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Abstract 

Over the last 5 years deep learning has progressed tremendously in both image recognition and natural language 
processing. Now it is increasingly applied to other data rich fields. In drug discovery, recurrent neural networks (RNNs) 
have been shown to be an effective method to generate novel chemical structures in the form of SMILES. However, 
ligands generated by current methods have so far provided relatively low diversity and do not fully cover the whole 
chemical space occupied by known ligands. Here, we propose a new method (DrugEx) to discover de novo drug-
like molecules. DrugEx is an RNN model (generator) trained through reinforcement learning which was integrated 
with a special exploration strategy. As a case study we applied our method to design ligands against the adenosine 
 A2A receptor. From ChEMBL data, a machine learning model (predictor) was created to predict whether generated 
molecules are active or not. Based on this predictor as the reward function, the generator was trained by reinforce-
ment learning without any further data. We then compared the performance of our method with two previously 
published methods, REINVENT and ORGANIC. We found that candidate molecules our model designed, and predicted 
to be active, had a larger chemical diversity and better covered the chemical space of known ligands compared to the 
state-of-the-art.
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Introduction
G Protein-Coupled Receptors (GPCRs) are the largest 
family of cell membrane-bound proteins [1], containing 
more than 800 members encoded by approximately 4% 
of human genes. GPCRs are central to a large number 
of essential biological processes, including cell prolifera-
tion, cell survival, and cell motility [2]. Currently, GPCRs 
form the main target of approximately 34% of all FDA 
approved drugs [3, 4]. One of the most extensively stud-
ied GPCRs is the human adenosine  A2A receptor  (A2AR), 
which has been shown to be a promising drug target 
for among others Parkinson’s disease, cardiovascular 

diseases, and inflammatory disorders [5]. Multiple crys-
tal structures with different ligands have been resolved 
[6, 7], and data on the biological activity of thousands 
of chemical compounds against the receptor was made 
available in the public ChEMBL database [8]. Consider-
ing the amount of data available and our in-house exper-
tise we exploited machine learning methods to design 
novel ligands with predicted activity on the  A2AR.

Over the last years, deep learning (DL) has been at the 
forefront of great breakthroughs in the field of artificial 
intelligence and its performance even surpassed human 
abilities for image recognition and natural language pro-
cessing [9]. Since then, deep learning is gradually being 
applied to other data rich fields [10, 11]. In drug discov-
ery DL has been used to construct quantitative structure-
activity relationship (QSAR) models [12] to predict the 
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properties of chemical compounds, such as toxicity, par-
tition coefficient and affinity for specific targets, etc [13, 
14]. Most commonly pre-defined descriptors such as 
Extended Connectivity Fingerprint (ECFP) [15] were used 
as input to construct fully-connected neural networks 
[16]. More recently studies were published using other 
methods wherein neural networks extract the descriptor 
from chemical structures automatically and directly, such 
as Mol2Vec [17], DruGAN [18], GraphConv [19], etc.

In addition to these prediction applications, DL can 
also be used in chemical structure generation [14]. Gupta 
et al. [20] constructed a recurrent neural network (RNN) 
model to learn the syntax of the SMILES notation and 
generate novel SMILES representing novel molecules. 
In addition, Olivecrona et  al. [21] combined RNNs and 
reinforcement learning (RL) to generate SMILES for-
matted molecules that are enriched for chemical and 
biological properties (named REINVENT). RL has been 
instrumental in the construction of “AlphaGo” designed 
by DeepMind, which defeated one of the best human Go 
players [22]. Finally, similar to generative adversarial net-
works (GANs) for generating images [23], Benjamin et al. 
exploited the GAN for a sequence generation model [24] 
to generate molecules with multi-objective reinforce-
ment learning (named ORGANIC) [25].

In order to maximize the chance to find interesting 
hits for a given target, generated drug candidates should 
(a) be chemically diverse, (b) possess biological activ-
ity, and (c) contain similar (physico) chemical proper-
ties to already known ligands [26]. Although several 
groups have studied the application of DL for generating 
molecules as drug candidates, most current generative 
models cannot satisfy all of these three conditions simul-
taneously [27]. Considering the variance in structure 
and function of GPCRs and the huge space of drug can-
didates, it is impossible to enumerate all possible virtual 
molecules in advance [28]. Here we aimed to discover de 
novo drug-like molecules active against the  A2AR by our 
proposed new method DrugEx in which an exploration 
strategy was integrated into a RL model. The integration 
of this function ensured that our model generated candi-
date molecules similar to known ligands of the  A2AR with 
great chemical diversity and predicted affinity for the 
 A2AR. All python code for this study is freely available at 
http://githu b.com/Xuhan Liu/DrugE x.

