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Abstract 

Background:  Idiosyncratic adverse drug reactions have been linked to a drug’s ability to bind with a human leuko-
cyte antigen (HLA) protein. However, due to the thousands of HLA variants and limited structural data for drug-HLA 
complexes, predicting a specific drug-HLA combination represents a significant challenge. Recently, we investigated 
the binding mode of abacavir with the HLA-B*57:01 variant using molecular docking. Herein, we developed a new 
ensemble screening workflow involving three X-ray crystal derived docking procedures to screen the DrugBank data-
base and identify potentially HLA-B*57:01 liable drugs. Then, we compared our workflow’s performance with another 
model recently developed by Metushi et al., which proposed seven in silico HLA-B*57:01 actives, but were later found 
to be experimentally inactive.

Methods:  After curation, there were over 6000 approved and experimental drugs remaining in DrugBank for docking 
using Schrodinger’s GLIDE SP and XP scoring functions. Docking was performed with our new consensus-like ensem-
ble workflow, relying on three different X-ray crystals (3VRI, 3VRJ, and 3UPR) in presence and absence of co-binding 
peptides. The binding modes of HLA-B*57:01 hit compounds for all three peptides were further explored using 3D 
interaction fingerprints and hierarchical clustering.

Results:  The screening resulted in 22 hit compounds forecasted to bind HLA-B*57:01 in all docking conditions (SP 
and XP with and without peptides P1, P2, and P3). These 22 compounds afforded 2D-Tanimoto similarities being less 
than 0.6 when compared to the structure of native abacavir, whereas their 3D binding mode similarities varied in a 
broader range (0.2–0.8). Hierarchical clustering using a Ward Linkage revealed different clustering patterns for each 
co-binding peptide. When we docked Metushi et al.’s seven proposed hits using our workflow, our screening plat-
form identified six out of seven as being inactive. Molecular dynamic simulations were used to explore the stability of 
abacavir and acyclovir in complex with peptide P3.

Conclusions:  This study reports on the extensive docking of the DrugBank database and the 22 HLA-B*57:01 liable 
candidates we identified. Importantly, comparisons between this study and the one by Metushi et al. highlighted new 
critical and complementary knowledge for the development of future HLA-specific in silico models.
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Background
Adverse drug reaction (ADR) was defined by the World 
Health Organization (WHO) in 1970 as “a response to a 
drug that is noxious and unintended and occurs at doses 

normally used in man for the prophylaxis, diagnosis 
or therapy of disease, or for modification of physiologi-
cal function” [1]. ADRs are now classified into two basic 
categories: Type A (predictable) and Type B (idiosyn-
cratic) [2–5]. Predictable ADR events are directly caused 
by drugs’ polypharmacology and typically show a dose-
dependent relationship; however, idiosyncratic ADRs 
are not dependent upon drug pharmacology and/or dose 
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[2–5]. Idiosyncratic ADRs can be further divided into 
immune-mediated or non-immune mediated (metabolic 
idiosyncrasy) [4].

Immune-mediated ADRs are rarely observed dur-
ing clinical trials and are extremely challenging to fore-
cast. Little is known about the exact mechanisms of 
actions initiating and propagating such type of ADRs. 
Importantly, advances in the field of pharmacogenom-
ics have greatly increased our ability to prevent ADR 
events by determining patients’ genetic markers [6, 7]. 
There are indeed several genetic markers associated with 
a drug’s ability to cause ADR events: for instance, drug 
metabolizing proteins (cytochrome P450, CYP, glucose-
6-phosphate dehydrogenase, G6PD, nucleoside diphos-
phate linked moiety X-type motif 15, NUDT15), drug 
transporter proteins (ATP-binding cassette, ABC, solute 
carrier organic anion transporter family, SLCO1B1) or 
antigen-presenting cells, APC (human leukocyte anti-
gen, HLA) [7]. Recently, significant associations between 
human leukocyte antigen (HLA) proteins and idiosyn-
cratic ADRs have been identified [4–10].

