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Abstract 

Current pharmaceutical research and development (R&D) is a high-risk investment which is usually faced with some 
unexpected even disastrous failures in different stages of drug discovery. One main reason for R&D failures is the 
efficacy and safety deficiencies which are related largely to absorption, distribution, metabolism and excretion (ADME) 
properties and various toxicities (T). Therefore, rapid ADMET evaluation is urgently needed to minimize failures in the 
drug discovery process. Here, we developed a web-based platform called ADMETlab for systematic ADMET evalua‑
tion of chemicals based on a comprehensively collected ADMET database consisting of 288,967 entries. Four function 
modules in the platform enable users to conveniently perform six types of drug-likeness analysis (five rules and one 
prediction model), 31 ADMET endpoints prediction (basic property: 3, absorption: 6, distribution: 3, metabolism: 10, 
elimination: 2, toxicity: 7), systematic evaluation and database/similarity searching. We believe that this web platform 
will hopefully facilitate the drug discovery process by enabling early drug-likeness evaluation, rapid ADMET virtual 
screening or filtering and prioritization of chemical structures. The ADMETlab web platform is designed based on the 
Django framework in Python, and is freely accessible at http://admet​.scbdd​.com/.
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Background
Current pharmaceutical research and development is 
a high-risk investment that is characterized by a com-
plex process including disease selection, target iden-
tification, lead discovery and optimization, as well 
as preclinical and clinical trials. Although millions 
of active compounds have been found, the number 
of new drugs approved didn’t increase drastically in 
recent years [1–3]. Besides the non-technical issues, 
the efficacy and safety deficiencies could account for 
the main stagnation which is related largely to absorp-
tion, distribution, metabolism and excretion (ADME) 

properties and various toxicities (T). ADME covers the 
pharmacokinetic issues determining whether a drug 
molecule will get to the target protein in the body, and 
how long it will stay in the bloodstream. Parallel evalu-
ation of efficiency and biopharmaceutical properties of 
drug candidates has been standardized, and exhaustive 
studies of ADMET processes are nowadays routinely 
carried out at early stage of drug discovery to reduce 
the attrition rate. This is because the majority of clini-
cal trial failures have been due to ADMET issues, not 
from a lack of efficacy. Since this is the most costly 
point to have a failure, ADMET-related research could 
save much time and money if they can divert even 
one clinical trial failure [4, 5]. Moreover, the current 
experimental methods for ADMET evaluation are 
still costly and time-consuming, and they need a lot 
of animal testing which is usually inadequate when 
managing hundreds of compounds in the early stage 
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of drug discovery. In order to minimize failures, com-
putational strategies are sought by medicinal chemists 
to predict the fate of drugs in organism, and to early 
identify the risk of toxicity [6, 7]. ADMET-related in 
silico models are commonly used to provide a fast and 
preliminary screening of ADMET properties before 
compounds are further investigated in  vitro [8–11]. 
Currently, there are several free and commercial com-
putational tools for predicting ADMET properties. 
However, these tools are not yet very accurate. Moreo-
ver, most of existing computational tools are individual 
models which focus on specific ADMET properties 
and few can evaluate different ADMET properties 
simultaneously due to the limited data size and meth-
ods [12–14].

In order to facilitate the ADMET evaluation, we 
developed a web platform called ADMETlab based 
on a comprehensively collected database which inte-
grates the existing ADMET and basic physicochemi-
cal-related endpoints as many as possible (see Fig. 1). 
Four main modules are designed to conveniently 
assess ADMET properties: drug-likeness evaluation, 
ADMET prediction (31 endpoints assessment), sys-
tematic ADMET evaluation for single chemical and 
database/similarity searching based on ADMET data-
base with 288,967 entries. Compared with other online 
platforms, our proposed ADMETlab incorporated 
more ADMET endpoints and improved model perfor-
mance for some endpoints based on large and struc-
turally diverse data sets. These modules are deployed 
in a user-friendly, freely available web interface (http://
admet​.scbdd​.com/) and we recommend it as a valu-
able tool for medicinal chemists in the drug discovery 
process.

