
a SMILES string from both sides using a bidirectional 
RNN [24], but it is limited to two attachment points. 
Furthermore, other approaches have been reported that 
use graph generative neural networks (GGNN), which 
are even able to decorate a scaffold without the need of 
specifying attachment points [25, 26]. Unfortunately, 
GGNNs are experimental architectures that require far 
more resources to train and sample than SMILES-based 
architectures [20]. Moreover, a model that is readily inte-
grated to the current SMILES-based generative model 
pipelines would prove especially useful in a compound 
series generation [27], where some specific moiety is to 
be retained, or in library design [28], where synthesizabil-
ity constraints may apply.

In this article, we describe a deep learning SMILES-
based generative architecture that can generate mole-
cules in two steps: first, an RNN that generates scaffolds 
and then a model (henceforth called a decorator) that 
generates suitable decorations for each attachment point 
in the scaffold. A crucial step is to generate training sets 
that help the model generalize for a wide range of scaf-
folds. For this reason, an algorithm that exhaustively 
slices any arbitrary molecular set into a larger set of scaf-
fold-decorations tuples is described. This algorithm bears 
a resemblance, although it is much more general, to the 
Hussain-Rea (HR) Matched Molecular Pairs (MMP) [29] 
algorithm [30] and the one used by Ertl et  al. to obtain 
substituents from molecules [31, 32]. The algorithm can 
be coupled with randomized SMILES and can generate 
large amounts of scaffolds and decorations even from 
small and focused molecular sets, thus serving as a data 
augmentation technique. Furthermore, the scaffolds and 
the decorations can be further filtered and only allow 
those with specific properties. We show that these filter-
ings allow a decorator model to learn specific informa-
tion on how the scaffolds are to be decorated.

Two experiments were performed to showcase the 
potential of the model in both medicinal and synthetic 
chemistry. For the first approach, a set of modulators of 
the DRD2 receptor obtained from ExCAPE DB [33] were 
exhaustively sliced using the algorithm described previ-
ously. Using an Activity Prediction Model (APM) trained 
on a larger set of DRD2 active and inactive compounds, 
we showed that decorator models trained with this data-
set were able to obtain predicted active molecular series 
given a diverse set of scaffolds as input. These series were 
also plotted on Tree Maps (TMAPs) [34], which cluster 
molecules according to similarity. The second experiment 
instead used a subset of drug-like molecules in ChEMBL, 
which was exhaustively sliced using the same algorithm 
but restricting the acyclic bonds to cut to those that com-
plied with the synthetic chemistry-based RECAP [35] 
rules. Results showed that, given a large and diverse set 
of scaffolds, models trained with the dataset were able to 
generate decorations that joined to the molecule with a 
bond fulfilling the RECAP rules. Moreover, the decora-
tions generated were also shown generally to be easily 
obtainable, making the resulting molecules synthesizable 
using known routes. An implementation of the architec-
ture alongside the scripts used to slice the training sets 
are released as open-source software.

Results
Architecture overview
The molecule generation process was divided into two 
steps: a scaffold generator and a decorator. Both gen-
erator and decorator were molecular generative mod-
els (see “Methods” for more information) and used the 
randomized SMILES molecular representation [10]. The 
SMILES syntax was extended with the token “[*]”, which 
is supported by some chemistry software libraries, as 
an attachment point in partially-built molecules. The 
generation process is summarized in Fig. 1. First, a ran-
domized SMILES of a scaffold was either generated by 
the scaffold generator or fed in manually. Then, the scaf-
fold was input to the decorator model. Here, two possi-
ble decorators were trained, one that decorated only one 
attachment point at a time and another that decorated 
all attachment points at once. In the first case, the model 
decorated the first attachment point in the scaffold 
SMILES string, the generated decoration was then joined 
back to the scaffold, and the half-built molecule was fed 
back in the decorator. The process was repeated until 
all attachment points were decorated. The randomized 
SMILES representation of the half-decorated molecules 
changed at every step, thus moving the relative posi-
tion of the attachment points in the SMILES string. This 
process allowed all possible orderings when decorating 
a molecule with n attachment points to be considered. 
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Alternatively, the model that decorated all attachment 
points followed a similar process but in only one step, 
generating all the decorations by order of appearance in 
the SMILES string using the “|” token as a separator.

Training set generation
A decorator model requires a training set where each 
item comprised of a scaffold and its decorations. Instead 
of choosing already created compound series (e.g., patent 
data), the datasets were created by exhaustively slicing all 
molecules in a molecular database. For each molecule in 
the dataset, this algorithm creates fragments by exhaus-
tively removing c single non-cyclic bonds. Then, fragments 
generated are classified as scaffold and decorations (Fig. 2). 
From a slicing of a molecule, if there is no fragment with 
attachments = c , the combination is discarded. Given 
that each molecule can be sliced in many different ways, 
this approach generally yields more than one scaffold per 
molecule. Additionally, a scaffold can have more than one 
set of decorations, each of them from a different molecule. 
Each of these combinations, henceforth called scaffold-
decorations tuple, is comprised of a scaffold and as many 
decorations as attachment points the scaffold has.

By default, the algorithm has all acyclic bonds as 
candidates for slicing, but those can be further fil-
tered. Additionally, the scaffolds and decorations can 
be filtered whether they match specific physicochemi-
cal properties. Specifically, in all training sets used in 
this research, the scaffolds had at least one ring, and 

the decorations had to comply with the rule of 3 [36]  
(i.e., MolWeight ≤ 300Da;HBD ≤ 3;HBA ≤ 3;ClogP ≤ 3; 
RotBonds ≤ 3).