Interestingly, HLA-mediated ADR events are less 
understood due to a variety of reasons. First, according 
to the IMGT/HLA database (http://www.ebi.ac.uk/ipd/
imgt/hla/), there are over 16,000 variants of HLA that 
have been reported so far [11]. Second, those variants 
occur at different frequencies in the general population. 
For example, a study conducted by Cao et al. [12] deter-
mined that the HLA-B*15:02 variant was only found in 
0.2% of African-Americans and 4.9% of Asian patients, 
whereas it was unobserved in Caucasians, Hispanics, and 
North American Natives. Meanwhile, when Cao et  al. 
studied the HLA-A*31:01 variant, they found that this 
variant occurred in 0.8% of African-Americans, 3.1% of 
Asians, 3.2% of Caucasians, 4.9% of Hispanics, and up to 
7.8% of North American Natives who participated in the 
study [12]. The changing frequency of HLA alleles in the 
general population results in a third challenging obser-
vation: binding promiscuity between HLA variants and 
drugs. For example, Chung et al. identified a correlation 
between carbamazepine and the HLA-B*15:02 variant in 
a population of Han-Chinese patients who were suffer-
ing from Steven–Johnson Syndrome (SJS), an ADR event 
causing serious skin rashes [13]. Recently, Genin et  al. 
identified another correlation between carbamazepine 
and the HLA-A*31:01 variant in Norther Europeans who 
were suffering from SJS as well [14]. Binding promiscuity 
is not only observed in drugs binding multiple HLA-var-
iants, but also in HLA-variants binding multiple drugs. 
Perhaps the most well-known example to date is HLA-
B*57:01, which has been identified to bind with three 
drugs: abacavir which can cause the abacavir hypersensi-
tivity syndrome (AHS), and flucloxacillin and pazopanib, 

which both cause drug induced liver injury (DILI) [8, 9, 
15–18]. There may also be a third type of binding prom-
iscuity in HLA-complexes: peptide binding promiscuity. 
To date, there are 17 crystal structure depositories of the 
HLA-B*57:01 variant in the PDB with four crystal struc-
tures containing abacavir and a unique co-binding pep-
tide (PDB: 3VRI, 3VRJ, 3UPR, and 5U98), there are seven 
crystal structures of HLA-B*57:01 with a co-binding 
peptide (PDB: 2RFX, 3X11, 3X12, 5T5M, 5T6W, 5T6X, 
and 5T6Y), and six crystal structures of HLA-B*57:01 
with co-binding peptide complexed to a T cell (PDB: 
3WUW, 3VH8, 5B38, 5B39, 5T70, and 5T6Z [15, 16, 
19–26]. Notably, of these 17 crystal structures there are 
nine unique co-binding peptides indicating that when 
studying HLA-complexes one needs to consider HLA-, 
drug-, and peptide-binding promiscuity. Other examples 
of HLA-drug associations include the drug allopurinol 
which has been reported to cause SJS in patients with the 
HLA-B*58:01 variant [27, 28]. Furthermore, HLA-bound 
drugs are believed to occur through three different mech-
anisms via an altered repertoire complex, a pharmaco-
logical interaction (p.i.) complex, or a hapten complex 
[5, 29, 30]. Clearly, due to the high number of HLA vari-
ants, their population-specific frequency, drug promiscu-
ity towards HLA binding (or vice versa), and numerous 
binding mechanisms the prediction of HLA-induced 
ADR events represents a serious challenge.

In such context, the use of in silico modeling and 
screening techniques can provide great insight and guid-
ance, especially when it comes to (1) identifying poten-
tial HLA binders among very large libraries of chemicals, 
(2) prioritizing those predicted top binders for experi-
mental confirmation, and (3) understanding the molecu-
lar interactions those chemicals can form once docked 
in the HLA antigen-presenting pocket. Two research 
groups recently utilized such in silico techniques by 
employing 3D molecular docking to study the binding 
mode abacavir with HLA-B*57:01 and carbamazepine 
with HLA-B*15:02. Notably, Ostrov et al. [16] confirmed 
abacavir’s binding mode with HLA-B*57:01 via X-ray 
crystallization (PDB: 3UPR); contrarily, Illing et  al. [15] 
used two X-ray crystals of abacavir and HLA-B*57:01 
(PDB: 3VRI, 3VRJ) to test a postermolecular docking’s 
reliability prior to docking the interaction between car-
bamazepine and HLA-B*15:02. However, in the absence 
of extensive experimental structural data, computational 
tools can still provide great insights. For example, the 
binding interactions of HLA-B*58:01 with allopurinol, 
HLA-A*31:01 and HLA-B*15:02 with carbamazepine, 
HLA-B*14:02 with nevirapine, HLA-DRB1*07:01 with 
ximelagatran, and HLA-B*53:01 with raltegravir have all 
been studied through a combination of homology mod-
eling and 3D molecular docking [31–38].