Implementation
Development environment
ADMETlab consists of two main components: “ADMET 
database” and “Web platform”. They share a common 
running environment. We deployed an elastic compute 
service (ECS) server of Aliyun to run the whole project. 
The number of CPU cores and memory are automatically 
allocated to the running instances on demand, which 
ensures the elastically stretchable computing capabil-
ity. In this project, Python was chosen as the main pro-
gramming language because of its considerable libraries 
for the scientific computation. We use Python-RDKit 
[15], Pybel to wrap molecules; [16] use Chemopy [17] 
ChemDes [18] and BioTriangle [19] to calculate molecu-
lar descriptors and fingerprints; use Scikit-learn to build 
models of different algorithms; [20] use Numpy [21], 
Pandas to wrap calculating results into numeric values 
or files [22]. Django is chosen as a high-level Python web 
framework which allows for the rapid development and 
clear design. According to its model visualization-control 
(MVC) design pattern, the whole system is divided into 
three main components: the backend calculating pro-
gram, the back-end control program and the front-end 
visualization program. At the backend, uWSGI + Nginx 
worked as the web server software, The MySQL data-
base was used for data storage and retrieval. It should be 
noted that ‘ADMET database’ and ‘Web platform’ shared 
a common database instance. At the front end, the web-
site is designed in accordance with W3C standards based 
on HTML, CSS, and JavaScript languages.

User interface
ADMETlab provides a convenient and easy-to-use 
interface for users. The user interface of ADMETlab 

Fig. 1  An overview of ADMET properties that can be evaluated by ADMETlab

http://admet.scbdd.com/
http://admet.scbdd.com/
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consists of four main modules: “Webserver”, “Search”, 
“Documentation” and “Help”. “Webserver” is the 
main entrance for users to use “Web platform”, which 
includes three sub modules: “Druglikeness Evaluation”, 
“ADMET Prediction” and “Systematic Evaluation”. 
“Druglikeness Evaluation” module enables users to cal-
culate 5 commonly used druglikeness rules and pro-
vides a druglikeness model. This model can not only 
find out the active compounds from chemical entities 
but also distinguish the potential drug candidates from 
active compounds. “ADMET Prediction” module pro-
vides 31 models to predict 31 ADMET related proper-
ties. Users need to choose one model to obtain results 
for one or multiple molecules, which is suitable for 
screening target molecules of a specific endpoint. “Sys-
tematic Evaluation” predicts all-sided pharmacokinetic 
properties of a specific promising compound and users 
will have an overall understanding of this compound. 
“Search” module is the interface for ADMET database, 
which enables users to perform accurate search, range 
search and similarity search. “Documentation” mod-
ule provides detailed information about data, method-
ologies and results of ADMETlab. The “Help” module 
describes examples about how to use the ADMETlab 
platform.

Input/output
The Input/Output system is mainly responsible for the 
input or output of the strings, commands and files. 
ADMETlab uses the functions like file, open, write, 
getcwd and setcwd from Python I/O system to accom-
plish the file reads and writes. For “Druglikeness Eval-
uation” and “ADMET Prediction” module, SMILES and 
SDF are acceptable molecular file types. These two 
modules provide three kinds of input ways: by input-
ting SMILES, by uploading files and by drawing mol-
ecules from the JME editor. The outputs of them are 
interactive data table and CSV file. The interactive 
data table for five rules contains evaluation values for 
each point; each of the items can be expanded to see 
the detailed information and structures. Interactive 
data table for the model prediction results contains 
predicted values and structures. All the data tables 
allow for searching and ranking by the values. For 
“Systematic Evaluation” module, SMILES is accept-
able molecular format, and the output is rendered as 
HTML page which contains basic information about 
the query molecule and predicted values of all the end-
points. For “Search” module, the SMILES and related 
parameters are set for input; the output is rendered as 
HTML page which contains interactive data table of all 
satisfied items.

Methods
Data collection
The data of ADMETlab consisted of two parts. The first 
part was collected from peer-reviewed publications 
through manually filtering and processing. Note that this 
part will also be then used to the modeling process. The 
second part was collected from ChEMBL [23], EPA [24] 
and DrugBank databases [25]. The corresponding basic 
information and experimental values were collected at 
the same time. All the obtained data were checked and 
washed by molecular operating environment (MOE, ver-
sion 2016) and then divided into six classes (basic, A, D, 
M, E and T) and a series of subclasses according to their 
endpoint meanings. After the format standardization and 
combination, 288,967 entries were obtained and then 
were input into the database. More detailed descrip-
tion can be found in the “Documentation” section of the 
website.