Generating predicted active molecular series on DRD2
The primary purpose of a scaffold decorator is to deco-
rate many times, as meaningfully as possible, any input 
scaffold. In the first experiment, a small dataset, com-
prised of 4211 Dopamine Receptor D2 (DRD2) active 
modulators, was used to train decorator models (both 
multi-step and single-step). Then, these models were 
tested on a diverse set of scaffolds, both similar and dif-
ferent from the training set data. From each scaffold, a 
molecular series was obtained, which was then compared 
to randomly decorated molecules using an activity pre-
diction model (APM).

Preparation of the dataset
A dataset comprised of 4211 Dopamine Receptor D2 
(DRD2) active modulators ( pXC50 ≥ 5 ) obtained from 
ExCAPE-DB [33] (Additional file  1: Methods S1) was 
processed the following way: First, all molecules were 
exhaustively sliced using the algorithm mentioned in 
the previous section. This processing step yielded a total 
of 137,061 scaffold-decorations tuples, which included 
72,010 unique scaffolds with up to four attachment 
points. The distribution of the number of decorations per 
scaffold showed an exponential nature (Fig. 3a), and most 
(56,933–79.1%) of the scaffolds were singletons (i.e., only 

Fig. 1 Schema of both the generative model architecture that decorates a scaffold in one step (Single‑step decorator) and the one that uses 
many steps (Multi‑step decorator). The first loop is the same for both decorators: a scaffold is created by the scaffold generator, and then 
some randomized SMILES are obtained. In the single‑step decorator, scaffolds are fed to the model, and decorations are generated by order of 
appearance in the SMILES string. Alternatively, the multi‑step decorator generates only the first decoration in the SMILES string, then it is attached 
to the scaffold, and the process is repeated until all attachment points are decorated
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one set of decorations). Also, the number of attachment 
points per scaffold was plotted and showed that most 
scaffolds had two attachment points (Fig. 3b). The train-
ing set was comprised of 5532 unique decorations, also 
distributed exponentially (Fig.  3c). Both a scaffold gen-
erator model and decorator models were trained (Addi-
tional file 1: Methods S2 for more details on the training 
process).

Analysis of validation set scaffolds
A validation set comprised of 5532 scaffold-decoration 
tuples was extracted by removing all tuples with five 
randomly selected scaffolds (Fig.  4) alongside all tuples 
obtained from any of the 152 molecules with those scaf-
folds. The five selected scaffolds were then decorated 
multiple times with the multi-step decorator model, 
yielding a total of 14,300 unique molecules, which 
included 63 (41.4%) molecules present in the validation 
set (Table 1). Moreover, the model was able to decorate 
the scaffolds in many more ways and generate thousands 
of molecules. Most of these were predicted active by an 
activity prediction model (APM), which was trained 
from a larger set of DRD2 active and inactive molecules 
(see “Methods”). Next, randomly generated decoys were 
sampled for each scaffold. These decoys were obtained 
from decorating each scaffold with drug-like fragments 
from ChEMBL, maintaining the same molecular weight 

distribution as the training set. For each scaffold, as many 
decorators were generated as times the scaffold decora-
tor model was sampled (Additional file  2: Table  S2 for 
the exact numbers). Results showed that the percent of 
predicted active molecules was always lower than that 
obtained from the decorated molecules (Table  1, left). 
Furthermore, the same decoy generation procedure 
was done this time using decorations from the training 
set and, even though there was a higher percentage of 
predicted active molecules compared to the ChEMBL 
decoys, it was lower than the one from the set obtained 
with the decorator model (Table 1, right). A comparison 
of the generated decoys and decorated molecules was 
also carried out and showed that the overlap between 
the decoy sets and the generated molecules was minimal 
(Additional file  2: Table  S2). Specifically, the ChEMBL 
decoys had no overlap whatsoever in scaffolds (3), (4), 
and (5) and just nine molecules in total for the other 
two scaffolds. The overlaps with the DRD2 decoys were 
slightly higher, but only 31 molecules (0.2% of all gener-
ated molecules) among all scaffolds. Lastly, there was a 
substantial difference in the number of decorations sam-
pled with each scaffold: in scaffolds (4) and (5), less than 
a thousand different molecules were obtained, whereas 
in (1), (2) and especially (3) many more molecules were 
generated.

Fig. 2 Three possible scaffold‑decorations tuples obtained from slicing the DRD2 antagonist cinnarizine. The scaffold with the attachment points 
is on the left and the decorations on the right. Notice that the second case with only one attachment point can also be inverted, converting the 
decoration to the scaffold and vice versa
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Generating molecules from new scaffolds
The complete generative process, as shown in Fig.  1, 
was performed by first obtaining five diverse scaffolds 
not present in the DRD2 dataset (non-dataset scaffolds) 
(Fig.  5). They were sampled from a molecular genera-
tive model trained with the scaffolds from the training 
set (see “Methods”) and were then decorated multiple 
times using the multi-step scaffold decorator model. 
Results showed that the ratio of generated molecules 
predicted as active is generally very high, going from 
45.4 to 98.9% (Table  2). But most importantly, the dec-
orator molecules always had a higher ratio of predicted 
active molecules than both the ChEMBL and training set 
decoy sets. Notice that the more complete a scaffold is, 
the higher the number of predicted active decoys appear. 

