
Hemmerich et al. J Cheminform           (2020) 12:18  
https://doi.org/10.1186/s13321-020-00420-z

RESEARCH ARTICLE

COVER: conformational oversampling 
as data augmentation for molecules
Jennifer Hemmerich , Ece Asilar  and Gerhard F. Ecker* 

Abstract 

Training neural networks with small and imbalanced datasets often leads to overfitting and disregard of the minority 
class. For predictive toxicology, however, models with a good balance between sensitivity and specificity are needed. 
In this paper we introduce conformational oversampling as a means to balance and oversample datasets for predic-
tion of toxicity. Conformational oversampling enhances a dataset by generation of multiple conformations of a mol-
ecule. These conformations can be used to balance, as well as oversample a dataset, thereby increasing the dataset 
size without the need of artificial samples. We show that conformational oversampling facilitates training of neural 
networks and provides state-of-the-art results on the Tox21 dataset.
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Introduction
New regulations such as the EU regulation (EC) No 
1907/2006 (widely known as REACH) make it complicate 
registering new chemicals on the market. Higher safety 
standards are important but also require more tests to be 
conducted. This is contradictory to the 3R principles of 
reducing animal testing experiments [1–3]. Additionally, 
over the last years pharmaceutical industries have faced a 
decline in newly marketed drugs [4, 5]. The concept “fail 
early, fail cheap” is gaining increasing importance since 
every failure in late stages of drug development is asso-
ciated with high costs [6, 7]. The field of toxicity predic-
tions was accelerated, when in 2007 the OECD published 
guidelines on the design of predictive models [8]. Since 
the 2016 release of a guideline allowing the mutagenic-
ity assessment of drug impurities with in silico tools [9], 
in silico toxicology starts to turn from vision into reality. 
Reliable computational models could be of assistance in 
the early indication of hazards emanating from poten-
tial drug candidates [10]. Unlike in vitro testing, in silico 

approaches do not require the synthesis of a compound 
due to working with virtual molecules.

Currently, computational toxicology faces the prob-
lem of often having to deal with small imbalanced data-
sets (that is, with a high ratio between classes) which 
are hard to use for the training of models [11]. For toxic-
ity predictions, especially if used in early stages of drug 
development, it is crucial not to miss potential hazards, 
but simultaneously not to predict hazards for every com-
pound either. In the language of modeling, this means a 
model has to achieve high sensitivity and specificity at 
the same time. As these two are closely related, there will 
almost always be a trade-off. Nevertheless, for the best 
outcome, both properties should be maximized. This is 
especially challenging when using imbalanced datasets.

Due to the high ratio of classes in imbalanced datasets, 
the overall model has a high accuracy and area under the 
receiver operating curve (AUC). Yet, looking closer at the 
model often reveals a large gap between sensitivity and 
specificity. Mostly, classifiers are found to heavily lean 
towards predicting any new compound into the major-
ity class. This problem arises firstly because the AUC is 
independent of the classifier threshold and thus does not 
reflect the current models’ performance. Secondly, the 
accuracy is strongly influenced by the majority class [12]. 
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Subsequently, the performance of the model is overesti-
mated. The immediate conclusion is to use appropriate 
metrics such as sensitivity and specificity itself [13] or the 
resulting balanced accuracy, which is calculated as the 
mean of the two. However, despite using the right met-
rics, sometimes models still fail to correctly predict the 
minority class. This is often due to the training error hav-
ing been relatively small [14]. Furthermore, small data-
sets are prone to endorse overfitting, therefore needing a 
high amount of regularization on the network side.

Apart from the popular large datasets, the field of image 
recognition also faces the challenge of small datasets (e.g. 
[15–17]). For these cases the technique of data augmen-
tation has proven to be very beneficial (e.g. [18–21]). In 
case of images, data augmentation refers to enriching the 
data set by applying different rotations, scaling, cropping 
or translations or filters such as Gaussian noise, all while 
preserving the labels. These techniques are well known to 
enlarge the training space as well as to reduce overfitting. 
Both properties are invaluable for neural network train-
ing with small datasets. In the field of cheminformatics 
Bjerrum, as well as Kimber and coworkers, showed that 
different SMILES can be used to augment the training 
data for a model predicting molecular properties [22, 23]. 
For regression models predicting the bioaccumulation 
factor, Sosnin and coworkers also used an augmentation 
with different conformations, however they do not report 
the comparison to models without augmentation [24].