Dataset and methods
Data source
Drug-like molecules were collected from the ZINC 
database (version 15) [29]. We randomly chose approxi-
mately one million SMILES formatted molecules that 
met the following criteria: − 2 <predicted logP < 6 and 
200 < molecular weight (MW) < 600. The dataset (named 

ZINC hereafter) finally contained 1,018,517 molecules 
and was used for SMILES syntax learning. Furthermore, 
we extracted the known ligands for the  A2AR (ChEMBL 
identifier: CHEMBL251) from ChEMBL (version 23) 
[30]. If multiple measurements for the same ligand 
existed, the average pCHEMBL value (pKi or pIC50 
value) was calculated and duplicate items were removed. 
If the pCHEMBL value was < 6.5 or the compound was 
annotated as “Not Active” it was regarded as a negative 
sample; otherwise, it was regarded as a positive sample. 
In the end this dataset (named as A2AR) contained 2420 
positive samples and 2562 negative samples.

Prediction model (QSAR)
Binary classification through QSAR modelling was used 
as prediction task. Input data for the model were ECFP6 
fingerprints with 4096 bits calculated by the RDKit Mor-
gan Fingerprint algorithm with a three-bond radius [31]. 
Hence, each molecule in the dataset was transformed into 
a 4096D vector. Model output value was the probability 
whether a given chemical compound was active based 
on this vector. Four algorithms were benchmarked for 
model construction, Random Forest (RF), Support Vector 
Machine (SVM), Naïve Bayesian (NB), and deep neural 
network (DNN). The RF, SVM and NB models were imple-
mented through Scikit-Learn [32], and DNN through 
PyTorch [33]. In RF, the number of trees was set as 1000 
and split criterion was “gini”. In SVM, a radial basis func-
tion (RBF) kernel was used and the parameter space of C 
and γ were set as  [2−5,  215] and  [2−15,  25], respectively. In 
DNN, the architecture contained three hidden layers acti-
vated by rectified linear unit (ReLU) between input and 
output layers (activated by sigmoid function), the num-
ber of neurons were 4096, 8000, 4000, 2000 and 1 for each 
layer. With 100 epochs of training process 20% of hidden 
neurons were randomly dropped out between each layer. 
The binary cross entropy was used to construct the loss 
function and optimized by Adam [34] with a learning rate 
of  10−3. The area under the curve (AUC) of the receiver 
operator characteristic (ROC) curves was calculated to 
compare their mutual performance.

Generative model
Starting from the SMILES format, each molecule in 
the ZINC set was split into a series of tokens, standing 
for different types of atoms, bonds, and grammar con-
trolling tokens. Then, all tokens existing in this dataset 
were collected to construct the SMILES vocabulary. The 
final vocabulary contained 56 tokens (Additional file  1: 
Table  S1) which were selected and arranged sequen-
tially into valid SMILES sequence following the correct 
grammar.

http://github.com/XuhanLiu/DrugEx
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The RNN model constructed for sequence genera-
tion contained six layers: one input layer, one embed-
ding layer, three recurrent layers and one output layer 

(Fig. 1). After being represented by a sequence of tokens, 
molecules can be received as categorical features by the 
input layer. In the embedding layer, vocabulary size, and 

Fig. 1 Architecture of recurrent neural networks for the training and sampling processes with  A2AR antagonist ZM241385 as an example. a In the 
training process of RNNs, each molecule is decomposed to a series of tokens and then taken as input. Subsequently, the input and output are 
combined with a start token and an end token, respectively. b Beginning with the start token “GO”, the model calculates the probability distribution 
of each token in the vocabulary. For each step, one of the available tokens is randomly chosen based on the probability distribution and is again 
received by RNNs as input to calculate the new probability distribution for the next step. The maximum of steps was set as 100 and the process will 
end if the end token “EOS” is sampled or the maximum of steps is reached
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embedding dimension were set to 56 and 128, meaning 
each token could be transformed into a 128d vector. For 
the recurrent layer, a gated recurrent unit (GRU) [35] was 
used as the recurrent cell with 512 hidden neurons. The 
output at each position was the probability that deter-
mined which token in the vocabulary would be chosen to 
construct the SMILES string.