Data set preparing
In the data collection process, we finally obtained 31 
datasets for ADMET modeling from the first part of data. 
For these datasets, the following pretreatments were 
carried out to guarantee the quality and reliability of 
the data: (1) removing compounds that without explicit 
description for ADME/T properties; (2) for the classifica-
tion data, reserve only one entity if there are two or more 
same compounds; (3) for the regression data, if there are 
two or more entries for a molecule, the arithmetic mean 
value of these values was adopted to reduce the random 
error when their fluctuations was in a reasonable limit, 
otherwise, this compound would be deleted; (4) Wash-
ing molecules by MOE (disconnecting groups/metals in 
simple salts, keeping the largest molecular fragment and 
add explicit hydrogen). After that, a series of high-quality 
datasets were obtained. According to the Organization 
for Economic Co-operation and Development (OECD) 
principles, not only the internal validation is needed to 
verify the reliability and predictive ability of models, but 
also the external validation [11]. Therefore, all the data-
sets were divided into training set and test set according 
to the chemical space distribution by “Diverse training 
set split” module from ChemSAR [26]. In this step, we set 
a threshold that 75% compounds were used as training 
set and the remaining 25% as test set. The detailed infor-
mation for these datasets can be seen in Table 1.

Descriptor calculation
In this part, molecular descriptors and fingerprints were 
applied to further model building. The molecular descrip-
tors include 11 types of widely used descriptors: con-
stitution, topology, connectivity, E-state, Kappa, basak, 
burden, autocorrelation, charge, property, MOE-type 
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descriptors and 403 descriptors in total. All the descrip-
tors were calculated by using Chemopy—a python pack-
age built by our group. These continuous descriptors 
were used to build regression models. The fingerprints 
include FP2, MACCS, ECFP2, ECFP4 and ECFP6, which 
were calculated by using ChemDes [18] and BioTriangle 
[19]. These fingerprints were used to build classification 
models. All descriptors were firstly checked to ensure 
that the values of each descriptor are available for molec-
ular structures. The detailed information of these men-
tioned descriptors can be seen in Table 2.

Descriptor selection
To build those regression models, we need to select 
proper descriptors. Before further descriptor selection, 
three feature pre-selection steps were performed to 
eliminate some uninformative descriptors: (1) remove 

descriptors whose variance is zero or close to zero; (2) 
remove descriptors, the percentage of whose identical 
values is larger than 95% and (3) if the correlation of two 
descriptors is large than 0.95, one of them was randomly 
removed. The remaining descriptors were used to further 
perform descriptor selection and QSAR modeling. For 
these molecular descriptors, further descriptor selection 
need be carried out to eliminate uninformative and inter-
ferential descriptors. In this study, we utilize the internal 
descriptor importance ranking function in random forest 
(RF) to select informative descriptors [27]. The descriptor 
selection procedure is performed as follows: Firstly, all 
descriptors were applied to build a model. The number 
of estimators of RF was set as 1000; the mtry was set as √
p , the other parameters were set as defaults, and five-

fold cross-validation was used to evaluate the model. 
These involved descriptors were sorted according to 

Table 1  The statistical results of the datasets for modeling

Category Property Total Positive Negative Train Test

Basic physicochemical 
property

LogS 5220 – – 4116 1104

LogD7.4 1031 – – 773 258

LogP

Absorption Caco-2 1182 – – 886 296

Pgp-inhibitor 2297 1372 925 1723 574

Pgp-substrate 1252 643 609 939 313

HIA 970 818 152 728 242

F (20%) 1013 759 254 760 253

F (30%) 1013 672 341 760 253

Distribution PPB 1822 – – 1368 454

VD 544 – – 408 136

BBB 2237 540 1697 1678 559

Metabolism CYP 1A2-inhibitor 12,145 5713 6432 9145 3000

CYP 1A2-substrate 396 198 198 297 99

CYP 3A4-inhibitor 11,893 5047 6846 8893 3000

CYP 3A4-substrate 1020 510 510 765 255

CYP 2C9-inhibitor 11,720 3960 7760 8720 3000

CYP 2C9-substrate 784 278 506 626 156

CYP 2C19-inhibitor 12,272 5670 6602 9272 3000

CYP 2C19-substrate 312 156 156 234 78

CYP 2D6-inhibitor 12,726 2342 10,384 9726 3000

CYP 2D6-substrate 816 352 464 611 205

Excretion Clearance 544 – – 408 136

T1/2 544 – – 408 136

Toxicity hERG 655 451 204 392 263

H-HT 2171 1435 736 1628 543

Ames 7619 4252 3367 5714 1905

Skin sensitivity 404 274 130 323 81

Rat oral acute toxicity 7397 – – 5917 1480

DILI 475 236 239 380 95

FDAMDD 803 442 361 643 160
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their importance, and then the last two descriptors were 
removed and the rest were used to rebuild the model and 
a new descriptor order was obtained. Repeat this step 
until the last two remaining descriptors were left, and at 
last we get a series of models based on different numbers 
of descriptors. Among them, we can choose a best fea-
ture combination according to the number of descriptors 
and the error value of the model.