In this paper, we propose a new method called COVER 
which facilitates model training on imbalanced chemical 
classification datasets. Our method uses Conformational 
OVERsampling (COVER) to generate distinct property 
vectors for the same molecule. This augmentation allows 
for balancing as well as oversampling of small and imbal-
anced datasets. Compared to training on SMILES, we 
hypothesize training a network on established molecular 
3D properties requires a substantially reduced amount of 
abstraction by the network.

Results
Conformational oversampling
For validating COVER we used the Tox21 dataset [25]. 
The endpoint p53 activation (SR-p53) was selected as it 
is comprised of a high number of molecules and a fairly 
high imbalance ratio of 1:16. Overall, the Tox21 end-
points are well defined and, as seen in the challenge, lead 
to models with a high predictivity. After standardiza-
tion and data curation, we calculated 3D-conformations 
of all molecules using RDKit. The base dataset (“1-1 
dataset”) had one conformation per molecule. To verify 
our hypothesis that multiple conformations facilitate 
the training, we generated a series of additional data-
sets (see Table  2). First, we oversampled the minority 

class by 16, without also oversampling the majority class 
(“1-16 dataset”). Therefor, we calculated 16 conforma-
tions for the minority class and 1 conformation for the 
majority class, leading to a balanced dataset. Second, to 
evaluate whether enlarging the dataset adds additional 
value, we created larger balanced datasets. For this, we 
oversampled the majority class 2 or 5 times, followed by 
oversampling of the minority class 32 or 80 times (fur-
ther referenced to as 2-32 and 5-80 dataset). To assess 
whether balancing is needed or whether increasing the 
dataset size would be sufficient, we generated two more 
datasets. For these, we oversampled both classes either 2 
or 5 times, which are further referenced to as 2-2 or 5-5 
dataset.

Analysis of conformers
To generate conformations we used the ETKDG algo-
rithm with UFF force field minimization developed by 
Riniker et  al [26]. This algorithm ensures chemically 
reasonable conformations while maintaining diverse 
conformations. Nevertheless, the generation of a large 
number of conformations can yield duplicates or con-
formations with a small root-mean-squared deviation 
(RMSD). Therefore, we analyzed the RMSDs of the gen-
erated conformations. The histograms in Fig. 1 show the 
distributions of the median RMSDs per molecule fol-
low approximately a standard distribution with a mean 
at around 2 Å. An exception is the pronounced peak of 
RMSDs between 0 and 0.2. This can be explained with 
rigid molecules present in the dataset, resulting in very 
similar or even identical conformations. Yet, in all cases 
the number of these conformations is below 10% of the 
overall dataset. The distribution of the median RMSDs 
also demonstrates that, although for rigid molecules con-
siderably similar conformations are observed, generating 
conformations increases the diversity. The principal com-
ponent analysis (Fig. 2) shows, the higher the number of 
conformations, the more space is covered by the dataset. 
Hence, oversampling appears to be beneficial by increas-
ing the space which is spanned, especially by the active 
molecules.

Model training
For each balancing or oversampling experiment we per-
formed 3 independent runs (using different seeds for the 
network) for the nested cross-validation [27] scheme 
with hyperparameter grid search as described in the 
methods section. For each model, the grid search was run 
to prevent unsuitable model architectures which would 
impact model performance. To ensure that a good per-
formance was not obtained by a “lucky” network initiali-
zation we conducted three runs with different seeds for 
each dataset.
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Using the 1-1 dataset, we observed that training only 
on one conformation per compound yielded good results 
with respect to the AUC, but the balanced accuracy for 
12 out of 15 models was lower than 0.6. Similar results 
were seen for the 2-2 and 5-5 dataset. In these cases, 
the models have a high specificity but lack sensitivity. 
For the balanced datasets, we observed a change in this 
pattern. Specifically, the models gained sensitivity with 
only a slight loss of specificity. The models for the 1-16, 
2-32 and 5-80 datasets all achieved better performances 
in terms of balanced accuracy as compared to the other 
datasets. Figure  3a shows how COVER already impacts 
the hyperparameter search: The non-balanced datasets 
always achieved high specificity but lacked sensitivity, 
whereas the 1-16, 2-32 and 5-80 datasets show a wide 
range of model performances as would be expected dur-
ing hyperparameter optimization. The wider range of 
model performances allows a hyperparameter selection 
based on the desired properties.