This particularity is noticeable in scaffolds (6), (8), and 
especially (10) and may point to applicability domain 
limitations of the APM. Moreover, the absolute number 
of different molecules decorated varied greatly among 
scaffolds, and the total number of molecules (26,140) was 
approximately two times greater than that of the previous 
section, possibly because the model had less information 
from the scaffolds and was less focused. Lastly, the over-
lap between the decoys and the generated molecules was 
also calculated and yielded higher results to those in the 
previous section (Additional file  2: Table  S3). A total of 
167 molecules (0.6% of all generated molecules) were also 
ChEMBL decoys, and 411 molecules (1.6% of all gener-
ated molecules) were also training set decoys. 

Fig. 3 Plots describing the resulting set of 137,061 scaffold‑decorations tuples obtained from slicing a set of 4211 DRD2 modulators (see 
“Methods”). a The number of decorations per scaffold in the dataset ordered from right to left (notice that the y‑axis is in logarithmic scale). b 
Histogram of the number of attachment points of the entire set. c The number of times each decoration appears in the dataset ordered from right 
to left (notice that the y‑axis is in logarithmic scale). d Histogram of the number of acyclic bonds per molecule
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Decorating scaffolds in one step
A decorator model that decorated all attachment points 
in a single step was also trained with the same hyperpa-
rameter configuration, training, and validation sets as 
the previous one. Results showed that the single-step 
architecture model was able to generate 90 out of 152 
molecules (59.2%) from the validation set. This result, 
although better than the multi-step model, must be 
understood with care. A comparison between the multi-
step and single-step models must be made in relative 

terms, as the nature of the multi-step architecture sam-
pling process does not allow controlling how many mol-
ecules are going to be sampled. On the other hand, the 
decorator showed an overall lower percent of predicted 
active molecules in the APM benchmark for all valida-
tion set scaffolds (Fig.  6, Additional file  2: Table  S1 for 
all data). When being decorated with the non-dataset 
scaffolds (6) to (10), the results showed a similar trend 
(Additional file 2: Figure S4 for all data). The number of 
molecules obtained was more than eight times higher 

Fig. 4 Five scaffolds only present in the validation set of the scaffold decorator model

Table 1 Results from the decoration process of the DRD2 molecules on the five validation set scaffolds

Total number of molecules sampled (Total); percent of generated molecules that are predicted as active ( pactive ≥ 0.5 ) by the APM (% act); for both the decoys 
decorated with ChEMBL fragments and DRD2 fragments from the training set: percent of predicted active decoys ( pactive ≥ 0.5 ) (% act); difference between the 
generated predicted active percent and the predicted active percent of the decoys (% Diff); Enrichment Over Random ( percentactive/percentdecoy ) (EOR)

S Generated ChEMBL decoys DRD2 decoys

Total % act. % act. % diff EOR % act. % diff EOR

1 1728 64.5 0.9 63.6 67.7 4.2 60.3 15.5

2 1626 52.4 8.3 44.1 6.3 19.7 32.7 2.7

3 10,666 35.6 0.8 34.8 46.3 16.2 19.4 2.2

4 262 84.7 0.4 84.3 236.1 0.9 83.8 89.0

5 18 88.9 7.8 81.1 11.3 10.1 78.8 8.8
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when decorating scaffolds (1) to (5) (100,685 molecules) 
and around three times higher when decorating the 
non-dataset scaffolds (6)–(10) (78,681 molecules). These 
results were highly influenced by the sampling procedure 
used in both models, but also indicated that the single-
step model was less focused and was able to generate 
more diversity.

Analysis of the generated molecular diversity
The diversity of the decorated molecules for each scaffold 
in both decorator architectures was analyzed in two ways. 
Firstly, four plots of the molecular weight, cLogP, Syn-
thetic Accessibility (SA) Score, and Quantitative Estimate 

of Drug-likeness (QED) were calculated on even samples 
of molecules from the training set, generated molecules 
from both scaffold sets and both decoy sets (Additional 
file  2: Figures  S1 and S2). These plots showed that the 
molecules generated with decorator models tended to 
follow more the training set distribution than the decoys. 
This effect was especially noticeable on the cLogP and the 
SA Score, and slightly less in the QED plot. The molecu-
lar weight distributions of all subsets were similar, except 
that of the non-dataset scaffolds of the single-step deco-
rator architecture.

Secondly, the decorations generated with the decora-
tor models were compared for novelty (Fig.  7). Results 

Table 2 Results of the decoration for each of the non-dataset scaffolds

Total number of molecules sampled (Total); percent of generated molecules that are predicted as active ( pactive ≥ 0.5 ) by the APM (% act); For both the decoys 
decorated with ChEMBL fragments and DRD2 fragments from the training set: Percent of predicted active decoys ( pactive ≥ 0.5 ) (% act); difference between the 
generated predicted active percent and the predicted active percent of the decoys (% Diff); Enrichment Over Random ( percentactive/percentdecoy ) (EOR)

S Generated ChEMBL decoys DRD2 decoys

Total % act. % act. % diff EOR % act. % diff EOR

6 1864 78.3 49.5 28.9 1.6 66.6 11.7 1.2

7 15,724 45.4 1.0 44.4 44.2 10.6 34.8 4.3

8 2178 80.2 44.3 35.9 1.8 49.3 30.9 1.6

9 5362 85.4 3.1 82.3 27.9 7.0 78.4 12.2

10 1012 98.9 90.4 8.4 1.1 93.7 5.2 1.1

Fig. 5 Five scaffolds generated from a scaffold generative model (non‑dataset scaffolds, see “Methods” for more information)
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showed that scaffolds differed significantly on the num-
ber of decorations generated (Fig. 7a). For instance, mol-
ecules generated from scaffolds (3), (7), and especially (9) 
have more than an order of magnitude more decorations 
than the rest. Alternatively, scaffolds (4) and especially 
(5) have a tiny number. This difference is not due to the 
number of attachment points, as (4) has four, and (3) 
has only two. Additionally, the molecules obtained from 
the single-step model have more abundance of differ-
ent decorations and can be attributed to the larger sam-
pled size. Interestingly, when checking the percentage 
of unique decorations, there is no substantial difference 
between the multi-step and single-step models (Fig. 7b). 