http://www.ebi.ac.uk/ipd/imgt/hla/
http://www.ebi.ac.uk/ipd/imgt/hla/
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Specifically, the study by Wei et al. [33] resulted in the 
development of a homology model of the HLA-B*15:02 
variant that was later used by Zhou et al. [34] to elucidate 
a possible pharmacological interaction (p. i.) complex 
binding mode of carbamazepine with the HLA-B*15:02 
variant. Additionally, Zhou et  al. were able to conduct 
molecular dynamic simulations (MDS) of the HLA-
B*15:02-carbamazepine-T-cell signaling pathway [34]. A 
p. i. complex HLA signaling pathway occurs when a drug, 
or antigen, binds to the solvent exposed surface of the 
co-binding peptide [5, 30]; naturally, these types of inter-
actions are relatively weak explaining why obtaining the 
crystal structure of such systems is extremely difficult.

The X-ray structures solved by Ostrov et al. [16] (PDB: 
3UPR) and Illing et  al. [15] (PDB: 3VRI and 3VRJ) pro-
vided the research community with a fully solved bind-
ing mode for abacavir in complex with HLA-B*57:01. 
These crystals also revealed that abacavir binds in an 
altered repertoire mechanism. Such altered repertoire 
binding mechanisms occur when the drug slightly dis-
places the co-binding peptide by binding with the HLA 
peptide binding pocket [5, 30]. Using these three crys-
tals, modelers started developing computational models 
regarding such an altered repertoire binding mode. In 
2015, Ho et al. [39] conducted a molecular docking study 
where they identified that flucloxacillin metabolites may 
also bind via an altered repertoire mechanism using the 
3UPR X-ray crystal structure. Interestingly, flucloxacil-
lin has also been proposed to bind via a hapten complex, 
through the formation of a covalent bond with either the 
co-binding peptide or HLA-B*57:01, as the presence of 
lysine residues have been shown to form covalent bonds 
with β-lactam chemical structures [40]. Another study by 
Yang et al. [41] cross-docked abacavir with HLA-B*57:01 
and several other HLA-variants to determine abacavir’s 
ability to bind multiple variants. Unfortunately, these 
docking studies were performed without a co-binding 
peptide, even though the peptides have an impact on 
the binding conformation of abacavir. Recently, Metushi 
et  al. [42] conducted a full in silico to in  vitro screen-
ing of the ZINC database searching for activity at the 
HLA-B*57:01 variant. The authors used a combination 
of ligand-based screening and structure-based molecu-
lar docking to identify several compounds, with acyclo-
vir predicted as most active, for experimental assays [42]. 
However, using a T-cell response based assay [43], it was 
determined that their predicted molecules were inactive 
towards HLA-B*57:01.

In the absence of extensive HLA-related chemog-
enomics data in the public domain, the development 
of virtual screening models that can accurately fore-
cast drug-HLA interactions is extremely difficult. As we 
noted in our proof-of-concept study [44], there appears to 

be an inconsistent application of the molecular docking 
methodology when studying HLA systems. Indeed, the 
literature tends to be rather scarce regarding the pre-pro-
cessing of HLA protein variants prior to modeling as well 
as which considerations (if any) were made with regards 
to the co-binding peptide and its ability to stabilize the 
bound drug. Even a recent study by Urban et  al. [45] 
underlined the importance of taking into consideration 
the co-binding peptide in their analysis of HLA-B*35:02 
and minocycline. Undoubtedly, the modeling of HLA-
drug interactions is still in its infancy and the develop-
ment of more insightful and predictive models is needed 
[46].