The outcomes for the external fold of the cross-valida-
tion can be seen in Fig. 3b. It shows the models trained by 
balancing the data do not suffer from low sensitivity. To 
ascertain that the models also work for an external data-
set, we used the test set from the Tox21 challenge. None 
of the models showed a decrease in predictivity, with a 
similar pattern of increased sensitivity (Fig. 3c).

Interestingly, oversampling, in addition to balancing, 
only showed a slight increase in the balanced accuracy 

but no AUC increase. Generally the 95% confidence 
intervals, along with the means, show that increasing 
the number of conformations does not yield any signifi-
cant change in the model performance but rather seems 
to introduce more variation (see Additional file 1: Figure 
S1 and Table S1). During training, we encountered fewer 
models in the upper left and lower right corner of the 
sensitivity-specificity plot, which are unfavorable regions 
due to very low sensitivity (lower right) or low specific-
ity (upper left). To quantify the models further, out of 
90 models which were built (3 × 5 models for 6 data-
sets) 58 had a balanced accuracy above 0.6, with 75% of 
them being trained on one of the balanced training sets. 
Overall, 37 out of the 58 models had the desired proper-
ties of a sensitivity and specificity above 0.5. All of these 
were trained with one of the balanced datasets. This fur-
ther highlights training can be considerably improved by 
oversampling and balancing.

Conformational independence
In the first training step we evaluated the training for 
differently seeded networks to determine the independ-
ence from a specific “lucky” initialization of the network. 
Our results confirmed that conformational oversampling 
seems to be independent from the seed. However, it is 
also interesting to see the dependence on the provided 
conformational dataset. Therefore, we did an analysis on 
different datasets. To confirm the independence we used 
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Fig. 1 Histogram of the median RMSD of the generated conformations. The captions of the subplots denote the amount of oversampling done, 
e.g. 1–16 denotes 1 conformation for the negative class and 16 conformations for the positive class. The upper plots depict the distributions of the 
active molecules, the lower graphs indicate the distributions for the inactive molecules
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the final model architectures which we found performing 
the 5 × 4 cross-validation on one data ensemble (where 
data ensemble denotes one set of the 1-1, 2-2, 5-5, 1-16, 
2-32 and 5-80 dataset generated with the same seed for 
the conformation generation) and retrained these mod-
els with two other data ensembles. Our hypothesis was, 
that, if the training is independent from the supplied 
conformations, the performance of the retrained mod-
els should be similar to the original models. Figure  4 

shows that the oversampled models again outperform 
the models trained with unbalanced data. However, it 
can be observed that the performance of the original data 
ensemble is in general better as compared to the newly 
generated ensembles. This shows that the original model 
architectures are not yet fully optimized for the new data-
sets. Nevertheless, the oversampled datasets performed 
better in most of the cases, which underlines our hypoth-
esis that the oversampling is independent of the supplied 
conformations. This is also indicated in the statistical 
analysis (see Additional file 1: Figure S1 and Table S1).

In addition to oversampling the training dataset, it is 
also interesting to evaluate the impact on oversampling 
on the test dataset. Since the model was trained on mul-
tiple conformations the model might be sensitive to the 
input conformation. To determine if the model perfor-
mance increases by using an ensemble of multiple con-
formations, we evaluated our models with the Tox21 
test dataset with 1, 5, 20 and 50 conformations per com-
pound. However, we did not see any performance gain 
when using the mean prediction of multiple conforma-
tions (see Additional file 1: Figure S2).

Comparison to synthetic minority over‑sampling 
technique (SMOTE)
To further gain understanding and to compare COVER 
to existing methods, we chose the SMOTE algorithm 
[28] as it is very commonly used and very similar to 
COVER. The difference is that SMOTE creates synthetic 
examples by extrapolation to the nearest neighbours of 
a molecule, whereas COVER uses available information 
about the conformations of a molecule as an augmenta-
tion. For comparison we did a nested cross-validation 
using SMOTE to balance the 1-1 dataset from the data 
Ensemble 1 (see Fig.  3), and further used the hyperpa-
rameters found with Ensemble 1 for Ensemble 2 and 3 
for an evaluation of the conformational dependence (see 
Fig. 4). In both figures the pattern observed for SMOTE 
is very similar to the patterns we observed for COVER. 
In the initial cross-validation as well as for the conforma-
tional independence a clear and very similar benefit of 
both, SMOTE and COVER can be seen as compared to 
training without oversampling. The descriptive statistical 
analysis also shows that COVER and SMOTE have a very 
similar benefit for model training (see Additional file  1: 
Figure S1 and Table S1).