During the training process we put the start token at 
the beginning of a batch of data as input and the end 
token at the end of the same batch of data as output. This 
ensures that the generative network could choose correct 
tokens based on the sequence it had generated (Fig. 1a). 
A negative log likelihood function was used to construct 
the loss function to guarantee that the token in the out-
put sequence had the largest probability to be chosen 
after being trained. In order to optimize the parameters 
of the model, the Adam algorithm [34] was used for opti-
mization of loss function. Here, the learning rate was set 
at  10−3, batch size was 500, and training steps set at 1000 
epochs.

Reinforcement learning
SMILES sequence construction under the RL frame-
work can be viewed as a series of decision-making steps 
(Fig.  2). At each step, the model determines the opti-
mal token from the vocabulary based on the generated 
sequence in previous steps. However, the pure RNN 
model cannot guarantee that the percentage of desired 
molecules (i.e. predicted to be biologically active on the 
 A2AR) being generated is as large as possible. To solve this 

problem RL is an appropriate method as it increases the 
probability of those molecules with higher rewards and 
avoids generating those molecules with lower rewards. 
We regarded the generator as the policy function and the 
predictor as the reward function. The generator Gθ was 
updated by employing a policy gradient based on the 
expected end reward received from the predictor Q. The 
objective function could be designated as generating a 
sequence from the start state to maximize the expected 
end reward [24].

Here R is the reward for a complete sequence which is 
given by the prediction model Q; the generative model 
Gθ can be regarded as policy function to determine the 
probability of each token from the vocabulary to be cho-
sen. The parameter β was the baseline of the reward, 
meaning that if the reward score was not larger than the 
baseline, the model would take it as a minus score or 
punishment. The goal of the generative model is to con-
struct a sequence which can obtain the highest score as 
judged by the predictor.

Exploration strategy
In order to improve the diversity of generated molecules, 
the token selection was not only determined by the gen-
erator constructed by the RNN model as described above, 
but also by a second fixed well-trained RNN model (Fig. 3). 

J (θ) = E[R(y1:T )|θ ] =

T
∑

t=1

logGθ

(

yt |y1:t−1

)

·
(

Q
(

y1:T
)

− β
)

Fig. 2 The workflow of deep reinforcement learning. For each loop, it contains several steps: (1) a batch of SMILES sequences was sampled by the 
RNN generator. (2) Each generated molecule represented by this SMILES format was encoded into a fingerprint; (3) a probability score of activity on 
the  A2AR was assigned to each molecule, calculated by the QSAR model which had been trained in advance. (4) All of the generated molecules and 
their scores were sent back for training of the generator with the policy gradient method
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The RNN requiring training is deemed the ‘exploitation 
network’ (Gθ) and the fixed RNN (not requiring training) is 
deemed the ‘exploration network’ (Gφ). Both had an iden-
tical network architecture. We define “exploring rate” (ε) 
in the range (0.0, 1.0) to determine which fraction of steps 
was determined by the exploration network. During the 
training process, each SMILES sequence was generated 
through the collaboration of these two RNNs. At each step 
a random number in [0.0, 1.0] was generated. If the value 
was smaller than ε, the Gφ would determine which token 
to be chosen, and vice versa. After the training process was 
finished, we removed Gφ and only Gθ was left as the final 
model of DrugEx for molecule generation.

Molecular diversity
The Tanimoto-similarity was used for measuring the simi-
larity of molecules. Given two compounds a and b and 
their ECFP6 fingerprints ma and mb, the Tanimoto-similar-
ity is defined as:

Ts(a, b) =
|ma ∩mb|

|ma ∪mb|

where |ma ⋂ mb| represents the number of common fin-
gerprint bits, and | ma ∪ mb | donates the total number of 
fingerprint bits. The Tanimoto-distance is defined as:

Similar to Benhenda [27], the diversity I of a set of mol-
ecules A (with size of |A|) is defined as the average of the 
Tanimoto-distance of every pair of molecules:

In a given set of molecules, the less similar each two 
molecules are, the larger the value of its diversity will be.