Novelty is analyzed in Fig.  7c, d and shows that, albeit 
only ~ 20% of the decorations of molecules generated are 
novel on average, a much larger percentage of the mol-
ecules include at least one novel decoration. This finding 
indicates that novel decorations are added to only some 
attachment points on each scaffold, probably in positions 
where there is more training information from which to 
generalize. Lastly, from molecules with at least one novel 
decoration, a large number of them are predicted as 
active by the model, meaning that the decorations added 
tend to do not negatively affect the activity prediction of 
the molecule.

TMAP visualization of molecular series
Tree Maps (TMAPs) [34] are a technique for unsuper-
vised visualization of high dimensional data that creates 
a 2D layout of a minimum spanning tree constructed in 
the original space. We used this tool to visualize struc-
tural similarity among generated molecules. Each map 
shows the compounds as dots with up to three concentric 
circles: the first depicts activity (0–1; from red through 
yellow and to green), the second depicts the scaffold, and 
the optional third circle depicts whether the compound 
is found in the dataset. This last circle only appears in 
the models that use scaffolds from the validation set. The 
TMAP generated for the molecules obtained from scaf-
folds (1) to (5) is shown in Fig.  8. First, notice how the 
TMAP generally clusters without supervision the mole-
cules from each scaffold (Fig. 8a). Next, when the TMAP 
is zoomed in (Fig.  8b), each of the terminal branches 
of the tree represents molecules (colored by predicted 
activity) with close similarity values. These are generally 
similar to the validation set molecules (highlighted in 
white), but sometimes more diverse decorations are gen-
erated. Interactive TMAPs of both generated molecules 
and decoys for scaffolds (1) to (5) and (6) to (10) for both 
the multi-step and the single-step decorator models are 
available online.

Decorating scaffolds with a synthetic chemistry‑aware 
model
In the second experiment, instead of training a model 
with a small training set, the ChEMBL database [9] was 
employed and filtered in a way that a decorator model 
was only trained with drug-like scaffolds and decora-
tions joined only by bonds that comply with the syn-
thetic chemistry RECAP rules [35]. This change forced 
the model to work following those specifications and to 
decorate each scaffold with decorations that were both 
drug-like and attachable to the scaffold using known syn-
thetic routes.

Fig. 6 Bar plots comparing the multi‑step (blue) and single‑step 
(orange) decorator models for all 10 scaffolds (left, validation set; 
right, non‑dataset. a Plot of the  % DRD2 predicted actives. b Plot 
of the number of generated molecules. Notice that the y‑axis is 
logarithmic
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Preparation of the dataset
The ChEMBL 25 database was filtered down (Additional 
file  1: Methods S1) to a drug-like set of 827,098 mol-
ecules, and the same slicing algorithm used before was 
applied with the additional restriction that only bonds 
that complied with the RECAP rules were candidates 
to be sliced. Moreover, scaffold-decorations tuples were 
filtered to only allow those that all decorations were 
fragment-like. This slicing yielded a total of 4,167,207 
scaffold-decorations tuples, which included 2,080,212 
unique scaffolds. Even more than in the DRD2 set, most 

scaffolds were singletons (1,682,891–80.9%), and their 
abundance followed a power-law distribution (Fig. 9a).

The resulting set was comprised mostly of scaffolds 
with only one attachment point on average (Fig. 9b). This 
situation was caused by the data augmentation factor 
being much lower than in the DRD2 set, as there were 
only two RECAP bonds per molecule on average (Fig. 9c) 
compared to the nine acyclic bonds per molecule in the 
DRD2 set (Fig.  3c). Lastly, the set contained 149,530 
unique decorations, and their occurrence distribution 
was also exponential (Fig. 9d). Both a scaffold generator 

Fig. 7 Four bar plots describing properties for molecules generated from scaffolds (1) to (10) using both the multi‑step (blue) and single‑step 
(orange) decorator models. a The absolute number of decorations (including repeats) generated (notice that the y‑axis is in logarithmic scale); b 
percentage of unique decorations; c percentage of decorations not present in the training set (in absolute numbers); d percentage of generated 
molecules that have at least one novel decoration. In darker color, the subset thereof that is predicted as active using the DRD2 APM
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and decorator models were trained (Additional file  1: 
Methods S2 for more details on the training process).

Decorating validation set and non‑dataset scaffolds
As in the previous experiment, two sets of scaffolds were 
collected: a set of 42 scaffolds only present in the vali-
dation set (amounting to 5295 molecules not present in 
the training set), and a set of 40 scaffolds obtained from 
a generative model not present in the ChEMBL dataset 
(non-dataset scaffolds—see “Methods” for more infor-
mation). Both sets of scaffolds were decorated multiple 
times with the multi-step decorator model, yielding a 
total of 12,294 and 11,504 different molecules per scaf-
fold on average, respectively.