Modeling algorithms
In this study, six different modeling algorithms were 
applied to develop QSAR regression or classification 
models for ADME/T related properties: random forests 
(RF), support vector machine (SVM), recursive parti-
tioning regression (RP), partial least square (PLS), naïve 
Bayes (NB) and decision tree (DT).

RF is an ensemble of unpruned classification or regres-
sion trees created by using bootstrap samples of the 
training data and random feature selection in tree induc-
tion, which was firstly proposed by Breiman in 2001 [28, 
29]. SVM is an algorithm based on the structural risk 
minimization principle from statistical learning theory. 
Although developed for classification problems, SVM can 
also be applied to the case of regression [30]. RP has been 
developed since the 1980s and it is a statistical method 
for multivariable analysis. RP creates a decision tree that 

strives to correctly classify members of the population by 
splitting it into sub-populations based on several dichot-
omous independent variables. The process is termed 
recursive because each sub-population may in turn be 
split an indefinite number of times until the splitting 
process terminates after a particular stopping criterion 
is reached [31]. PLS is a recently developed generaliza-
tion of multiple linear regression (MLR), it is of particu-
lar interest because, unlike MLR, it can analyze data with 
strongly collinear, noisy, and numerous X-variables, and 
also simultaneously model several response variables [32, 
33]. NB is a simple learning algorithm that utilizes Bayes 
rule together with a strong assumption that the attributes 
are conditionally independent, given the class. Coupled 
with its computational efficiency and many other desir-
able features, NB has been widely applied in practice 
[34]. DT is a non-parametric supervised learning method 
used for classification and regression. The goal is to cre-
ate a model that predicts the value of a target variable by 
learning simple decision rules inferred from the data fea-
tures [35]. Among these six methods, the RF, SVM, RP 
and PLS were used for regression model building; the RF, 
SVM, NB and DT were applied to build those classifica-
tion models. Before the modeling building, all related 
parameters of some algorithms should be optimized. 
They are (estimators, mtry) for RF, (Sigma, C) for SVM 
(rbf) and (n_components) for PLS separately. The cross 
validation method based on grid search was adopted to 
obtain optimized parameter sets. Specifically, for RF we 
tried the estimators of 500 and 1000; the mtry was opti-
mized through two stages: firstly, use 20 as the step length 
and (1, n_features) as the range, and then use 2 as the 
step length and (mtryʹ − 50, mtryʹ + 50) as the range while 
mtryʹ − 50 > 0 and mtryʹ + 50 ≤ n_features. The mtryʹ was 
the result of stage 1. Similarly, for SVM (rbf) two stages 
were applied to optimize the parameter sets. Firstly, the 
coarse grid-search process used: C = {start: 2^(− 5), end: 
2^(15), step: 2^(2)} and Sigma = {start: 2^(− 15), end: 
2^(3), step: 2^(2)}. Secondly, the finer grid-search process 
used 2^(0.25) as the step length to optimize the results 
from stage 1. For PLS, the best n_components was opti-
mized from 1 to 100.

For some unbalanced datasets, the obtained mod-
els may be biased if general modeling processes were 
applied. To obtain some more balanced classification 
models, we proposed two new methods to achieve this 
goal: (1) Samplesize parameter in RF. When this param-
eter is set to 100, it means that 100 positive compounds 
and 100 negative compounds were randomly selected to 
build a tree in each modeling process and this process 
repeated many times to guarantee that every compound 
in the training set could be used in the final RF model. 
The use of this method guarantees that the number of 

Table 2  The molecular descriptors that  were used 
in modeling process

Descriptor type Description Number

Constitution Constitutional descriptors 30

Topology Topological descriptors 35

Connectivity Connectivity indices 44

E-state E-state descriptors 79

Kappa Kappa shape descriptors 7

Basak Basak information indices 21

Burden Burden descriptors 64

Autocorrelation Morgan autocorrelation 32

Charge Charge descriptors 25

Property Molecular property 6

FP2 A path-based fingerprint which indexes 
small molecule fragments based on linear 
segments of up to 7 atoms

2048

MACCS MACCS keys 167

ECFP2 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 1

2048

ECFP4 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 2

2048

ECFP6 An ECFP feature represents a circular 
substructure around a center atom with 
diameter is 3

2048
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positive samples and negative samples is relatively bal-
anced in each bootstrap sampling process. (2) The ran-
dom sampling method was applied for the positive 
compounds (if positive samples are much more than 
negative samples) in each modeling process and this pro-
cess was repeated 10 times. Finally, a consensus model 
was obtained for further application based on these 10 
classification models. Besides, The Cohen’s kappa coef-
ficient can be used as a performance metric to evaluate 
the results of models based on unbalanced dataset. Here 
we calculated the coefficient for the 7 unbalanced models 
(see the “Documentation”). Considering the barely satis-
factory results of some properties such as VD, CL, T1/2 
and LD50 of acute toxicity, the percentage of compounds 
predicted within different fold errors (Folds) was applied 
to assess model performance. They are defined as follows: 
fold = 1 + |Ypred − Ytrue|/Ytrue. A prediction method with 
an average-fold error < 2 was considered successful.