Results and discussion
Performance of predictors
All molecules in the A2AR set were used for training the 
QSAR models, after being transformed into ECFP6 fin-
gerprints. We then tested the performance of these dif-
ferent algorithms with fivefold cross validation of which 
the ROC curves are shown in Fig.  4. The RF model 

Td(a, b) = 1− Ts(a, b)

I(A) =
1

|A|2

∑

(a,b)∈A×A

Td(a, b)

Fig. 3 Molecule generation with the assistance of the exploration strategy during the training process. For each step of token selection, a random 
variable was generated between 0 and 1. If the value is larger than a pre-set threshold (exploring rate, ε), the probability distribution is determined 
by the current generator (exploitation network, Gθ). Otherwise, it was determined by the exploration network (Gφ)
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achieved the highest value of AUC, Matthews correla-
tion coefficient (MCC), Sensitivity, and Accuracy, despite 
its Specificity being slightly lower than DNN. Hence this 
model was chosen as our predictor whose output would 
be regarded as the reward for the generator in RL. In our 
previous study [16], the performance of the DNN was 
better than that of the RF on the chemical space of the 
whole ChEMBL database. A possible reason for the dif-
ference observed here can be that both the size of the 
A2AR set and its chemical diversity were much smaller 
than that of the ChEMBL set. This could have a negative 
influence on DNN, which had more parameters to be 
optimized than RF. Selecting the predictor was a critical 
step in this study, as this model would be used to deter-
mine whether the following generated molecules were 
active or inactive.

SMILES libraries generation
For the training of RNNs all molecules in the ZINC set 
were used as training set after being decomposed into 
the tokens which belonged to our vocabulary set. Here, 
we defined that a SMILES sequence was valid if it could 
be parsed by RDKit [31]. During the training process, 
the percentage of valid SMILES sequences through 1000 
times sampling was calculated and was then recorded 
with the value of the loss function at each epoch (Fig. 5a). 
After about 300 epochs, the loss function had converged, 
indicating the model was trained well.

Subsequently, we sampled 10,000 SMILES sequences 
based on this well-trained model and found that 93.88% 

of these sequences were grammatically correct SMILES. 
We then compared some properties of these gener-
ated molecules with those in the training set, including 
number of hydrogen bond donors/acceptors, rotatable 
bonds, and different kind of ring systems (Fig.  6a). The 
distribution of these properties in the generated mol-
ecules highly resembles the molecules in the ZINC set. 
The logP ~ MW plot (Fig.  7a) shows that most gener-
ated molecules were drug-like molecules and cover the 
vast majority of the square space occupied by the ZINC 
set. Besides these eight properties, we also calculated 
11 other physicochemical properties (including topo-
logical polar surface area, molar refractivity, the fraction 
of  sp3 hybridized carbon atoms and number of amide 
bonds, bridgehead atoms, heteroatoms, heavy atoms, 
spiroatoms, rings, saturated rings, valence electrons) to 
form a 19D physicochemical descriptors (PhysChem). 
Subsequently, principal component analysis (PCA) and 
t-distributed stochastic neighbor embedding (t-SNE) 
[36, 37] were employed for dimensionality reduction and 
chemical space visualization with the PhysChem and 
ECFP6 descriptors of these molecules, respectively. Gen-
erated molecules were found to cover almost the whole 
region occupied by molecules in the ZINC set (Fig. 7b, c) 
although the number of these generated molecules was 
less than 1% of the number of molecules in the ZINC set.

Subsequently we used the A2AR set to fine-tune this 
pre-trained model with 1000 epochs (Fig.  5b). After 
sampling another 10,000 times, we performed the 
same comparison with the A2AR set with respect to 

Fig. 4 Performance of five different machine learning models based on fivefold cross validation in the A2AR set with different metrics, including 
AUC of ROC curve (a), MCC, Sensitivity, Specificity and Accuracy values (b). Except for specificity, the RF achieved highest scores among these 
models based on such measurements
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the properties mentioned above (Fig.  6b) and investi-
gated the chemical space represented by logP ~ MW 
(Fig. 7d), the first two components of the PCA on Phy-
sChem descriptors (Fig.  7e) and the t-SNE on ECFP6 
fingerprints (Fig.  7f ), yielding results similar to the 

model without fine-tuning but then focused on the 
A2AR chemical space. These results prove that RNN is 
an appropriate method to learn the SMILES grammar 
and to construct molecules similar to the ligands in the 

Fig. 5 The value of the loss function and the percentage of valid SMILES sequences during the pre-training process on the ZINC set (a) and 
fine-tuning process on the A2AR set (b). The model was well pre-trained after 300 epochs and these two values converged to 0.19 and 93.88%, 
respectively. The performance of the fine-tuned model converged after 400 epochs with the two values reaching 0.09 and 99.73%, respectively

Fig. 6 Comparison of the properties of generated molecules by the pre-trained (a) and fine-tuned models (b) and molecules in the ZINC set (a) 
and the A2AR set (b), respectively. These properties included the number of hydrogen bond acceptors/donors, rotatable bonds, aliphatic rings, 
aromatic rings, and heterocycles
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training set, which has also been shown in other work 
[20, 38].