The decorated molecules from the validation set scaf-
folds included 35.4% of the validation set decorations, a 
result slightly lower than in the DRD2 experiment. The 
quality of the generated molecules was checked by plot-
ting several descriptor distributions and comparing 
them to the training set distribution. Results show that 
all descriptor distributions (Fig.  10) were similar and 
indicated that the decorator model was able to create 

molecules that, apart from fulfilling the RECAP rules in 
the attachment points, were equivalently drug-like and 
synthesizable given any scaffold.

Different properties related to synthesizability were 
calculated for the molecules generated from both valida-
tion set and non-dataset scaffolds (Table  3top). For the 
molecules generated from validation set scaffolds, results 
showed that nearly 98% of molecules had all bonds join-
ing the scaffolds with the decoration following RECAP 
rules. Additionally, 82.7% of the molecules had all deco-
rations included in the training set, and, when allowing 
for one decoration to be different than training set deco-
rations, the percentage increased to 99.6%.

The decorator model mostly decorated with already 
seen decorations but sometimes created new ones. Fur-
thermore, the same percentages were calculated against 
the ZINC [38] fragment-sized in-stock subset molecu-
lar database (Additional file 1: Methods S1) and reached 
98.2% of molecules with at most one decoration not pre-
sent in ZINC. Very similar results were obtained for the 
set of molecules generated from non-dataset scaffolds.

Fig. 8 TMAP of the 14,300 molecules obtained by decorating scaffolds (1) to (5) using a multi‑step decorator model. a Overview of the whole TMAP 
colored by scaffold. b A zoomed‑in version of a small section colored by predicted activity on DRD2 (red–yellow–green) and highlighting in white 
the molecules present in the validation set. Some molecules, pointed to their position in the TMAP with arrows, have been drawn as an example
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Decorating scaffolds in one step
A single-step decorator model was also trained using the 
same hyperparameters and training set as the multi-step 
decorator. The same sets of scaffolds were decorated, and 
when the values described in the previous section were 
calculated showed that performance was slightly worse 
overall (Table 3, bottom). The decorated molecules from 
the validation set scaffolds included 55.2% of all mol-
ecules in the validation set. This result was much higher, 
but it could be attributed to the sampling method used 
in the single-step architecture. On the other hand, the 
percent of molecules with valid RECAP bonds joining 
the scaffold with the decoration decreased by 2–4% com-
pared to the multi-step model. Moreover, the properties 
of the generated molecules did not follow the training set 
properties as well as those generated with the multi-step 
model (Additional file 2: Figure S4). In contrast, the ratio 
of novelty was ~ 20% higher: 30–35% of molecules gener-
ated contained at least one decoration not present in the 
training set, and 40–45% of molecules had at least one 
decoration not present in ZINC. This result showed that, 
as in the DRD2 experiment, the single-step architecture 
was much less focused. Lastly, TMAPs of a sample of all 

the molecules from five randomly selected scaffolds were 
generated for both models and scaffold sets and are avail-
able at the Reymond group website.

Discussion
Context‑sensitive decoration of scaffolds allows 
for controlled chemical space exploration
Traditional computational drug discovery approaches 
obtain novel candidates by generating large molecu-
lar libraries, which are then filtered and characterized 
using computational means (e.g., QSAR [37], docking 
[38]). Another common approach uses metaheuristics 
(e.g., genetic algorithms) to explore the chemical space 
and intelligently find novel active compounds [39]. Both 
approaches are based on creating large amounts of mol-
ecules on-the-fly using combinatorial techniques. Herein 
we show a different approach: First, a generative model 
can create diverse sets of scaffolds (or any scaffolds of 
interest can be used instead) and then are decorated by 
another generative model based on the composition of 
the training set. The molecules generated tend to share 
the same property distribution as the molecules in the 
training set.

As was shown in the DRD2 experiment, a decora-
tor model trained with a few thousand molecules was 
able to meaningfully decorate a wide range of scaffolds 
(Tables  1 and 2). When compared to decoys created 
using ChEMBL fragments, the decorator model was able 
to generate molecules with a higher ratio of predicted 
activity. Furthermore, the decorator model was also com-
pared to decoys built with fragments from the training 
set and still performed better. These results mean that 
the model was not only completing scaffolds with DRD2-
like fragments but that it was context-aware and tried to 
decorate each attachment point with moieties relevant to 
the environment of the attachment point and also to the 
entire molecule. In contrast, enumerative approaches, 
such as fragment-based molecule generation, can gener-
ate a much larger amount of molecules, but these will not 
globally follow the physicochemical property distribu-
tions from the training set. We believe that these genera-
tive models can be used as an alternative to enumerative 
models, especially when a focused molecular generation 
process is required.

