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Abstract 

Background:  Fast and accurate identification of potential drug candidates against therapeutic targets (i.e., drug–tar-
get interactions, DTIs) is a fundamental step in the early drug discovery process. However, experimental determina-
tion of DTIs is time-consuming and costly, especially for testing the associations between the entire chemical and 
genomic spaces. Therefore, computationally efficient algorithms with accurate predictions are required to achieve 
such a challenging task. In this work, we design a new chemoinformatics approach derived from neighbor-based 
collaborative filtering (NBCF) to infer potential drug candidates for targets of interest. One of the fundamental steps of 
NBCF in the application of DTI predictions is to accurately measure the similarity between drugs solely based on the 
DTI profiles of known knowledge. However, commonly used similarity calculation methods such as COSINE may be 
noise-prone due to the extremely sparse property of the DTI bipartite network, which decreases the model perfor-
mance of NBCF. We herein propose three strategies to remedy such a dilemma, which include: (1) adopting a positive 
pointwise mutual information (PPMI)-based similarity metric, which is noise-immune to some extent; (2) performing 
low-rank approximation of the original prediction scores; (3) incorporating auxiliary (complementary) information to 
produce the final predictions.

Results:  We test the proposed methods in three benchmark datasets and the results indicate that our strategies are 
helpful to improve the NBCF performance for DTI predictions. Comparing to the prior algorithm, our methods exhibit 
better results assessed by a recall-based evaluation metric.

Conclusions:  A new chemoinformatics approach with improved strategies was successfully developed to predict 
potential DTIs. Among them, the model based on the sparsity resistant PPMI similarity metric exhibits the best perfor-
mance, which may be helpful to researchers for identifying potential drugs against therapeutic targets of interest, and 
can also be applied to related research such as identifying candidate disease genes.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A key component in the drug discovery process is to accu-
rately identify the drug–target interactions (DTIs). Tra-
ditionally, experimental determination of DTIs is both 
costly and time consuming. In addition, to fully explore 
the growing chemical and genomic (for drug targets) 
spaces being discovered, it becomes impractical to experi-
mentally validate all possible combinations of drug–tar-
get pairs. Thus, effective computational algorithms used 

for predicting potential DTIs are increasingly in demand. 
Typically, docking simulation is often used to probe the 
interactions between a series of small molecules and a tar-
get under study [1] at a molecular level. However, docking 
methods require accurate three-dimensional structures of 
target proteins, making such studies challenging for mem-
brane proteins due to the challenge of protein crystalliza-
tion. Quantitative structure–activity relationship (QSAR) 
is another method to depict possible DTIs. However, 
QSAR typically requires molecular structures with simi-
lar scaffolds [2–4] for stronger performance. Nowadays, 
the technology advancement of next-generation sequenc-
ing (NGS) and small molecule high-throughput screening 
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(HTS) is accelerating the identification of potential thera-
peutic targets and drug compounds, which presents great 
challenges as well as opportunities for chemogenomic 
research to explore both chemical and genomic spaces 
simultaneously. In line with this, Yamanishi et al. [5] pro-
posed a bipartite graph learning method correlating the 
chemical/genomic spaces with the interaction space (i.e., 
pharmacological space) for predicting potential DTIs, 
which was followed by several algorithms with improved 
performance. For example, Bleakley et al. [6] proposed a 
novel supervised inference method to predict unknown 
DTIs by using several bipartite local models (BLM). Spe-
cifically, BLM transformed the edge prediction prob-
lem into the binary classification problem of points with 
labels. van Larrhoven et  al. [7] used a regularized least 
squares algorithm combined with the Gaussian interac-
tion profile (GIP) kernel calculated only from the topolog-
ical information of the drug–target network for inferring 
DTIs. Mei et al. [8] introduced a neighbor-based interac-
tion-profile inferring method and integrated it into BLM, 
enabling the model for predicting new drugs/targets. Hao 
et al. [9] employed a nonlinear kernel diffusion (KF) tech-
nique to infer DTIs. Liu et al. [10] proposed a neighbor-
hood regularized logistic matrix factorization (NRLMF) 
algorithm to partly overcome the imbalanced problem 
in the DTI prediction process. Later on, Hao et  al. [11] 
designed a dual-network integrated logistic matrix factor-
ization (DNILMF) technique by incorporating an idea for 
modeling social ensemble into the DTI prediction model. 
Recently, Olayan et  al. [12] proposed a method (called 
DDR), which is based on heterogeneous graph including 
known DTI network and multiple similarities from both 
targets and drugs, to predict unknown DTIs by using Ran-
dom Forest as a classifier. By adding a heuristic selection 
of similarity matrices and nonlinear KF technology, DDR 
outperformed other state-of-the-art priors [12]. Addition-
ally, many other DTI prediction algorithms developed 
previously can be found in the reviews [13–17].