Conditional SMILES generation
The RNN model trained on the ZINC set was used as 
an initial state for the policy gradient in RL. After the 
training process of RL and the model converged, 10,000 
SMILES sequences were generated for performance 
evaluation. However, after removal of duplicates in these 
sequences, only less than 10 unique molecules were 
left which were similar to compounds in the A2AR set. 
When checking the log file of the training process and we 
noticed that these duplicated sequences were frequently 
sampled at each epoch and its duplication rate increased 
gradually. In order to decrease the bias caused by these 
molecules with high frequency, we removed all dupli-
cated sequences sampled at each epoch for training with 
the policy gradient. We found that subsequently almost 
all of the molecules generated according to this proce-
dure were located outside of the drug-like region with 

regard to logP ~ MW plot (Additional file  1: Figure S2). 
This problem might be caused by the bias of the predic-
tor. ECFP is a substructure-based fingerprint, implying 
that if the molecule contains some critical substructures, 
it will be prone to be predicted as active. That was the 
reason why generated SMILES sequences contained 
a large number of repetitive motifs. Several research 
groups have made improvements to guarantee that the 
final model has ability to generate drug-like candidate 
molecules [21, 25]. In the next section, we will describe 
our proposed method, “DrugEx” by integrating an explo-
ration strategy to solve this problem and compare it to 
existing methods.

Exploration strategy
During the training process, the generated sequence is 
determined by both the Gθ and the Gφ where ε deter-
mines how many contributions the Gφ made. The Gφ and 
Gθ were both initialized by the pre-trained RNN model 
on the ZINC set. The Gφ was fixed and only parameters 

Fig. 7 The chemical space of generated molecules by the pre-trained model with the ZINC set (a–c) and the fine-tuned model with the A2AR set 
(d–f). The chemical space was represented by either logP ~ MW (a, d), first two components in PCA on PhysChem descriptors (c, e), and t-SNE on 
ECFP6 fingerprints (d, f)
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in the Gθ were updated. In order to optimize param-
eters, the parameter space was designated [0.01, 0.05, 
0.10, 0.15, 0.20, 0.25] and [0.0, 0.1] for ε and β, respec-
tively. After the model converged at 200 epochs (Fig. 8a), 
the performance of these models was evaluated subse-
quently based on 10,000 sampled sequences. Firstly, it 
was found that the number of duplicate SMILES nota-
tions was reduced dramatically and almost all SMILES 
notations represented drug-like molecules (Figs. 9a, 10d). 
Table 1 shows that when ε was increased, the model gen-
erated fewer active ligands for the  A2AR but the diversity 
of generated molecules (represented as unique desired 
SMILES) increased significantly. It was also observed 
that with higher ε, the distribution of different kinds of 
ring systems in the generated desired molecules became 
more similar to the known active ligands in the A2AR set 
(Fig. 9a). The results with different combination of ε and 
β are shown in Additional file 1: Figure S3. Here, ε = 0.1 
was selected as the optimal exploration rate by consid-
ering the combination between diversity and unique 
desired rate. The Gφ can hence help the model produce 
more molecules similar to known active ligands of the 
given target but not identical to them. At higher ε, the 
baseline can help the model improve the average score 
and generate more desired molecules. However, this 
effect was less pronounced at lower values of ε. It is worth 
noticing in this study that if β > 0.1 or ε > 0.25, the training 
process of the generative model did not converge.