Comparison to the Tox21 challenge Top10
In the Tox21 challenge, neither sensitivity nor specificity 
were included in the analysis. Instead, balanced accuracy 
was used. The challenge leaderboard reports 10 models, 
ranked by their AUC (see also https ://tripo d.nih.gov/
tox21 /chall enge/leade rboar d.jsp). The winning model 

Fig. 2 PCA of the oversampled datasets. Red dots indicate active 
molecules, green dots indicate inactive molecules. The captions of 
the subplots denote the amount of oversampling done, e.g. 1–16 
denotes 1 conformation for the negative class and 16 conformations 
for the positive class

https://tripod.nih.gov/tox21/challenge/leaderboard.jsp
https://tripod.nih.gov/tox21/challenge/leaderboard.jsp
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was an Extra trees classifier [29]. The models on ranks 2 
to 6 were deep learning models [30]. The model ranked 
7th had the highest balanced accuracy for this task, how-
ever, no detailed information can be found. Model 8 was 
an associative neural network [31], for 9 and 10 again, 
no information is available. For the challenge, the win-
ning model had an AUC of 0.880 and a balanced accu-
racy of 0.581. The model with the best balanced accuracy 
has a balanced accuracy of 0.765 and an AUC of 0.847. 
Our model with the best balanced accuracy was a model 
trained on the 5-80 dataset. It achieved a slightly higher 
balanced accuracy of 0.784 with a slightly lower AUC of 
0.803 (see also Table 1). The other models trained on the 
balanced datasets (1-16 and 2-32) had a slightly lower 
balanced accuracy of 0.760 and 0.753, with a similar AUC 
of 0.805 and 0.815 respectively (see also Table 1). For the 
non-balanced models the balanced accuracy was always 
about 10% lower than for the balanced models. A full 
comparison of our models with the top 10 models of the 
Tox21 challenge can be seen in Fig. 5. The performance of 
the different data ensembles also shows that the models 
can compete with state of the art models (see Additional 
file 1: Figure S3). However, the gain is not as visible as for 
the models trained with the data ensembles. Without a 

hyperparameter search, these models do not yet have a 
fully optimized architecture. Conclusively, these results 
also show that COVER is a viable method to oversample 
datasets leading to state-of-the-art results on the Tox21 
endpoint p53 activation.

Discussion
Our approach shows that by balancing a dataset via crea-
tion of multiple conformations of a molecule, training 
of neural networks can be enhanced. Up to date, boot-
strap aggregation [32] or SMOTE [28] are the techniques 
most widely used to balance chemical datasets. Bootstrap 
aggregation reduces dataset size, aggravating neural net-
work proneness to overfitting. In this regard, SMOTE 
is much more suitable since it is also able to enlarge the 
training space of a dataset. However, this enlarged space 
is built up of synthetic instances. It was shown that these 
instances decrease the variance and can create noise by 
being created outside of the class decision boundaries 
[33]. Especially for highly imbalanced datasets, after 
oversampling with SMOTE, the minority class to a large 
extent consist of artificial samples. COVER is able to pop-
ulate all areas of the available chemical space by retain-
ing the inherent training set properties, without creating 

Fig. 3 Sensitivity versus specificity of the trained models for differently seeded networks. Each dot presents the evaluation of one model. The 
captions of the subplots denote the amount of oversampling done, e.g. 1–16 denotes 1 conformation for the negative class and 16 conformations 
for the positive class. Each color denotes an independent run of the cross-validation scheme, using a different seed to initialize the network. The 
grey area indicates the area where sensitivity and specificity are greater than 0.5. a Plot of the models trained during the inner cross-validation and 
hyperparameter selection, b validation of the final models in the outer cross-validation loop, c validation of the final models on the external test 
dataset