Among popular DTI prediction algorithms, the most 
reliable and accurate ones are those based on similari-
ties. However, the used similarity information is derived 
either from protein sequences or from drug structures. 
Despite of the importance of the DTI graph, little stud-
ies considered using its similarity information as the 
main source when building the model with the excep-
tion of previous work [7]. In fact, the DTI bipartite net-
work itself contains extremely important information, 
which will be beneficial to the model performance. The 
success of recommender system in e-commence has 
provided a proof of concept [18–21], which explores 
the bipartite network solely. Inspired by this technol-
ogy, we in this work make an effort to apply and extend 
it for DTI predictions. Herein, we adopt a technology, 

called neighbor-based collaborative filtering (NBCF), 
which is one of the most successful technologies in the 
community of recommendations. For applying NBCF 
to DTI predictions, a fundamental step is to accurately 
compute the pairwise drug similarities based on the drug 
interaction profiles (DIPs) with targets in the bipartite 
interaction network, rather than based on drug struc-
tures as used in the previous studies. In fact, a similar 
idea has been reported whereas the protein similarities 
were measured based on their associated ligands but not 
based on amino acid sequences [22, 23]. With the DIPs-
based drug similarities, an intuitive model is built using 
NBCF by making the following assumption: if drug A and 
drug B are highly similar (again, as indicated by similar-
ity from DIPs), and if drug A interacts with the current 
target, then drug B has a high probability of interacting 
with the same target, though there may be exceptional 
cases [22, 23]. However, it is well-known that the experi-
mentally validated interaction information is extremely 
limited compared to the whole drug–target interaction 
space, which will introduce noise when computing simi-
larity from such a sparse network (sparseness, defined as 
the number of links divided by the total number of pos-
sible target-drug pairs) using the conventional similarity 
calculation methods. To tackle this challenge, we in this 
work propose three strategies to remedy the issue, i.e., by 
designing a new similarity metric to mitigate noise, per-
forming low-rank approximation (LRA) of the original 
prediction scores, and incorporating the auxiliary infor-
mation into the model.

It is critical to select an appropriate evaluation method 
in order to assess the strength of a developed DTI pre-
diction algorithm as well as to identify rooms for further 
improvement. Instead of adopting the commonly used 
evaluation metrics [i.e., area under curve (AUC) and 
area under precision-recall (AUPR) curve], we introduce 
a recall-based metric, namely mean percentile ranking 
(MPR), which is under-studied in DTI predictions [17] 
but routinely used in the recommender system studies 
[18, 24]. The reason for selecting MPR as the evaluation 
criteria is that one only knows about the one-class exper-
imentally validated information (i.e., a drug interacts with 
a target, which is considered as the positive information) 
but does not know about the negative information (i.e., 
a drug does not interact with a target) due to the lack of 
comprehensive experimental data on a drug–target pair. 
Thus, a recall-based metric is suitable to such a scenario. 
Finally, we validate our method in three large publicly 
available datasets and compare the proposed algorithm 
with the prior art based on MPR. We conclude that the 
proposed NBCF algorithm with the improved strategies 
is both effective and computationally efficient for DTI 
predictions, which outperforms the previously developed 
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algorithm for identifying potential drugs against thera-
peutic targets under a study.