Subsequently, the fine-tuned network was used as Gφ to 
be involved in our proposed training method of RL. After 

the training process converged at 200 epochs (Fig.  8b), 
10,000 SMILES were generated. Compared to the pre-
trained network, there were more unique molecules gen-
erated (Table 1), most of which were drug-like compounds 
(Figs. 9b, 10a). However, with appropriate ε the fine-tuned 
network helped the model generate more valid desired 
SMILES than with the pre-trained network. At the same 
time the duplication rate was also increased and there were 
more repetitive molecules being generated. A possible 
reason is that the percentage of active ligands was higher 
in the A2AR set than in the ZINC set, while the size of 
the A2AR set was much smaller than the ZINC set, caus-
ing a higher number of duplicated samples generated by 
the fine-tuned model. In addition, a PCA showed that the 
fine-tuned network was more effective than the pre-trained 
network as Gφ, as it helped the model in generating mol-
ecules with larger chemical diversity while maintaining a 
higher similarity to the known active ligands (Figs. 9, 10). 
These results prove that the exploration strategy is an effec-
tive way to assist the model training for generating novel 
molecules with similar chemical and biological properties 
to existing molecules in a specific part of chemical space.

Comparison with other methods
Several papers on SMILES generation using deep learn-
ing have been published. Olivecrona et al. [21] proposed a 
method named “REINVENT”, in which a new loss function 
was introduced based on the Bayesian formula for RL,

L(θ) =
[

logPPrior
(

y1:T
)

+ σR
(

y1:T
)

− logPAgent
(

y1:T
)]2

Fig. 8 The average score of generated SMILES sequences during the training processes of deep reinforcement learning with different ε, β and Gφ. 
The pre-trained model on the ZINC set (a) and the fine-tuned model on the A2AR set (b) were used as Gφ. After 200 epochs, the average scores for 
all training processes converged and whole of these models were well trained
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The authors used all molecules in the ChEMBL data-
base to pre-train an RNN model as the Priori. With 
the parameter σ, they integrated the reward R of each 

SMILES into the loss function. The final Agent model 
was regarded as the Posteriori and trained with the pol-
icy gradient. Finally, they successfully identified a large 

Fig. 9 Comparison of the properties of generated molecules by RL models with different ε, β and Gφ. The pre-trained model on the ZINC set (a) and 
the fine-tuned model on the A2AR set (b) were used as Gφ. These properties included the number of hydrogen bond donors/acceptors, rotatable 
bonds, aliphatic rings, aromatic rings, and heterocycles

Fig. 10 Comparison of the chemical space of active ligands in the A2AR set and generated molecules by DrugEx (fine-tuned, a–c), DrugEx 
(pre-trained, d–f), REINVENT (g–i), and ORGANIC (j–l). Chemical Space was represented by logP ~ MW (a, d, g, j), the first two components in PCA on 
PhysChem descriptors (b, e, h, k), and t-SNE on ECFP6 fingerprints (c, f, i, l)

(See figure on next page.)
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number of active ligands against the dopamine D2 recep-
tor (DRD2).

Likewise, Benjamin et  al. [25] proposed another 
method named “ORGANIC” by combining a GAN model 
for sequence generation and a prediction model to form a 
comprehensive reward function for RL.

Here, the reward is represented as the weighted sum of 
two parts determined by parameter λ: (1) the reward Rc 
was provided by the prediction model, and (2) the reward 
Rd was calculated by discriminator neural network D, 
which was trained with generator simultaneously by min-
imizing the following loss function:

With the policy gradient optimization, the final model 
generated many different desired molecules which were 
predicted as active ligand against a given target and were 

R
(

y1:t
)

= �Rd

(

y1:T
)

+ (1− �)Rc

(

y1:T
)

L(θ) =
∑

y∈Real

(

logD
(

y1:T
))

+
∑

y∈Fake

(

log
(

1− D
(

y1:T
)))

similar to the chemical compounds in the ligands set. 
In the following section DrugEx and its performance is 
compared with these two methods.

The code of REINVENT and ORGANIC was down-
loaded from GitHub and executed with default param-
eters (σ = 60 in REINVENT and λ = 0.5 in ORGANIC). 
The prior network in REINVENT and generative net-
work in ORGANIC were initialized with the pre-trained 
model, and the agent network in REINVENT was initial-
ized with the fine-tuned model to make sure it could also 
employ this information. The RF-based predictor with 
ECFP6 was exploited as reward function for both meth-
ods identical to our own implementation. After these 
models were trained, 10,000 SMILES sequences were 
generated for performance comparison with each other 
(Table 1). Our method generated molecules that had the 
larger diversity at ε = 0.1. While DrugEx did not outper-
form REINVENT based on the percentage of unique 
desired SMILES, this value was improved dramatically 
and closely resembled that of REINVENT at ε = 0.01. In 
addition, although most of the molecules generated by 
these methods were drug-like molecules (Fig.  10), we 
found that molecules generated by our method covered 
the whole region of chemical space occupied by known 
active ligands. Conversely, molecules generated by both 
REINVENT and ORGANIC only covered a small frac-
tion of the desired chemical space and were mostly cen-
tered in Rule-of-5 compliant chemical space even though 
the chemical space for the  A2AR transcends this region 
of space. To further compare the chemical space occu-
pied by the molecules generated by the different meth-
ods, the k-means algorithm was employed to cluster the 
active ligands in the A2AR set and generated molecules 
into 20 clusters with the ECFP6 fingerprints of (a) the 
full compound structure, (b) the Murcko scaffold and, (c) 
the topological Murcko scaffold (Additional file 1: Figure 
S4). The results indicated that the generated molecules by 
DrugEx covered all clusters that contain active ligands in 
the A2AR set, while some of these clusters were not cov-
ered by REINVENT and ORGANIC. Furthermore, the 
distribution of the molecules in each cluster generated 