Adding specific knowledge by using customized training 
sets
Even though most of the molecular deep generative 
models are trained with drug-like molecular data-
bases such as ZINC or ChEMBL, it is known that these 
models can learn only to generate molecules that have 
specific properties (e.g., complex functional group 

Fig. 9 Plots describing the resulting 4,167,207 scaffold‑decorations 
tuples obtained from slicing 827,098 drug‑like molecules from 
ChEMBL (see “Methods”). a The number of decorations per scaffold in 
the dataset ordered by the scaffolds that have the most decorations 
to the scaffold that has the least (notice that the y‑axis is in 
logarithmic scale). b Histogram of the number of attachment points 
of the entire set. c The number of times each decoration appears 
in the dataset ordered from left to right (notice that the y‑axis is in 
logarithmic scale); d Histogram of the number of RECAP bonds per 
molecule in the training set
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relationships, tautomers) using specially-crafted train-
ing sets [40]. In this research, the training sets were 
obtained by exhaustively obtaining all possible scaf-
folds and decorations from all molecules. Then, in both 
experiments, the decorations obtained were filtered, 
and only those that they were fragment-like were kept. 
This filter, although simple, changed completely how 
the decorator models trained, as no examples of small 

scaffolds with very large decorations were in the train-
ing set. This filter contributed to making all decorations 
more drug-like and easily synthesizable (Table 3). Fur-
thermore, the drug-like ChEMBL subset was addition-
ally filtered only to allow scaffold-decorations tuples 
whose bonds linking the scaffolds with the decora-
tions were following RECAP rules. More than 95% of 
the molecules generated, regardless of the scaffold, had 

Fig. 10 Histograms of different descriptors calculated in three sets of molecules obtained from the ChEMBL multi‑step decorator model: Generated 
molecules from non‑dataset scaffolds (blue), generated molecules from validation set scaffolds (orange) and training set molecules (green). a 
Molecular weight (Da); b ClogP; c Synthetic Accessibility Score; d Quantitative Estimate of Drug Likeness (QED). Notice that one of the filtering 
conditions of the ChEMBL subset was that the molecules had QED > 0.5

Table 3 Descriptors calculated for  the  molecules decorated with  both  model architectures (single and  multi-step) 
from the validation set scaffolds and the non-dataset scaffolds

Molecules per scaffold (Mols/scaff.); See the list above for information on the other fields

A Percent of decorated scaffolds with all attachment point bonds RECAP compliant

B Percent of decorated scaffolds with all decorations in the training set

C Percent of decorated scaffolds with at most one decoration not in the training set

D Percent of decorated scaffolds with all decorations in ZINC in‑stock

E Percent of decorated scaffolds with at most one decoration not in ZINC in‑stock

Set Mols/scaff. A (%) B (%) C (%) D (%) E (%)

Multi-step decorator model

Validation set scaff. 12,294 97.9 82.7 99.6 68.3 98.2

Non‑dataset scaff. 11,504 99.2 89.4 99.8 78.8 98.7

Single-step decorator model

Validation set scaff. 38,344 95.9 63.2 99.6 52.7 98.5

Non‑dataset scaff. 25,462 97.9 66.1 99.8 57.3 98.7
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all attachment point bonds compliant with the RECAP 
rules. This result implies that, given a scaffold, almost 
all molecules generated with the ChEMBL RECAP 
decorator can be obtained through known synthetic 
approaches. Moreover, the molecules generated closely 
matched the same physicochemical property distribu-
tions as the training set. We envision that these archi-
tectures are the first step towards having generative 
models able to create libraries of readily synthesizable 
compounds.

Single‑step vs. multi‑step decorator architecture
After comparing the two architectures in two differ-
ent experiments, the general trend is that, in rela-
tive terms, the multi-step architecture achieves better 
results than the single-step one. This trend is clear in 
the DRD2 experiment, where the single-step model is 
much less focused and generally generates a lower per-
cent of predicted active molecules than the multi-step 
model (Fig. 6). Additionally, the same problem happens, 
although to a lesser degree, in the ChEMBL RECAP 
experiment (Table 3). We think that this behavior can be 
explained by how the training data is used by the mod-
els. For instance, when a scaffold with three attachment 
points is decorated by the multi-step model, it uses the 
information from the scaffolds in the training set with 
three, two, and one attachment points. Alternatively, the 
single-step model only uses information from similar 
scaffolds with three attachment points. This phenom-
enon can be further hinted when analyzing the attention 
weights [41] of both models (Additional file 2: Figure S3). 
In the single-step architecture, the decorator focuses on 
the SMILES tokens near the attachment point currently 
decorating. In contrast, in the multi-step architecture, 
there is no discernible pattern, and the model focuses 
on some areas of the input scaffold but unrelated to the 
attachment points. As it does not have to solve several 
problems in one run, the multi-step architecture uses 
information freer from the encoder than the single-step 
one. All of these differences make the single-step model 
perform slightly worse and not able to generalize as well 
as the multi-step model. Notwithstanding, the single-step 
decorator model architecture allows for a straightforward 
application of techniques such as reinforcement learning. 
We think that it may be a way to refine the model further 
and obtain better results.

Comparing SMILES‑based and GGNN scaffold decorators
Two approaches have been published [25, 26] that use 
Graph Generative Neural Networks instead of SMILES 
to represent molecules. They train only one model each 
and use a general drug-like molecular set as training 
data, which is preprocessed. In Li et  al. Bemis-Murcko 

molecular frameworks [42] and in Lim et  al. all possi-
ble frameworks and sub-frameworks of each molecule 
as given by HierS [43] are used as training data. More 
importantly, their scaffolds do not have explicit attach-
ment points, and they can refine the output from the 
generative model by using techniques such as reinforce-
ment learning.