Material and experimental methods
Datasets
Three large benchmark datasets were used to evaluate 
the current proposed NBCF algorithm for DTI predic-
tions. The first dataset (denoted by DATASET-H) was 
derived from our previous work [11], which consists of 
733 targets and 829 drugs with 3688 known DTI pairs. 
This dataset was obtained based on the DrugBank data-
base [25] followed by several pre-processing operations 
including removing duplicated molecules, mapping to 
unique identifiers and a few other steps as described 
previously [11]. The second dataset (denoted by DATA-
SET-K) was retrieved from the study of Kuang et al. [26], 
which includes 809 targets and 786 drugs forming 3681 
known DTI interactions. In this dataset, the drugs were 
approved by FDA, assigned with at least one ATC code, 
and the drug data were deposited in the KEGG data-
base [27]. The third dataset (denoted by DATASET-Y) 
includes 664 targets and 445 drugs with 2926 experimen-
tally validated interactions, which was studied by Yaman-
nishi et  al. [5]. Specifically, DATASET-Y was retrieved 
from multiple databases including KEGG BRITE [27], 
BRENDA [28], SuperTarget [29] and DrugBank [25]. 
All benchmark datasets used in this work consist of 
three matrices: (1) drug–target interaction (adjacency) 
matrix, denoted by Y ∈ R

M×N with M targets and N 
drugs; (2) target sequence similarity matrix, denoted by 
ST ∈ R

M×M , calculated from target sequences; and (3) 
drug structural similarity matrix, denoted by SD ∈ R

N×N , 
computed from drug chemical structures. Matrix Y is 
often filled by binary numbers, where Yij = 1 if target 
i is targeted by drug j validated by the previous experi-
ment, and otherwise Yij = 0 (indicating that drug–target 
interaction information for the specific pair is unknown). 
Table 1 shows the benchmark datasets as well as corre-
sponding properties used in this work.

Workflow of the proposed algorithm
The task of DTI predictions considered in the work is to 
identify drugs that have larger possibilities of interact-
ing with the targets of interest. Specifically, given a series 
of targets and drugs, as well as a very small number of 
known (experimentally determined) interactions, a bipar-
tite network was constructed as shown in Fig.  1a. The 
bipartite network was converted into an adjacency matrix 
(also called drug–target interaction matrix), which is very 
sparse due to the extremely low number of experimentally 
validated interactions compared to the whole drug–target 
pair space (shown in Fig. 1b). While “1” is used to indicate 
a known (positive) interaction, “0” is used to indicate that 
it is unknown whether the corresponding drug and target 
interact with each other, because an experiment has not 
been performed. Based on the sparse interaction matrix, 
we proposed to use NBCF to infer the potential interac-
tions for those drug–target pairs labelled as 0 s. The devel-
opment of NBCF was based on a hypothesis that if a query 
target T1 has been reported to interact with drugs of D1, D2 
and D3 that are very similar to DN, then T1 has a large prob-
ability for interacting with DN. While it is true that chemi-
cals with similar structures do not always exert the same 
biological properties depending on the similarity degree 
(e.g., activity cliff) [22, 23, 30], chemical similarity is still a 
significant principle used when searching for compound 
candidates for the desired biological activity in drug design 
and development [31]. Evidently, the key step of NBCF is 
to accurately assess the pairwise similarity between drugs. 
Being different from the previous algorithms such as BLM 
[6] whereas the prior similarity information from drug 
structures and protein sequences, such as ST or SD, was 
used as the input (kernel) matrix of support vector machine 
(SVM) and a conventional binary classification was per-
formed with the fixed regularization parameter C of 1, the 
NBCF technique proposed in the work mainly depends 
on the similarity information calculated from DIPs in the 
drug–target interaction matrix, which is denoted by SDIP as 
shown in Fig. 1c. It is well-known that there are multiple 

Table 1  Benchmark datasets and corresponding properties

DATASET-H DATASET-K DATASET-Y

Number of targets 733 809 664

Number of drugs 829 786 445

Number of interactions 3688 3681 2926

Average interaction number of each drug with targets ~ 4 ~ 5 ~ 7

Average interaction number of each target with drugs ~ 5 ~ 5 ~ 4

Minimum interaction number of each drug with targets 1 1 1

Maximum interaction number of each drug with targets 48 48 96

Minimum interaction number of each target with drugs 1 1 1

Maximum interaction number of each target with drugs 75 55 61

Sparsity 0.006 0.006 0.010
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methods to calculate similarity from DIPs, two commonly 
used ones reported here are COSINE and TANIMOTO. 
For the COSINE similarity, it is defined as follows:

where Scosjj′  denotes the COSINE similarity between drug 
j and drug j’ with the range from − 1 to 1, and M is the 
number of targets. The TANIMOTO similarity (coeffi-
cient) is defined as follows:

where Stanjj′  denotes the TANIMOTO similarity between 
drug j and drug j′ with the range from 0 to 1. In addition 
to the two commonly used similarity calculation methods 
based on the binary data, we also proposed to use posi-
tive pointwise mutual information (PPMI) to measure 
the similarity between a drug pair. The PPMI approach, 
which is under-studied in DTI research, has been 