Table 1 Comparison of the performance of the different methods

These methods included DrugEx with different ε, β and Gφ (shown in the parentheses), REINVENT, ORGANIC, the pre-trained network, and the fine-tuned network 
(both without using DrugEx)

DrugEx (Pre-trained) DrugEx (Fine-tuned) REINVENT ORGANIC Pre-trained Fine-tuned

ε 0.01 0.01 0.1 0.1 0.01 0.01 0.1 0.1 – – – –

β 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 – – – –

Valid SMILES 98.3% 98.9% 95.9% 98.8% 99.1% 99.0% 98.2% 97.5% 98.8% 99.8% 93.9% 96.2%

Desired SMILES 97.5% 98.0% 74.6% 80.9% 98.3% 98.5% 94.4% 94.5% 98.2% 99.8% 0.7% 47.9%

Unique SMILES 96.5% 96.3% 73.0% 80.0% 96.5% 96.6% 84.8% 86.0% 95.8% 94.8% 0.7% 22.7%

Diversity 0.74 0.75 0.80 0.80 0.75 0.74 0.80 0.80 0.75 0.67 0.83 0.82

Table 2 Comparison of  the  percentage of  important 
substructures contained in  the  molecules generated 
by  the  different methods and  the  molecules in  the  ZINC 
and A2AR sets

These methods contained DrugEx with pre-trained and fine-tuned model as 
different Gφ (in the parentheses), REINVENT, ORGANIC, Pre-trained model, and 
Fine-tuned model

Fused ring (%) Furan ring (%) Benzene ring (%)

DrugEx (Pre-
trained)

9.12 82.32 61.48

DrugEx (Fine-
tuned)

60.69 66.35 65.62

REINVENT 0.20 95.26 61.98

ORGANIC 0.02 99.96 39.45

Pre-trained 24.22 4.51 63.31

Fine-tuned 76.33 23.82 72.85

ZINC 26.66 3.86 63.97

A2AR

 Active 79.09 40.29 75.33

 Inactive 76.73 9.33 70.88
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by DrugEx more closely resembled the distribution by 
the active ligands in the A2AR set than was the case with 
either REINVENT or ORGANIC.

Previous work on the binding mechanism between the 
 A2AR and its ligands identified a number of critical sub-
structures that play an important role to improve binding 
affinity [39]. For example, the oxygen in the furan ring of 
ZM241385 and related ligands can form a hydrogen bond 
with residue N253, the purine ring acts as hydrogen bond 
donor to N253 and forms π-π interaction with F168 [7]. 
However, molecules containing such a furan ring tend to 
be blocking the receptor (antagonists) rather than acti-
vating it (agonists). Hence, while the furan ring is com-
mon in the set of known  A2AR ligands, its presence might 
not always be favorable for generated ligands. Moreover, 
fused rings have been shown in general to be important 
in the chemical structure of drugs [40]. Therefore, we 
compared the percentage of molecules containing furan 
rings, fused rings, and benzene rings. Only 0.20% of the 
desired molecules generated by REINVENT contained a 
fused ring (Table 2) while they were present in 79.09% of 
active ligands in the A2AR set. Similarly, ORGANIC only 
generated a very low percentage of molecules containing 
a fused ring system (0.02%).