Page 6 of 12Hemmerich et al. J Cheminform           (2020) 12:18 

artificial molecular feature vectors. Although our method 
is shown to increase the training space, oversampling, 
in addition to balancing, does not substantially increase 
model performance. This might be due to the dataset’s 
inherent properties, since we do not add molecules to the 

dataset, but rather only broaden the recognition bounda-
ries of molecules by presenting their variations. The sam-
pling of conformations was derived from augmentations 
used in image based learning. In image recognition, the 
images are modified by cropping, adding filters, shearing 
and other transforming operations preserving the label. 
The network therefore is forced to learn a meaningful 
representation irrespective of the location (e.g. due to 
cropping) and exact appearance (e.g. due to added fil-
ters) of the object. Since the images are not linked, the 
network does not learn which image best represents the 
label, it merely is generalizing due to the modified, but 
increased, information. In our case, the network is sup-
posed to learn meaningful combinations of descriptors to 
predict a molecules class. Just as the image network sees 
the modified images each as a separate training image, 
our network recognizes each conformation as a separate 
training molecule. Thus, we neither assume that the con-
formations are biologically relevant nor that the networks 
learn which conformation best represents the real world. 
They merely serve to increase the dataset and broaden 
the knowledge of the network, and in case of balancing, 
additionally reinforcing its ability to recognize the minor-
ity class. We could show that the performance of COVER 
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Fig. 4 Sensitivity versus specificity of the trained models for different data ensembles. Each dot presents the evaluation of one model. The captions 
of the subplots denote the amount of oversampling done, e.g. 1–16 denotes 1 conformation for the negative class and 16 conformations for the 
positive class. Each color denotes an independent run of the cross-validation scheme, using a data ensemble with different conformations. The 
grey area indicates the area where sensitivity and specificity are greater than 0.5. a Plot of the models trained during the inner cross-validation and 
hyperparameter selection, b validation of the final models in the outer cross-validation loop, c validation of the final models on the external test 
dataset

Table 1 Performance of  the  best models on  the  external 
test set

The performance for the best single models trained with COVER and SMOTE 
as well as the best models for AUC and balanced accuracy from the Tox21 
challenge.The best models are highlighted with italics numbers

Dataset Highest balanced 
accuracy

Highest AUC 

Balanced 
accuracy

AUC Balanced 
accuracy

AUC 

1-1 0.664 0.811 0.610 0.814

1-16 0.760 0.805 0.678 0.818

2-2 0.680 0.801 0.561 0.821

2-32 0.753 0.815 0.753 0.815

5-5 0.630 0.814 0.551 0.823

5-80 0.784 0.803 0.693 0.823

SMOTE 0.740 0.813 0.740 0.813

Tox21 highest 0.765 0.847 0.581 0.880
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is independent from the supplied conformations for the 
training, as well as, the test set. Whether a sophisticated 
conformation selection can further increase the perfor-
mance should be investigated in the future.

Although we could not outperform the Tox21 leaders, 
our models achieved comparable results with one model 
achieving a slightly higher balanced accuracy. Regard-
ing the time and effort reported, especially to build the 
winning deep learning models of the Tox21 challenge, 
our approach is less complex and requires substantially 
less time and tuning of different models. Additionally, 
combining the nested cross-validation scheme which we 
adapted from Baumann and Baumann [27] and the clus-
tered cross-validation from the DeepTox pipeline [30] 
considerably helped to achieve state-of-the-art results. 
Using and external test set our models showed only a 
slight decrease in the performance. This is a strong indi-
cation of their good generalization. However, due to the 
clustered cross-validation we observed very different 
performances of the trained models, based on the current 
external validation fold. Observing a similar performance 
pattern for SMOTE confirmed that the fluctuations are 
results of the high dissimilarity between folds. It should 
be mentioned that the nested cross-validation approach 
is considerably more difficult with smaller datasets. Nev-
ertheless, the Tox21 dataset proved to be an asset to 
thoroughly validate our approach by being able to cross-
validate with the further possibility of an external test 
dataset.

In addition to the training procedure, it is worth 
pointing out the importance of the model reporting 
procedure. Whereas the AUC shows what a model is 
capable of, the actual model performance comprises 
only of a singular point on the AUC curve, depending 
on the chosen threshold. This is shown for our models 
on the 1-1 or 5-5 dataset, which can be seen in Table 1. 
Although we do see a very high AUC, the actual model 
with a standard threshold of 0.5 is incapable of detect-
ing positives. Especially in predictive toxicology, this 
behavior can have detrimental effects. The goal for 
models generally is to be very sensitive towards poten-
tial hazards, but with a reasonable retainment of speci-
ficity. For a better performance of these models, the 
decision threshold would have to be determined out-
side of the model building.