In our recent study [44], we explored the complex 
intermolecular interactions between the binding pocket 
of HLA-B*57:01, the co-binding drug abacavir, and three 
co-binding peptides from the three available X-ray crys-
tals (PDB: 3VRI, 3VRJ, 3UPR) by Illing et  al. [15] and 
Ostrov et  al. [16]. After conducting structural align-
ments of the individual components of our system (HLA-
B*57:01 peptide binding pocket, bound abacavir, and 
co-binding peptide), we concluded that the most signifi-
cant differences between binding pocket, abacavir, and 
peptide occurred from the peptide amino acid sequence 
[44]. Performing a peptide backbone alignment revealed 
that the 3D-structure of the peptide backbone was highly 
conserved [44]. We also conducted molecular dock-
ing using Glide from the Schrodinger Suite to self-dock 
abacavir with and without the three co-binding peptides 
P1 (PDB: 3VRI), P2 (PDB: 3VRJ), and P3 (PDB: 3UPR). 
Interestingly, we found that the co-binding peptide pro-
vided  ~  2  kcal/mol of stabilization as shown by their 
respective Docking Score (DS) and also proceeded to 
conserve the binding mode orientation of abacavir [44]. 
When docking was performed without co-binding pep-
tide, abacavir was observed in two stable binding modes, 
but when peptide was included in the docking procedure, 
there was only one stable binding mode remaining [44]. 
Next, we docked a small test set of predicted HLA-liable 
drugs including two HLA-B*57:01 actives: flucloxacil-
lin and pazopanib [17, 18]. Interestingly, our model was 
unable to identify either drug as active [44]. This result 
was believed to occur from three possible reasons: (1) 
our model was built using X-ray crystals of abacavir in an 
altered repertoire binding mode causing our models to 
be biased towards drugs that have a highly similar bind-
ing orientation as abacavir (i.e., abacavir-specific), (2) our 
test set of compounds did not contain the HLA-liable 
metabolites of flucloxacillin or pazopanib, and (3) the 
binding affinity of these compounds could be peptide-
specific [44].

Herein, using all these recent insights into mod-
eling drug-HLA interactions, this new study aims at 
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developing and testing an ensemble docking platform 
[44] to screen the entire DrugBank database for poten-
tially HLA-B*57:01 liable compounds that are currently 
unknown and/or untested. At the time of this study, the 
DrugBank database contained 7000 approved, with-
drawn, investigational, and experimental drug com-
pounds for download [47]. Due to limited experimental 
data for model validation, we developed and applied a 
three-tiered docking protocol to predict potential HLA-
B*57:01 liable compounds from DrugBank. First, docking 
was performed using peptide P1 (PDB: 3VRI) to identify 
all the P1 active compounds, then the P1 actives were 
screened against peptide P2 (PDB: 3VRJ), and finally, the 
P1 and P2 actives were screened against peptide P3 (PDB: 
3UPR). Using this novel screening protocol, we identi-
fied several potentially HLA-B*57:01 liable compounds 
that have a highly similar binding mode with abacavir 
and shared activity for three co-binding peptides; thus, 
increasing the probability of our model to identify true 
HLA-B*57:01 binders. Overall, this novel virtual screen-
ing approach resembles a ‘consensus-like’ modeling 
workflow which has proven to be highly successful, as 
demonstrated by Ban et  al. in the development of new 
androgen receptor inhibitors [48]. The development of 
reliable and inexpensive in silico models for the predic-
tion of HLA-mediated ADRs is key for patient safety and 
the advancement of Precision Medicine. This new study 
attempts to demonstrate the usefulness of a novel molec-
ular docking workflow for identifying HLA-B*57:01 liable 
compounds from the whole DrugBank database.

Methods
Preprocessing of the DrugBank database
The compounds we used for our virtual screening tar-
geting the HLA-B*57:01 variant were extracted from the 
DrugBank database (https://www.drugbank.ca/). Drug-
Bank is a readily available online database that to-date 
contains well over 8000 entries including FDA approved 
small molecule drugs, FDA approved biotech (protein/
peptide) drugs, withdrawn drugs, and experimental 
drugs [47]. At the time of our study, there were only 7097 
compounds available for download. When performing 
any virtual screening analysis on such a large dataset, it is 
essential to ensure that the structural data has been thor-
oughly curated to avoid erroneous predictions [49–51]. 
After downloading the DrugBank database, we used the 
Knime Analytics Platform [52] to conduct data curation 
using the RDKit Normalization node [53]. The RDKit 
normalization node verifies the chemical correctness of 
imported structures by removing bad molecules, iden-
tifying fragments, removing unclear bond assignments, 
identifying erroneous and ambiguous stereo assignments 
and identifying atom clashes [53]. After normalization 

of the DrugBank database, we used ISIDA Duplicates to 
identify and remove duplicate compounds from the file 
[54]. This curated file was then further pre-processed 
using LigPrep from the Schrodinger Suite to generate the 
3D coordinates of all the curated compounds in addition 
to exact protonation and tautomeric states at biological 
relevant pH (pH = 7 ± 2) [55, 56].