Performance evaluation
To ensure the obtained QSAR model has good generali-
zation ability for a new chemical entity, fivefold cross-
validation and a test set were applied for this purpose. 
For fivefold cross-validation, the whole training set was 
split into five roughly equal-sized parts firstly. Then 
the model was built with four parts of the data and the 
prediction error of the other one part was calculated. 
The process was repeated five times so that every part 
could be used as a validation set. For these regression 
models, six commonly used parameters were applied 
to evaluate their quality: the square correlation coef-
ficients of fitting (RF

2); the root mean squared error of 
fitting (RMSEF); the square correlation coefficients of 
cross-validation (Q2); the root mean squared error of 
cross validation (RMSEcv), the square correlation coef-
ficients of test set (RT

2); the root mean squared error of 
test set (RMSET). As to these classification models, four 
parameters were proposed for their evaluation: accu-
racy (ACC); specificity (SP); sensitivity (SE); the area 
under the ROC curve (AUC). Their statistic definitions 
are as follows:

R2
F = 1−

∑
(

ŷi − yi
)2

∑

(yi − ȳ)2

RMSEF =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷi
)2

Q2 = 1−
∑

(

ŷ(v)i − yi
)2

∑

(yi − ȳ)2

where ŷi and yi are the predicted and experimental values 
of the ith sample in the data set; ȳ is the mean value of 
all the experimental values in the training set; ŷ(v)i is the 
predicted value of ith sample for cross validation; N is the 
number of samples in the training set. TP, FP, TN and FN 
represent true positive, false positive, true negative and 
false negative, respectively.

Results and discussion
Drug‑likeness analysis
This drug-likeness analysis module is designed for users 
to filter those chemical compounds that are not likely to 
be leads or drugs. The module includes five commonly 
used drug-likeness rules (Lipinski, Ghose, Oprea, Veber, 
and Varma) and one well-performed classification model 
[36–40]. The classification model consisting of 6731 
positive samples from DrugBank and 6769 negative sam-
ples from ChEMBL with IC50 or Ki values < 10 μm was 
constructed based on the random forest method and 
MACCS fingerprint, with classification accuracy of 0.800 
and AUC score of 0.867 by external test set. By means of 
drug-likeness analysis, users can preliminarily screen out 
some promising compounds that are likely to be leads or 
drugs in the early stage of drug discovery.

RMSEcv =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷ(v)i
)2

R2
T = 1−

∑
(

ŷi − yi
)2

∑

(yi − ȳ)2

RMSET =

√

√

√

√

1

N

N
∑

1=1

(

yi − ŷi
)2

ACC = TP+ TN

TP+ TN+ FP+ FN

SP = TN

TN+ FP

SE = TP

TP+ FN



Page 7 of 11Dong et al. J Cheminform  (2018) 10:29 

ADMET prediction
To quickly evaluate various ADMET properties, a series 
of high-quality prediction models were generated and 
validated. Totally, there are 9 regression models (LogP 
was from RDKit directly) and 22 classification models 
with improved performance in this platform (basic prop-
erty: 3, absorption: 6, distribution: 3, metabolism: 10, 
elimination: 2, toxicity: 7). Different methods, different 
representations and large datasets, to our best knowl-
edge, were applied to obtain these optimal models (see 
Additional file  1). For some unbalanced datasets (e.g., 
HIA, CYP2C9-Substrate, CYP2D6-Substrate) or hard-to-
predict endpoints (e.g., CL, T1/2, acute toxicity), several 
useful strategies were proposed to improve prediction 
ability of models (see Additional file 1). For example, res-
ampling strategy and ensemble techniques are applied to 
cope with those unbalanced data. The parameter adjust-
ing class balance in the random forest algorithm is opti-
mized to obtain balanced models. For each property, the 
detailed explanation and corresponding suggestion are 
provided for users to give a meaningful understanding of 
prediction results. This module allows the batch predic-
tion and users can realize rapid ADMET screening or fil-
tering based on these specific prediction models.