Conclusion
To conclude, with COVER we could show that the inher-
ent information of chemical datasets is sufficient to 
generate models with state-of-the-art performance. By 
oversampling, using multiple conformations of the mol-
ecules, the models can utilize the full information of a 
dataset without reducing the dataset size or the creation 
of artificial samples. We envision that COVER will be a 
viable alternative to SMOTE and help to overcome the 
problem of imbalanced datasets in chemistry and aid in 
the training of better models.
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Fig. 5 AUC versus balanced accuracy of the models for the differently seeded networks. Each dot presents the external evaluation of one final 
model. All models were trained with the same conformation ensemble but different seeds for the initialization. The captions of the subplots denote 
the amount of oversampling done, e.g. 1–16 denotes 1 conformation for the negative class and 16 conformations for the positive class. The grey 
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Materials and methods
Used data
The original training data from the Tox21 challenge was 
taken from the DeepChem package and further pro-
cessed [34, 35]. Data for the testing and evaluation set of 
the challenge was directly taken from the NIH homepage 
[25]. Data processing constituted of compound standard-
ization, duplicate removal, and removal of compounds 
with ambiguous labels. Compound standardization 
included the following steps: 

1. Split compound into disconnected fragments
2. Discard non organic fragments (not containing at 

least one carbon)
3. for each organic fragment do:

• Delete bonds to Group I or II metals
• Neutralize charges
• Apply rules for structure standardization (e.g. nor-

malize functional groups, specific tautomers)
• Neutralize charges
• Remove compound if it is a solvent
• Generate InChI Key

The standardisation procedure was implemented in a 
KNIME workflow, using the RDKit [36] and the stand-
ardiser library (https ://www.dev.ebi.ac.uk/chemb l/extra 
/franc is/stand ardis er/), for this work version 0.1.6 was 
used (https ://githu b.com/Pharm infoV ienna /Chemi cal-
Struc ture-Stand ardis ation ) [37]. The generated InChI 
Keys [38] are then used for searching and removing of 
duplicates. In case the labels of the duplicate compounds 
were matching, one copy of the molecule was kept. In 
case of mismatches, the compound was removed from 
the dataset. All steps of data curation were performed 
using a KNIME workflow (KNIME 3.6.1) [39] incor-
porating a python node for compound standardiza-
tion (Python 2.7, Python standardiser library 0.19.0 and 
RDKit 2017.03.01). This procedure led to a final amount 
of 6112 compounds with 371 positives and 5741 nega-
tives. For the test dataset, curation led to a total number 
of 733 compounds with 56 positives. 23 compounds pre-
sent in the test and training dataset were removed from 
the test dataset.

Clustered cross‑validation
To train our models and ensure a low similarity between 
folds of the cross-validation, we used the clustered cross-
validation approach as described by Mayr et al. [30]. For 
clustering, we used affinity propagation clustering [40] as 
implemented in the scikit-learn library (0.20.3) [41] with 
a pre-generated similarity matrix based on Morgan Fin-
gerprints [42] folded to 1024 bits. The fingerprints were 

generated with a diameter of 4 using the RDKit library. 
Using this method, the number of clusters need not be 
chosen in advance. Due to the underlying algorithm, 
affinity propagation is capable of choosing appropriate 
exemplars and thus the number of clusters. After cluster-
ing, molecules belonging to the same cluster were distrib-
uted to the same, randomly chosen, fold. Consequently, 
molecules from the same cluster are always distributed/
assigned to the same fold. Overall, this reduces the bias 
towards compound series in the dataset ensuring that the 
splits are as dissimilar as possible.