The approach here described differs substantially. First 
and foremost, instead of using graphs, SMILES strings are 
used as a molecular representation. This choice offers many 
advantages, namely a less complex and more mature gen-
erative architecture, faster training times, and the possibil-
ity of readily using data augmentation techniques. On the 
other hand, the SMILES syntax requires attachment points 
to be explicitly defined, which adds some limitations. Sec-
ond, the training set pre-processing algorithm used in this 
research is much more complex, and it is used as a data 
augmentation technique, thus being able to train models 
with small training sets. Third, we can create focused mod-
els (e.g., synthetic chemistry aware) without the need to 
use techniques such as reinforcement or transfer learning. 
These techniques can still be used in a later phase, if nec-
essary. We show an alternative and fully-functional way of 
generating molecules from scaffolds coupled with a novel 
way of training models from any arbitrary molecular set.

Conclusions
In summary, we have described a new SMILES-based 
molecular generative model architecture that can generate 
molecules from scaffolds. Alongside this, we have defined 
an algorithm that processes any arbitrary molecular set into 
a set comprised of scaffold-decorations tuples by exhaus-
tively slicing acyclic bonds of the molecule and obtaining 
all possible combinations. Depending on the restrictions 
applied to the bonds susceptible to be sliced by the algo-
rithm and also by filtering scaffolds that do not match 
certain conditions, the resulting training sets vary and 
allow models to be aware of medicinal or synthetic chem-
istry constraints. For instance, models were trained from a 
DRD2 modulator set (137,061 scaffold-decorations tuples 
obtained from a small set of 4211 molecules) and were 
shown to selectively decorate diverse sets of scaffolds and 
obtain large amounts of DRD2 predicted active molecules. 
Additionally, a large drug-like subset of ChEMBL was sliced 
only on bonds that fulfilled the RECAP rules and yielded 
a large 4,167,207 scaffold-decorations tuples set. Models 
trained with it became synthetic chemistry-aware and gen-
erated molecules that had synthetically feasible decorations 
and could be joined to the scaffold using known synthetic 
routes. We encourage other researchers to try different sets 
of constraints to make models aware of different proper-
ties. For instance, using reaction data to slice the training 
set could yield to a decorator that generates molecules with 
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decorations joined by more complex synthetic rules. More-
over, this architecture can straightforwardly be coupled 
with a wide array of already reported techniques, such as 

temperature [44], reinforcement learning [13], and transfer 
learning [11] to further guide the molecule generation. In 
conclusion, we think that this SMILES-based generative 
model will become a useful addition to the already existent 
SMILES-based architectures and an alternative to graph-
based scaffold decoration approaches.

Methods
Architecture details
Scaffold generator model
The scaffold generator was a randomized SMILES-based 
RNN similar to those already reported [10] (Figs. 11 and 
12top). It featured an embedding layer, followed by three 
interconnected LSTM cell layers with 512 dimensions 
and, lastly, a linear layer that reshaped the input to the 
vocabulary size. Dropout layers [45] were added between 
all layers except for the last, which had a softmax activa-
tion function instead. The vocabulary was generated by 
tokenizing SMILES strings to atom tokens (e.g., “Cl”, “O”, 
“[nH]”), bond tokens (e.g., “=”, “#“), branching tokens 
(e.g., “1”, “(“) and the special attachment point token “[*]”. 
Batches were comprised of sequences of different lengths, 
so they were padded with zeroes and masked during 

Fig. 11 Architecture of an RNN cell used in both the scaffold 
generator and decorator models. Input passes through an 
embedding layer, three LSTM layers with 512 dimensions, and 
lastly, a feed‑forward layer that reshapes the input to the size of the 
vocabulary. Dashed lines mean that a dropout layer is added during 
training

Fig. 12 Process how the scaffold generator and the decorator sample new SMILES. The Scaffold Generator (top) samples the tokens one at a time. 
The decorator (bottom), on the other hand, encodes the scaffold using a bidirectional RNN. Each output state and hidden state of the encoder is 
summed up. The output hidden states from the encoder are input directly to the decoder. Legend: squares are instances of RNN as described in 
Fig. 11; gray lines hidden states in each of the sampling steps; ⊕ symbolizes the position‑wise sum of all tensors
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training and sampling. A dropout = 0.2 was used between 
layers. The loss function for a sequence with T tokens is 
the Negative Log-Likelihood (NLL):

where Xi is a random variable with all tokens of the 
vocabulary as possible values at step i and xi is the token 
chosen at that step. Teacher’s forcing was used to help 
the model learn the syntax correctly. A small hyperpa-

rameter optimization was performed using the UC-JSD, 
as defined in [10], to obtain the optimal values of the 
hyperparameters.

Decorator model
As previously used in NMT, the decorator model was an 
implementation of the simplest of the encoder-decoder 
architectures with attention [41, 46] (Fig.  12, bottom). 
The encoder was a bidirectional RNN with an embedding 
layer connected to three LSTM cell layers of 512 dimen-
sions. The c and h hidden states for both directions were 
summed up together and fed to the decoder, which was a 
single direction RNN with three LSTM cell layers of 512 
dimensions. The model also featured a global attention 
mechanism [41] that combined the summed outputs for 
both directions of the encoder in each step with the out-
put of the current step of the decoder.