(1)Scosjj′ =

∑M
i=1 YijYij′

√

∑M
i=1 Y

2
ij

√

∑M
i=1 Y

2
ij′

,
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∑M
i=1 YijYij′

∑M
i=1 Y

2
ij +
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2
ij′ −
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i=1 YijYij′

,

reported to be a similarity metric, which can mitigate the 
data sparsity issue to some extent [32]. In the sparse DTI 
network, the PPMI similarity is defined as follows:

where the probabilities P
(

Y.j ,Y.j′
)

 and P
(

Y.j
)

 are esti-
mated empirically as follows:

where co
(

Y.j ,Y.j′
)

 is the number of times that drugs j and 
j′ co-occur calculated by summing both co-occurred ones 
and zeroes in the matrix Y, and N is the number of drugs. 
It should be noted that Sppmjj′  is non-negative by replacing 
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Fig. 1  Workflow of the proposed NBCF algorithm with strategies designed for improving DTI predictions
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negative values to zeroes, and hereby the base 2 loga-
rithm was used in Eq. (3). After yielding three similarity 
matrices ( Scosjj′  , Stanjj′  and Sppmjj′  ) calculated from the interac-
tion matrix Y solely, the proposed NBCF algorithm was 
used to calculate the prediction scores (Fig. 1d, e), which 
is defined as follows:

where Ŷij denotes the predicted interaction scores 
between the target i of interest and the query drug j. Sjk 
denotes the similarity values (i.e., those from either Scosjj′  , 
Stanjj′  or Sppmjj′  ) between the query drug j and drugs with 
known interaction information for the current target 
i. It should be pointed out that, while being simple and 
intuitive, the proposed algorithm is effective and com-
putationally efficient for DTI predictions due to the 
model-free property similarly as reported by the previ-
ous studies [22, 23]. In fact, a similar algorithm has been 
successfully applied in the field of recommender systems 
[19, 21, 33]. However, it should be emphasized that the 
DTI interaction matrix is extremely sparse, therefore the 
calculated similarity matrix may include noise, which will 
decrease the model performance [19]. Thus, we proposed 
three strategies in the work to overcome such a dilemma. 
Strategy 1: we designed a similarity calculation algorithm, 
which is immune to the data sparsity issue to certain 
degree, with the final generated similarity Sppmjj′  . As shown 
in Fig.  1d, the final prediction scores were obtained 
directly by using Eq. (6) based on Sppmjj′  . Moreover, if the 
commonly used similarity calculation algorithm is used 
with the generated matrix (i.e., Scosjj′  or Stanjj′  ), despite that 
the prediction scores are calculated by using Eq.  (6), 
the scores would be considered as temporary ones as 
denoted by Ŷ t

ij as shown in Fig. 1e, due to that Ŷ t
ij may be 

sub-optimal because of the noisy similarity information. 
Thus, we proposed two additional remedy strategies (i.e., 
Strategy 2 and Strategy 3) to improve the performance 
on the basis of temporary prediction scores, Ŷ t

ij . Strat-
egy 2: as reported in the community of recommender 
systems [19], LRA of original prediction scores can help 
to partially mitigate noise. Thus, we incorporated this 
technique into the DTI prediction domain. Specially, the 
singular value decomposition (SVD) algorithm as one of 
the most popular LRA techniques was adopted to fac-
torize the temporary score matrix, Ŷ t

ij (Fig. 1f ). The final 
prediction scores were formed according to the following 
equation:

(6)Ŷij =
∑

k∈known

Sjk ,

(7)Ŷij = USVT
,

where U ∈ R
M×R is the left singular vector matrix with 

rank R (empirically set to 100), S ∈ R
R×R is the diago-

nal matrix, and V ∈ R
N×R is the right singular vector 

matrix with VT denoting the transpose of V. Strategy 
3: while SDIP remains as one of the key components of 
NBCF derived from the DTI network, the auxiliary simi-
larity information (e.g., ST and SD ) may be attributed as 
complementary sources that are beneficial to the model 
performance. In fact, several previous studies have dem-
onstrated its effectiveness [11, 34]. Therefore, we also 
explored to include auxiliary information in the NBCF 
method for the final DTI predictions as defined below 
(Fig. 1g):

where α , β , and γ are the smoothing coefficients (empiri-
cally set to 0.025, 0.95 and 0.025, respectively).