The performances of the models are shown in Tables 3, 
4 and 5. From the results we can see: (1) Most of the 
models obtained a good performance; LogS, LogD7.4 and 
Caco-2 got a Q2 > 0.84; 86% of the classification models 
got accuracy > 0.7; 50% of the classification models got 
accuracy > 0.8. All the models had a better or compara-
ble performance compared with previous works in peer-
reviewed publications, which was discussed in detail in 
the Additional file 1. (2) There were still few models got a 

low Q2 or accuracy like PPB, VD, F20 and F30, while these 
models have been also improved by using larger data-
set or good modeling strategies compared with previous 
published ones. (3) For obvious unbalanced datasets: F20, 
F30, CYP2C9-Substrate and CYP2D6-Substrate, their 
best performance models were not the same with those 
in Table 5. From the results in Additional file 1 we found 
that the SE was about twice as much as SP, which led to 
an ineffective classifier. This phenomenon was caused 
by the unbalanced datasets. After it was processed with 
the strategies mentioned above, the SE and SP became 
very close. To F20, the SE/SP of the best model was opti-
mized to 0.731/0.647 (RF + MACCS) from 0.907/0.450 
(SVM + MACCS). The F30, CYP2C9-Substrate and 
CYP2D6-Substrate were also improved by this way. From 
the results of Cohen’s kappa coefficient, we can see that 
after the processing using our strategies, the consistency 
is quite acceptable. 4) RF method showed a best ability 
to build regression models of datasets in Tables 3 and 4; 
SVM and RF methods combined with ECFP4 performed 
best in most cases in datasets of Table 5.

Systematic ADMET evaluation
For a specific compound, this module provides a con-
venient tool for systematic ADMET evaluation by pre-
dicting all-sided pharmacokinetic properties and thus 
users will have an overall understanding of ADMET 
properties of this compound. By inputting a molecule, 
“Predicted values”, “Probability”, “Suggestion”, “Meaning 
& Preference” and “Reference” will be shown according 
to different endpoints. For regression models the “Pre-
dicted values” is shown as numeric values with com-
monly used units. For classification models the number 
of “+” or “−” were used to represent the “Predicted val-
ues” according to the “Probability”. This will give a more 
clear and intuitive representation instead of a numeric 
character. For each endpoint, the reasonable recom-
mendation (“Suggestion”) for ADMET is also provided. 
According to these given suggestion, users can extract 
some rational compounds with multiple reasonable 
profiles and further optimize their chemical structures 
in a purposeful way to make them more potential to be 

Table 3  The best regression models for some ADMET related properties (Part 1)

Property Method mtry R2 Q2 RT
2 RMSEF RMSECV RMSET

LogS RF 10 0.980 0.860 0.979 0.095 0.698 0.712

LogD7.4 RF 14 0.983 0.877 0.874 0.228 0.614 0.605

Caco-2 RF 14 0.973 0.845 0.824 0.121 0.289 0.290

PPB RF 8 0.954 0.691 0.682 7.124 18.443 18.044

VD RF 10 0.950 0.634 0.556 0.281 0.762 0.948

Table 4  The best regression models for  some ADMET 
related properties (Part 2)

Property Method Features mtry Twofold rate 
(CV/test)

Threefold 
rate (CV/
test)

CL RF 2D 10 0.760/0.816 0.877/0.897

T1/2 RF 2D 12 0.762/0.699 0.897/0.824

LD50 RF 2D 5 0.986/0.987 0.998/0.997
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drugs. Besides, the “Meaning & Preference” summa-
rizes the key points of knowledge-based rules for each 
endpoint and category standards from the “Reference”. 
This strongly assists researchers to evaluate ADMET of 
the specific compound in a systematic way.

Database searching
Based on the comprehensive ADMET database, the data-
base searching and similarity searching were provided 
for users. With an input of molecular structures or phar-
macokinetic properties, the matched compounds in the 
database can be listed in the result table. For the basic 
searching, two approaches are provided: accurate search-
ing by SMILES, CAS registry number or IUPAC name; 
range searching via the range of molecular weight, AlogP, 
hydrogen bond acceptor or hydrogen bond donor. For 
similarity searching, different structural similarity crite-
rions can be chosen to search similar compounds to the 
input structure. Here, we provide five kinds of finger-
prints to represent molecular information and two kinds 
of similarity metrics for similarity search. According to 
these results, users can not only evaluate ADMET prop-
erties for a new compound but also obtain some useful 
hints about its structure optimization.