With the pre-trained network as Gφ, DrugEx produced 
9.12% of molecules containing fused rings, while the fine-
tuned network improved the percentage of molecules 
containing fused rings up to 60.69%. For furan rings a 
similar image arises, 95.26% and 99.96% of molecules 
generated by REINVENT and ORGANIC contained a 
furan ring, respectively, while this percentage was only 
40.29% for known active ligands. By comparison, in Dru-
gEx, 82.32% of molecules contained a furan ring under 
the pre-trained network as Gφ, similar to the other two 
methods. However, when the fine-tuned network was 
used this rate decreased substantially to 66.35%.

REINVENT and ORGANIC have been reported to 
generate various molecules containing different fused 
ring structures against DRD2 [21, 25]. One possible 
reason they were not able to do so here might lie in the 
bias of A2AR set. In Table 2, we noticed that there were 
more active ligands containing a furan ring than inac-
tive ligands (fourfold difference). This led to both meth-
ods only generating molecules containing a furan ring 
which were prone to be predicted as active. However, 
both methods neglected to construct more complicated 
fused rings which is a decisive difference between active 
and inactive ligands in the A2AR set. These results indi-
cate that DrugEx is more robust to overcome the bias 
of the training set to generate more similar compounds 
to known  A2AR ligands (tuned for the target chemi-
cal space) and less generic SMILES sequences. Hence, 
we consider these molecules more appropriate drug 

candidates against  A2AR than the molecules produced 
by REINVENT and ORGANIC. As an example, 24 can-
didate molecules generated by DrugEx were selected and 
are shown in Fig. 11 ordered by the probability score and 
Tanimoto-distance to the A2AR set.

In REINVENT, the pre-trained model acted as “priori” 
in the Bayesian formula to ensure that the generated 
SMILES are drug-like molecules. The final model was 
trained by improving the probability of desired gener-
ated SMILES while maintaining the probability of unde-
sired generated SMILES similar to the pre-trained model. 
In DrugEx the pre-trained model was only used for ini-
tialization and did not directly affect the training process 
and performance evaluation. The mechanism of DrugEx 
appears quite similar to a genetic algorithm (GA) previ-
ously developed in our group for de novo drug design 
[41]. The exploration strategy can be regarded as “ran-
dom mutation” in a GA context for sequence genera-
tion. Instead of changing the token selection directly, this 
manipulation just changed the probability distribution 
of each token in the vocabulary. Furthermore, although 
“crossover” manipulation was not implemented here, such 
mutations can still help the model search the unfamiliar 
chemical space in which the molecules do not have a high 
probability to be sampled. In contrast to ORGANIC, there 
was no need to construct another neural network specifi-
cally to measure the similarity between generated and real 
molecules, saving valuable time and resources required 
to train and select appropriate parameters. Hence, we 
conclude that molecules generated by DrugEx can be 
regarded as reasonable drug candidates for  A2AR.

Conclusion and future prospects
In this study a new method is proposed to improve 
the performance of deep reinforcement learning to 
generate SMILES based ligands for targets of interest. 
Applied to the  A2AR, generated molecules had high 
diversity combined with chemical and predicted bio-
logical properties similar to known active compounds. 
Previous work has shown that RL cannot guarantee the 
model to generate molecules distributed over chemical 
space comparable to ligands of a target of interest. To 
solve this problem, another well-trained RNN model 
was employed as exploration strategy to force the 
model to enlarge the chemical space of the generated 
molecules during the training process of RL. Compared 
with other DL-based methods, DrugEx generated mol-
ecules with larger chemical diversity while maintain-
ing a higher average similarity to known active ligands. 
However, the tradeoff is that slightly more inactive or 
duplicated molecules are being generated.

In future work, our aim is to update DrugEx with 
multi-objective optimization for polypharmacology. As 
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a given drug (candidate) likely binds to unexpected tar-
gets (i.e. off-target efficacy) which can cause side-effects 
[42]. Incorporating multiple objectives in SMILES 
generation will allow the search for ways to eliminate 
potential off-target affinity.

Additional file

Additional file 1: Table S1. All tokens in vocabulary for SMILES sequence 
construction with RNN model. Figure S2. The chemical space of gener-
ated molecules by pre-trained models, traditional reinforced model and 
active ligands in the A2AR set. Figure S3. The performance of DrugEx with 
different Gφ (pre-trained and fine-tuned model) and hyperparameters 
(including ε and β). Figure S4. The percentage of molecules in 20 groups 
clustered by k-means algorithm on ECFP6 fingerprints of generated 
molecules with full compound (A), Murcko scaffold (B) and topological 
Murcko scaffold (C).
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