Evaluation method
In this work, we used tenfold cross-validation to evaluate 
the proposed algorithm. Specifically, we removed randomly 
a subset of 10% of the links (known interaction pairs) in the 
drug–target interaction matrix Y as the test set and trained 
models on the remaining links (i.e., 90% of the known 
interaction pairs). In addition, we ensured each drug has at 
least one interaction with a target (and vice versa that each 
target has at least one interaction with a drug as well) simi-
larly to the previous work [35]. We adopted a recall-based 
evaluation metric, MPR [18, 24], to evaluate the algorithm 
performance. In detail, for each target i in the test set, 
we generated a ranked list of potential drugs, sorted by a 
decreasing order according to the final prediction scores 
for the potential interaction between target i and each of 
the drugs in the dataset. Let rankji denote the percentile 
ranking (PR) of target i for drug j. This way, at rankji = 0%, 
drug j is predicted as the drug with the highest probabil-
ity of interacting with target i, while at rankji = 100%, drug 
j is predicted as the drug with the lowest probability of 
interacting with target i. Herein, the definition of MPR is 
described as follows:

where Ntest
T  denotes the number of targets in the test set, 

and Ri is computed as follows:

(8)Ŷij = αST Ŷ
t
ij + βŶ t

ij + γ Ŷ t
ijSD,

(9)MPR =

∑Ntest
T

i=1
Ri

Ntest
T

,

(10)Ri =

∑Ntest
D

j=1
rankji

N test
D

,
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where Ntest
D  denotes the number of drugs in the test set 

for the current target i. It should be pointed out that the 
lower MPR is, the more desirable performance the model 
exhibits, as a lower MPR value indicates the drug–tar-
get pair is predicted as interacting with each other with 
a higher possibility. Evidently, randomly generated lists 
have an expected MPR of 50% [24]. Using this metric, 
one can obtain a recommended list of candidate drugs, 
with top predictions recommended to be given higher 
priority for experimental validation.

Results and discussion
Properties of benchmark datasets
We validate our algorithm using three benchmark data-
sets (Table  1). (1) DATASET-H: in this dataset which 
was obtained from our previous work [11], there are 
733 unique targets and 829 unique drugs extracted 
from the DrugBank database following several pre-
processing steps. On average, DATASET-H has about 4 
known targets for each drug and 5 drugs for each tar-
get. Among them, looked from the drug side, the mini-
mum and maximum number of interacted targets are 1 
and 48, respectively. From the target end, the minimum 
and maximum number of interacted drugs are 1 and 75, 
respectively. The sparsity value (calculated from known 
interactions divided by the totally possible interaction 
pairs between drugs and targets; the lower the value, the 
sparser the dataset is) is 0.006, indicating the dataset is 
very sparse. (2) DATASET-K: the dataset was retrieved 
from the publication of Kuang and co-workers [26]. This 
dataset is similar to DATASET-H, but has more targets 
than drugs. This dataset also has the sparsity value of 
0.006, making the DTI predictions extreme difficult. 
(3) DATASET-Y: this dataset is a subset of the previ-
ous work with the largest number of possible interac-
tion pairs published by Yamanishi and co-workers [5]. 
Similar to DATASET-K, this dataset also has more tar-
gets than drugs. Compared to the first two datasets, the 
sparsity value of DATASET-Y is relative higher (0.010) 
indicating it is relatively less (but still very) sparse and 
has more known interactions within the dataset. In 
summary, all these three benchmark datasets have a 
very low sparsity value leaving a larger room for chal-
lenging the algorithms for DTI predictions.