Features
Currently, there have been several tools that contribute 
to ADMET analysis in different ways. However, ADMET-
lab has some unique and good features: (1) Providing a 
largest database containing direct ADMET data val-
ues. The database collected 288,967 entries from dif-
ferent data sources, each of which not only records the 
“ADMET values”, “Class”, “Subclass” and “Structure” but 
also 18 annotations like “IUPACName”, “Description” 
and “Reference”. (2) Comparative large datasets of most 
properties. For modeling of each property, the datasets 
was manually collected and integrated from reliable peer-
reviewed publications and databases as many as possible. 
This guarantees a large and structurally diverse dataset 
and the broader application domain than other ones. (3) 
Better and robust SAR/QSAR models. For each endpoint, 
we employed different algorithms combined with differ-
ent representations and obtained comparable or better 
models than other tools which have been discussed in the 
Additional file  1. (4) Providing systematic analysis and 
comparison. It should be noted that not just one prop-
erty affects the behavior of drugs in body. Usually we are 
looking for molecules that possess relatively good per-
formance through every stage of ADME/T. ADMETlab 

Table 5  The best classification models for some ADME/T related properties

Property Method Features Fivefold cross validation External validation dataset

Sensitivity Specificity Accuracy AUC​ Sensitivity Specificity Accuracy AUC​

HIA RF MACCS 0.820 0.743 0.782 0.846 0.801 0.743 0.773 0.831

F (20%) RF MACCS 0.731 0.647 0.689 0.759 0.680 0.663 0.671 0.746

F (30%) RF ECFP6 0.743 0.605 0.669 0.715 0.751 0.601 0.667 0.718

BBB SVM ECFP2 0.962 0.813 0.926 0.948 0.993 0.854 0.962 0.975

Pgp-inhibitor SVM ECFP4 0.887 0.789 0.848 0.908 0.863 0.802 0.838 0.913

Pgp-substrate SVM ECFP4 0.839 0.807 0.824 0.899 0.826 0.854 0.840 0.905

CYP1A2-inhibitor SVM ECFP4 0.833 0.864 0.849 0.928 0.853 0.880 0.867 0.939

CYP1A2-substrate RF ECFP4 0.768 0.636 0.702 0.801 0.768 0.637 0.702 0.802

CYP3A4-inhibitor SVM ECFP4 0.759 0.858 0.817 0.901 0.788 0.860 0.829 0.909

CYP3A4-substrate RF ECFP4 0.798 0.716 0.757 0.835 0.819 0.679 0.749 0.835

CYP2C19-inhibitor SVM ECFP2 0.826 0.819 0.822 0.893 0.812 0.825 0.819 0.899

CYP2C19-substrate RF ECFP2 0.735 0.744 0.740 0.816 0.871 0.667 0.769 0.853

CYP2C9-inhibitor SVM ECFP4 0.719 0.898 0.837 0.900 0.730 0.882 0.830 0.894

CYP2C9-substrate RF ECFP4 0.746 0.709 0.728 0.819 0.746 0.709 0.734 0.824

CYP2D6-inhibitor RF ECFP4 0.770 0.811 0.793 0.868 0.771 0.812 0.795 0.882

CYP2D6-substrate RF ECFP4 0.765 0.73 0.748 0.823 0.792 0.73 0.76 0.833

hERG RF 2D 0.908 0.700 0.844 0.879 0.888 0.762 0.848 0.873

H-HT RF 2D 0.780 0.520 0.689 0.710 0.785 0.487 0.681 0.683

Ames RF MACCS 0.800 0.841 0.820 0.890 0.848 0.816 0.834 0.897

SkinSen RF MACCS 0.685 0.727 0.706 0.760 0.715 0.727 0.731 0.774

DILI RF MACCS 0.866 0.813 0.840 0.904 0.830 0.857 0.843 0.910

FDAMDD RF ECFP4 0.848 0.812 0.832 0.904 0.853 0.782 0.821 0.892
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allows users to evaluate most aspects of ADME/T process 
of one specific molecule, which gives users a full impres-
sion and leads to constructive suggestions of molecular 
optimization. (4) Supporting diverse similarity searching 
approaches. (5) Supporting batch computation. Calculat-
ing the properties for a single molecule is of little use for 
a chem- or bio-informatician who is dealing with ample 
data especially in virtual screening. ADMETlab supports 
the batch computation by uploading files. (6) Providing a 
convenient user-friendly interface. The rich prompts and 
robust verification systems in ADMETlab ensure a good 
user experience.