Oversampling
The oversampling was performed after the splits were 
generated. This ensures the oversampling only influences 
the training process, without introducing bias into the 
model. The oversampling was done using the conforma-
tion generation algorithm ETKDG from RDKit [26, 36]. 
We calculated the imbalance ratio as follows:

With nmaj being the number of majority class samples 
and nmin being the number of minority class (i.e. posi-
tive) samples. After calculation r is rounded half up. This 
results in a final ratio of negatives to positives of 1:r. For 
the Tox21 data the imbalance ratio is hence 1:16. Subse-
quently, for the conformation generation, balancing the 
dataset we generated one conformation for each negative 
and r conformations per positive sample molecule. For 
additional oversampling, the ratio has to be multiplied 
by the desired number of samples for the negative class. 
So for each negative sample n conformations, and for 
each positive sample n*r conformations are generated. 
Overall, we generated six datasets. The first dataset has 
one conformation per molecule (1-1 dataset). The sec-
ond dataset has 1 conformation for each negative and 16 
conformation for each positive molecule, thus being bal-
anced (1-16 dataset). Further, we generated two balanced 
datasets with 2 or 5 conformations per negative and 16 
or 80 conformations per positive respectively (2-32 and 
5-80 dataset), thus being datasets combining oversam-
pling with balancing. Lastly, we generated two over-
sampled datasets without balancing. To achieve this we 
generated 2 and 5 conformations per molecule, irrespec-
tive of the class. The exact dataset sizes can be found in 
Table 2. After the conformations were generated we cal-
culated 3D descriptors. In total, we used 117 3D descrip-
tors available in the Molecular Operating Environment 
(MOE) software (Chemical computing group, https ://
www.chemc omp.com) and 1028 3D descriptors which 
use the internal compound coordinates available in the 
DRAGON 7 Software (Kode Cheminformatics, https 

(1)r =
⌊nmaj

nmin

⌉

https://wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/
https://wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/
https://github.com/PharminfoVienna/Chemical-Structure-Standardisation
https://github.com/PharminfoVienna/Chemical-Structure-Standardisation
https://www.chemcomp.com
https://www.chemcomp.com
https://chm.kode-solutions.net/
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://chm.kode-solut ions.net/). Overall we generated each 
dataset three times with different seeds for the confor-
mation generation algorithm. In the manuscript we will 
use the term data ensemble denoting a full conformation 
generation run, including a 1-1, 2-2, 5-5, 1-16, 2-32 and 
5-80 dataset generated with the same seed.

RMSD calculation and PCA
For investigation of the diversity of the generated con-
formations we used the Kabsch algorithm [43, 44] as 
implemented in the Chemistry development Kit (CDK) 
KNIME extension [39, 45]. Conformers were compared 
to all other conformers originating from the same mol-
ecule. This yields a triangular matrix with 0 on the diag-
onal and on the upper triangle. This matrix was used to 
calculate the median RMSDs per molecule. From these 
calculations we generated a Histogram to see the distri-
bution, and hence the deviation of our conformations. 
Using the 3D descriptors we calculated a PCA with the 
prcomp function as implemented in R (version 3.4.4). 
Visualization for the Histogram of the RMSDs as well 
as the PCA plots was done using ggplot2 (version 3.1.1) 
[46].

Training
To test our proposed approach, a 5 × 4-fold nested cross-
validation scheme as proposed by Baumann and Bau-
mann was used to train the models [27]. In this scheme 
two cross-validation loops are nested. The inner loop 
uses fourfolds to perform a fourfold cross-validation 
for hyperparameter tuning using a grid search. The best 
hyperparameter set was then used to retrain a model 
on all four inner folds. The remaining 5th fold was then 
used for model validation. With this procedure, in every 
run 5 models for different validation regions of the 
original dataset are produced, giving a better estimate 
for the model generalization. For each data ensemble 

(1-1, 2-2, 5-5, 1-16, 2-32 and 5-80 dataset generated with 
the same seed for the conformation generation) we did 
three runs with different seeds to confirm the independ-
ence from a specific seed. To validate further that the 
predictions are independent from a specific set of confor-
mations, we did a thorough 5 × 4 cross-validation for one 
data ensemble. In the following steps we assumed that, 
if the training is invariant to conformations, we can use 
the best model parameters for each dataset and retrain 
the model with the new dataset. Subsequently, the model 
performance should be similar to the performance of the 
data ensemble which was used to determine the network 
architecture. Thus for training with the dataset ensem-
bles we used all final models from the previous training 
with different seeds. The networks were seeded similarly 
and trained with the respective hyperparameter set.

Grid search
To train a model we used a grid search to find the best 
hyperparameters. Overall, each search trained 180 
models with varying numbers of hidden units per layer, 
learning rate, dropout (input and hidden layers) and the 
number of layers. For the exact model parameters refer 
to Tables 3 and 4. To train the models we used early stop-
ping [47]. The training was discontinued when we did 
not observe any increase in the balanced accuracy for 20 
epochs.