Results of the proposed algorithm
In this section, we evaluate the proposed NBCF algo-
rithm for predicting DTIs using the three extremely 
sparse benchmark datasets. As shown in Table 2, in Strat-
egy 1 (i.e., results are totally based on SDIP as shown in 
Fig. 1c–e), results based on PPMI give MPR values as of 
0.054, 0.049 and 0.020 for DATASET-H, DATASET-K 

and DATASET-Y, respectively. COSINE-based MPR 
values are 0.081, 0.068 and 0.037 for the same datasets, 
respectively, while TANIMOTO-based MPR values are 
0.092, 0.070 and 0.035. From these results, we conclude 
that the proposed NBCF algorithm has generated prom-
ising results which largely outperform the random rec-
ommendation accuracy (i.e., 0.5) in terms of MPR [18, 
24], and evidently, PPMI-based NCBF significantly out-
performs both the COSINE-based and TANIMOTO-
based counterparts (P < 0.01, t test). The observation is 
not surprising because the similarity information used 
in the PPMI-based NBCF technique is intentionally 
designed for overcoming noise from the sparse DTI net-
work, while the NBCF methods based on the COSINE 
and TANIMOTO similarity metrics exhibit the sub-
optimal results due to the noise-prone properties in 
such commonly used calculation methods. It should be 
emphasized that while results from the PPMI-based 
NBCF algorithm are used as the final prediction scores 
(Fig.  1d), the COSINE and TANIMOT-based ones are 
considered as the temporary results, denoted by Ŷ t

ij as 
shown in Fig. 1e, which can be further improved by our 
proposed strategies as described in the following. Since 
the previous study has reported that the LRA opera-
tion of original prediction scores can reduce noise to 
some extent [19], we thus adopt one of the most popu-
lar LRA techniques (i.e., SVD) to factorize Ŷ t

ij and yield 
the final prediction scores according to Eq.  (7), which 
belongs to Strategy 2. As shown in Table 2, the strategy 
largely enhances the performance for COSINE-based 
and TANIMOTO-based NBCF. For example, in DATA-
SET-H, COSINE-based NBCF improved MPR from the 

Table 2  Results of MPR for the proposed algorithms based 
on  5 trials of  tenfold cross-validation in  the  benchmark 
datasets

Similarity method DATASET-H DATASET-K DATASET-Y

Strategy 1

 PPMI 0.054 ± 0.010 0.049 ± 0.010 0.020 ± 0.006

 COSINE 0.081 ± 0.019 0.068 ± 0.019 0.037 ± 0.013

 TANIMOTO 0.092 ± 0.026 0.070 ± 0.017 0.035 ± 0.012

Strategy 2

 PPMI 0.061 ± 0.012 0.055 ± 0.014 0.023 ± 0.008

 COSINE 0.066 ± 0.013 0.049 ± 0.010 0.029 ± 0.007

 TANIMOTO 0.066 ± 0.013 0.052 ± 0.011 0.028 ± 0.007

Strategy 3

 PPMI 0.109 ± 0.020 0.077 ± 0.014 0.023 ± 0.007

 COSINE 0.086 ± 0.013 0.051 ± 0.009 0.027 ± 0.006

 TANIMOTO 0.083 ± 0.014 0.055 ± 0.010 0.027 ± 0.004

DT-hybrid

 – 0.083 ± 0.023 0.063 ± 0.016 0.037 ± 0.013
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original 0.081 to 0.066, and TANIMOTO-based NBCF 
also produced better MPR results compared to the one 
in Strategy 1. In DATASET-K and DATASET-Y, the per-
formance of COSINE-based and TANIMOTO-based 
NBCF in Strategy 2 consistently outperforms those in 
Strategy 1. These observations indicate that LRA doubt-
less plays an important role in improving the model per-
formance from COSINE-based and TANIMOTO-based 
NBCF. However, it is not the case for PPMI-based NBCF, 
where the performance actually decreases when LRA 
was applied. This is because similarity based on PPMI 
used in NBCF has already successfully reduced noise 
from the sparse DTI network, thus an extra LRA opera-
tion by using SVD might be “over killing” and may even 
affect the results adversely. Moreover, it is interesting to 
note that in DATASET-K, COSINE-based NBCF in Strat-
egy 2 generated comparable results with PPMI-based one 
in Strategy 1. Though one of the key ideas of NBCF is to 
accurately construct the similarity matrix (i.e., SDIP as 
shown in Fig. 1c) only from the DTI profiles (Fig. 1b), the 
auxiliary similarity information, such as ST and SD used 
in this work, may be beneficial to the model performance 
by incorporating complementary information appropri-
ately, as expected for models from COSINE-based and 
TANIMOTO-based NBCF especially. Thus, in Strategy 
3, we explore such auxiliary information by adding them 
into the original NBCF model with a similar approach 
used by the previous studies [11, 34] (Eq.  8). As shown 
in Table  2, it is evident that both COSINE-based and 
TANIMOTO-based NBCF models exhibit enhanced per-
formance in all benchmark datasets, with the exception 
that in DATASET-H, COSINE-based NBCF gave slightly 
lower performance than that in Strategy 1. However, 
PPMI-based NBCF in Strategy 3 does not show appre-
ciation for such auxiliary similarity information at all. On 
the contrary, decreased performance is observed with 
the incorporation of ST and SD , which indicates that the 
NBCF model on the basis of PPMI can generate the most 
optimal performance, while extra operations may have 
an adverse effect on the model. In summary, we conclude 
that the proposed strategies are undoubtedly playing 
a central role in improving the DTI prediction perfor-
mance based on the NBCF model. Among them, PPMI-
based NBCF gives the best results in all three benchmark 
datasets due to the well-designed similarity measurement 
method, which can effectively tackle the sparsity issue 
in the DTI network. Moreover, both the LRA operation 
and incorporation of auxiliary information are helpful to 
enhance the performance for models that are based on 
the commonly used similarity metrics such as COSINE 
and TANIMOTO. Figure  2 shows the corresponding 
boxplots of all these results.