This architectural feature allowed the decoder to focus 
on specific regions of the input scaffold at any given 
decoding step. Specifically, the attention mechanism is 
defined as:

The encoded output O′

d,i on step i was obtained by first 
calculating the attention weights AWi on that step, using 
the raw output of the decoder and the outputs from the 
encoder Oe and performing a scaled dot product [47] and 
a softmax. Then, the attention context ACi was obtained 
by performing the Hadamard product (entry-wise prod-
uct) between the weights and the encoder output. Lastly, 

(1)NLL_SGT := −

[

P(X1 = x1)+

T
∑

i=2

P(Xi = xi|Xi−1 = xi−1, . . . ,X1 = x1)

]

(2)
AWi := softmax

(

Od,iO
T
e

√

d

)

ACi := AWi ⊙ Oe

O′

d,i := tanh(W [Od,i;ACi])

Od,i and the attention context were concatenated and 
passed through a linear layer with a hyperbolic tangent 

activation function to convert the data back to the right 
shape. The last step was a linear layer to reshape the out-
put to the vocabulary size and a softmax activation func-
tion to obtain the probabilities for each token.

The loss function was the same as the previous model 
with a slight difference:

The NLL was dependent on the scaffold randomized 
SMILES used as an input. Lastly, teacher’s forcing was 
used on the decoder.

Sampling process
Decorator model
Given that the decorator model uses randomized 
SMILES, the whole decoration chemical space is the 
union of the chemical spaces of each of the randomized 
SMILES of a scaffold. Consequently, the input scaf-
fold SMILES string was randomized multiple times and 
sampled with each of the randomized SMILES indepen-
dently. Then, the resulting half-built molecules were 
checked for repeats, and the process repeated until all the 
scaffolds were decorated. For instance, given a scaffold 
with 3 attachment points, if 16 randomized SMILES are 
generated at each stage and for each SMILES 16 decora-
tions are sampled, the model would need to be sampled 
at most (16 · 16)3 = 16, 777, 216 ‬ times. Due to the high 
number of repeats, the model always samples a much 
smaller number of molecules. Nevertheless, software 
using Apache Spark and CUDA was developed to explore 
the decoration chemical space of any scaffold exhaus-
tively. It yields all the decoration combinations generated 
and the number of times each one has been sampled. In 
all the experiments, 16 randomized SMILES were gener-
ated, and each was sampled 16 times on each decoration 
step.

The decorator model that decorates all attachment 
points at once needs only one step and is much faster 
to sample. Consequently, 1024 randomized SMILES 
are generated for each scaffold, and 128 decorations 
are made, yielding a maximum of 131,072 possible 
decorations.

(3)NLL_DecT := −

[

P(X1 = x1|S = s)+

t
∑

i=2

P(Xi = xi|Xi−1 = xi−1, . . . ,X1 = x1, S = s)

]
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Scaffold model
For all the experiments, sampling of novel scaffolds 
was performed the following way: first, 10 million scaf-
folds were sampled from a scaffold generator model, and 
repeated scaffolds were filtered out. Then, scaffolds with 
an ECFP6 with 2048 bits Tanimoto Similarity higher than 
0.7 to any molecule in the training set or that had been 
sampled less than 10 times (i.e., to remove outliers) were 
filtered out. Butina clustering [48] using the ECFP6 fin-
gerprint with 2048 bits and a Tanimoto similarity thresh-
old of 0.2 was performed, and n scaffolds among the 
biggest clusters were selected for decorating.

Result analysis
DRD2 model
For the DRD2 model analysis, an activity prediction 
model (APM) was used. This APM was trained on both 
the active and inactive compounds of the ExCAPE DRD2 
modulator set. Stereochemistry was stripped from all 
compounds in the dataset, canonical SMILES were 
obtained, and duplicates were removed. Data were split 
to test, and training sets with a stratified split and the 
compounds were represented with ECFP6 fingerprint 
hashed to 2048 bits. Scikit-learn Random Forest Classi-
fier (RF) [49] model was trained to discriminate active 
from inactive compounds. Optuna [50] was used for 
finding the optimal hyperparameters with fivefold cross-
validation. The performance of the resulting model in 
terms of area under the curve (AUC) was 0.945.

The model was tested for improvement over decoys 
(i.e., randomly decorated molecules) generated from two 
sets of decorations. The first was comprised of 61,717 
decorations from ChEMBL, obtained by slicing a small 
random sample of ChEMBL with the same algorithm 
and ensured that the decoys were drug-like and complied 
with the restrictions applied to the decorations in the 
original training set. The others were the 5532 different 
decorations extracted from the DRD2 training set. The 
random decoration process was performed one decora-
tion at a time and ensuring that the overall molecular 
weight distribution was the same as that of the molecules 
of the training set. Lastly, two metrics were used to evalu-
ate decorated molecules: first, the ratio of actives in a set 
of decorations (either generated or decoys) of the same 
scaffold given pactive ≥ 0.5 ; then, the Enrichment Over 
Random, calculated as the ratioactives/ratiodecoys.

ChEMBL model
The ChEMBL models were tested whether they were 
able to add decorations whose bond uniting them to the 
scaffold followed the RECAP rules. This condition was 
assessed by implementing the RECAP rules using the 
SMARTS syntax and checking each molecule, whether 

the bond joining the attachment point and the decora-
tion complied with the RECAP rules. Additionally, the 
decorations generated were checked where they were in 
the In-Stock Fragment subset of ZINC by comparing the 
canonical SMILES.

Technical details
Python 3.6.9 was used to develop all software. Mainly, 
PyTorch 1.4 [51] was used to develop all generative mod-
els; RDKit [52] version 2019.03.3.0 was used to work with 
molecules, calculate fingerprints and perform Butina 
clustering; Apache Spark [53] 2.4 was used to create and 
manage all the data. All models were trained with Nvidia 
Tesla V-100 cards using CUDA 10. The TMAPs were 
generated with version 1.0 of the library [34].
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