Synthetic minority over‑sampling technique (SMOTE)
For the comparison to SMOTE we used the same train-
ing and grid search protocols as for COVER. For training 
we used the initial 1-1 dataset with one conformation per 

Table 2 Datasets used for  training with  the  number 
of  molecules per  class and  the  overall dataset size, each 
conformation is counted as separate molecule

Dataset No. of conformations 
per

No. of molecules

Inactive Active Inactive Active Overall

1-1 1 1 5502 341 5843

1-16 1 16 5502 5428 10,930

2-2 2 2 11,001 680 11,681

2-32 2 32 11,001 10,865 21,866

5-5 5 5 27,504 1698 29,202

5-80 5 80 27,504 27,145 54,649

Table 3 Parameter values used in the grid search

Parameter Values

Learning rate [0.01,0.1,1]

Hidden units [256,512,1024,2048,4096]

Dropout input [0,0.2]

Dropout hidden [0.2,0.5]

Number of layers [2,3,4]

Table 4 Fixed parameters for all networks

Parameter Values

Activation ReLu

Loss Binary crossentropy

Optimizer Stochastic gradient descend

Momentum 0.7

Initializer He normal [48]

https://chm.kode-solutions.net/
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molecule without any oversampling or balancing. For the 
grid search we used the same dataset we used for the grid 
search with COVER. To test the sensitivity to the initial 
conformations we used the same two datasets which 
were used to show the conformational independence of 
COVER. The oversampling was conducted during the 
cross-validation. Hence, after splitting the data into train-
ing and test set the training data was augmented. The 
augmentation was done without using the test dataset, 
as this would introduce bias. For SMOTE we used the 
implementation from the python package imbalanced-
learn (version 0.6.1) [49].

Model performance
Model performance is estimated using the comparison 
of the predicted values against the known activity. Tox21 
labels are binary, 0 for negatives and 1 for positives. Since 
the last layer of a neural network is a sigmoid, predic-
tions are given in the range of 0 to 1. A constant deci-
sion threshold of 0.5 was used for all experiments. This 
denotes that all molecules predicted above 0.5 were 
labeled as positives (1) and at 0.5 or lower a compound 
was labeled as negative (0). To calculate all metrics a con-
fusion matrix was used. In consideration of the imbalance 
of our data and the goal of a predictive model for toxicity, 
we used sensitivity and specificity to evaluate our models. 
For training purposes, we optimized our models toward 
a high balanced accuracy, which is calculated as the har-
monic mean between sensitivity and specificity. AUC was 
only used for comparison to the Tox21 data.

Sensitivity and specificity are calculated using the ele-
ments of the confusion matrix as follows:

With TP: number of true positives, FN number of false 
negatives, TN number of true negatives and FP number 
of false positives.

The area under the receiver operating curve (AUC) 
was calculated by plotting the true positive rate versus 
the false positive rate for varying decision thresholds and 
then calculating the area under this curve. The AUC was 
estimated by using the trapezoidal rule, implemented in 
the scikit-learn library (0.20.3) [41].

For the evaluation on multiple conformations we gen-
erated the mean of the predictions per compound and 
applied the threshold of 0.5 for a final classification of the 

(2)sensitivity =
TP

TP + FN

(3)specificity =
TN

TN + FP

compound. Subsequently the metrics were calculated as 
mentioned above.

Implementation
Models were trained on two NVIDIA 1080Ti Graph-
ics cards on a machine with 64GB RAM. The training 
was performed using the tensorflow [50] and keras [51] 
libraries. Parallel GPU training was conducted using 
the multi-GPU implementation from keras. Depend-
ing on the dataset size one full double cross-validation 
took between 72 and 120 h. Plots were generated using 
ggplot2 (version 3.1.1) [46].

Descriptive statistics
To report differences between COVER, SMOTE and 
training without augmentation we calculated the 
mean, median, standard deviation, standard error 
and 95%-confidence interval using RStudio (version 
1.2.5033) with R (3.4.4). As the output of a nested 
cross-validation is one model per fold, instead of first 
averaging over the models per run, we treated each 
model independently and calculated the standard devi-
ation for all 15 models.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1-020-00420 -z.
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