Comparison to counterpart and further consideration
We compared the proposed NBCF algorithm to DT-
Hybrid proposed by Alaimo and co-workers [35]. We 
select DT-Hybrid for comparison because (1) both 
NBCF and DT-Hybrid are derived from network based 
recommendation technology [19, 20, 33]; (2) both algo-
rithms adopt a recall-based metrics; and (3) they are 
both effective and computationally efficient for DTI pre-
dictions. For DT-Hybrid, we adopt the default param-
eters according to the reported values (i.e., lambda set 
to 0.5 and alpha set to 0.4) [35]. As shown in Table 2, in 
all three datasets, PPMI-based NBCF in Strategy 1, and 
both COSINE-based and TANIMOTO-based NBCF 
models in Strategy 2 generated much better results than 
those from DT-Hybrid. Similarly, models from COSINE 
and TANIMOTO in Strategy 3 consistently outperform 
those from DT-Hybrid. Therefore, all the results indi-
cate that our proposed algorithm with the improved 
strategies demonstrated stronger prediction ability for 
inferring potential DTIs. Though the NBCF algorithm 
combined with similarity from either PPMI, COSINE or 
TANIMOTO proposed in this work has been successful 
for DTI predictions, we were interested to explore the 
effect of other similarity methods on the model perfor-
mance. Since the GIP kernel was reported to be a useful 
similarity metric for predicting potential DTIs in the pre-
vious work [7, 9, 11], we performed an experiment based 
on GIP. However, no satisfied results were obtained in 
all three benchmark datasets in terms of MPR. When 
we tested another similarity metric called DICE coeffi-
cient, results showed similar trend with those based on 
COSINE and TANIMOTO. Furthermore, we experi-
mented the proposed algorithm with the IC dataset from 
the previous study [5], and noticed that the PPMI-based 
model still exhibits the best performance. To further 
validate the model effectiveness, we also performed five-
fold cross-validations, which generated similar results 
as those from the tenfold cross-validation. It should be 
noted that the current work mainly focuses on inferring 
the potential drugs for interesting targets. In fact, the 
inverse operation (i.e., inferring the potential targets for 
interesting drugs) is also possible, which will be further 
explored in the future. Moreover, we plan to improve the 
current algorithm to make it scalable to larger datasets, 
and suitable to the new targets (or new drugs) scenarios 
[8, 10, 11, 36, 37].

Conclusions
In this work, we propose a straightforward yet effective 
and computationally efficient algorithm, NBCF, for infer-
ring potential DTIs. For overcoming data sparsity inher-
ently existing in the known DTI network, we designed 
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three strategies to tackle the difficult issue. In Strategy 
1, we propose to use a sparsity resistant similarity met-
ric, PPMI, to measure the correlation between drugs 
from the DTI network solely, which as a result exhibits 
the best performance in the current work. In Strategies 
2 and 3, we apply the low-rank approximation tech-
nique and incorporate additional auxiliary similarity 
into noise-prone models (i.e., COSINE-based NBCF and 

TANIMOTO-based NBCF) respectively, which have 
been shown to enhance the prediction accuracy to iden-
tify drug candidates for therapeutic targets.
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