In order to give a more clear comparison we have listed 
all related web tools as possible as we know in Table  6. 
In the table we described their advantages/shortcomings 
and compared them with ADMETlab: (1) The “Similar-
ity searching”, “Druglikeness model” and “Suggestion” 
functionalities are unique features of ADMETlab. (2) It 
seems that some tools are similar with ADMElab. There 
is no doubt that all of them contribute to ADMET prop-
erties prediction; however, they are quite different from 
ADMETlab both in methods and functionalities. Take 
admetSAR for example, the admetSAR built 22 classifica-
tion models and 5 regression models with SVM methods, 

Table 6  Web tools related with ADMET prediction

*The “B, A, D, M, E, T” refers the contents in the “Documentation” section of our website. A tool that marked “A” means it covers some endpoints of class “A”, not all 
endpoints of class “A”

Tools Availability Batch 
computation

Endpoints Database Druglikeness 
rules

Druglikeness 
model

Systematic 
evaluation

Suggestions

ADMETlab Free Yes Number: 31
Contents: B, A, 

D, M, E, T*

Yes
(288,967 entries; 

5 similarity 
searching 
strategies)

Yes
(5 rules)

Yes Yes Yes

lazar [41] Free No Number: 3
Contents: T: 

Acute toxicity; 
BBB; Carcino‑
genicity

No No No No No

admetSAR [42] Free No Number: 27
Contents: B, A, 

D, M, E, T

Yes
(210,000 

entries)

No No Yes No

PreADMET [43] Free or com‑
mercial

No Number: 19
Contents: B, A, 

D, M, T

No Yes No No No

FAF-Drugs4 [44] Free Yes Mainly filtering 
compounds 
by their 
descriptors 
and basic 
properties

No Yes No No No

pkCSM [12] Free Yes Number: 30
Contents: B, A, 

D, M, E, T

No No No Yes No

SwissADME [45] Free Yes Number: 19
Contents: B, A, 

D, M

No Yes No Yes No

VCCLAB [46] Free Yes Number: 14
Contents: B (Dif‑

ferent LogP, 
LogS and pKa 
from different

theories)

No No No No No

Molinspiration 
[47]

Free No 5 bioactivities, 
miLogP and 
8 molecular 
descriptors

No No No No No

vNN-ADMET 
[48]

Registration 
required

No Number: 14
Contents: A, D, 

M, T

No No No No No
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while ADMETlab systematically compared different 
methods (SVM, RF, NB, RP, PLS, DT) to get a proper 
method for each endpoint. In admetSAR, all compounds 
were represented using MACCS keys while ADMETlab 
systematically compared different descriptors and fin-
gerprints (11 descriptor groups and 5 kinds of finger-
prints) to get a more proper representation. It should 
be noted that the regression models based on SVM and 
MACCS keys are usually not very reliable in predicting 
continuous endpoints such as logS, logD, Caco-2 etc. 
Besides, ADMET combined larger datasets for most 
of the endpoints which represented broader chemical 
space. Moreover, ADMETlab provided batch computa-
tion which enables to screen libraries for qualified mol-
ecules. Another example is SwissADME, and it calculates 
19 endpoints; however, it doesn’t calculate five kinds of 
CYP450 substrates, bioavailability, Clearance, T1/2, VD, 
Pgp-inhibitor, Caco-2, HIA, PPB and any toxicity end-
points. So, ADMETlab is very different from these tools 
and can be used as a new systematic ADMET evaluation 
platform owing to these unique features.

Conclusion
ADMETlab provides a user-friendly, freely available web 
platform for systematic ADMET evaluation of chemicals 
based on a comprehensively collected database consist-
ing of 288,967 entries. In this study, a series of well-per-
formed prediction models were constructed based on 
different representation patterns and different modeling 
methods. With the assessment results, users can give 
an overall understanding of ADMET space, realize vir-
tual screening or filtering and even obtain some hints 
about structure optimization. Additionally, some high-
quality ADMET-related datasets are provided as bench-
mark datasets to improve the ADMET prediction. In the 
future, we will continue to improve the server as follows: 
(1) More practical models for new ADMET properties 
should be added, such as cytotoxicity and renal toxic-
ity models. (2) Some hard-to-predict models should be 
further optimized, such as CL and T1/2 models. (3) The 
database should be updated regularly. (4) Integrated anal-
ysis based on ADMET profiles should be added to per-
form ADMET space analysis. In conclusion, we believe 
that this web platform will hopefully facilitate the drug 
discovery process by enabling the early evaluation, rapid 
ADMET virtual screening or filtering and prioritization 
of chemical structures.

Additional file

Additional file 1. The detailed modeling process and results of the 
ADMET properties.
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