Virtual screening of DrugBank by 3D molecular docking
In our previous study [44], we conducted an in-depth 
analysis of the capabilities of structure-based molecu-
lar docking as a reliable prediction tool for detecting 
HLA-B*57:01 liable compounds. Herein, using the three 
curated protein structures (PDB: 3VRI, 3VRJ, and 3UPR) 
[15, 16], we integrated and applied our models into one 
consensus docking protocol towards the screening of the 
whole DrugBank database. Briefly, the protein structures 
were curated using the Schrodinger Suite’s Protein Prep-
aration Wizard [55, 57] where missing side chains were 
generated using PRIME [58–60], tautomeric states gener-
ated with EPIK [61–63], and an overall energy minimi-
zation was performed with the OPLS3 force field [64]. 
Previously, we thoroughly investigated the binding envi-
ronment for each X-ray crystal 3VRI, 3VRJ, and 3UPR 
and discovered that the co-binding peptide had a signifi-
cant impact on a drug’s binding ability [44]. Furthermore, 
the co-binding peptides had very distinct amino acid 
sequences. The peptide from crystal 3VRI will be referred 
to as P1 (sequence: RVAQLEQVYI), the peptide from 
crystal 3VRJ will be referred to as P2 (LTTKLTNTNI), 
and the peptide from crystal 3UPR will be referred to as 
P3 (HSITYLLPV).

Our molecular docking platform for screening a drug’s 
ability to bind the HLA-B*57:01 variant was built upon 
our peptide-specific docking models using the three 
X-ray crystals 3VRI, 3VRJ, and 3UPR. The docking work-
flow is illustrated in Fig. 1. Molecular docking was con-
ducted using GLIDE from the Schrodinger Suite and 
compounds were scored using both SP and XP scoring 
functions [65–68]. This consensus docking was con-
ducted in the presence and absence of peptide using both 
SP and XP scoring functions [44]. Selected “active” com-
pounds were determined using empirical thresholds for 
their associated Docking Score (DS) and eModel Score 
(eM), where any active compound had a DS ≤ −7 kcal/
mol and an eM ≤ −50  kcal/mol [44, 69, 70]. The reli-
ability and variance for measured DS has been well-
documented by Friesner et  al. [68], but the variance for 
measured eM scores is unavailable because this param-
eter is strictly a theoretical measure of a ligand’s confor-
mational stability. Though eM was used to determine if 
a compound was active, this scoring threshold was not 
used for direct comparison between compounds. As 

https://www.drugbank.ca/
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shown in Fig. 1, tier 1 of our docking protocol consisted 
of docking compounds with crystal 3VRI and peptide P1; 
first, docking was conducted using the SP scoring func-
tion without peptide P1. Then after removing predicted 
non-binders (or inactives), docking of the remaining 
compounds was performed using the SP scoring function 
with peptide P1. Once more predicted non-binders were 
removed and the above procedure was repeated with 
the XP scoring function (XP – P1 and XP +  P1). Prior 
to any round of docking, it is important to underline that 
duplicate compounds were removed to avoid introducing 
a conformational bias into our model and the remaining 
compounds were re-optimized as described in “Preproc-
essing of the DrugBank database”. After the docking with 
X-ray crystal 3VRI was completed, the predicted bind-
ers (or active compounds) with peptide P1 were docked 
using the 3VRJ crystal in the presence and absence of 
peptide P2 (tier 2). The same approach used with 3VRI 
and P1 was used for docking with 3VRJ and P2. Finally, 
all the P1 and P2 predicted “active” drugs were docked 
with 3UPR and P3 (tier 3). This consensus docking pro-
tocol produced a refined dataset of drugs with predicted 
binding modes for peptides P1, P2, and P3 with DS and 
eM scores that matched all our docking thresholds for 
determining a compounds’ binding potency towards 
HLA-B*57:01.

Analysis of predicted DrugBank HLA‑B*57:01 liable 
compounds
After completing the consensus molecular docking using 
peptides P1, P2, and P3, the chemical space of predicted 
DrugBank HLA-B*57:01 liable compounds was explored. 
First, in order to understand the 2D-structural similarity 
of predicted actives with the known active abacavir, the 

MACCS fingerprints of all active compounds were com-
puted [71]. Then, the pairwise Tanimoto similarity score 
was computed using the MACCS 166-bit fingerprint 
(T2D) with abacavir as the reference compound [72]. The 
Tanimoto similarity score was computed using Eq. 1,

where Tc is the Tanimoto similarity, b represents the 
number of computed bits that are shared by both com-
pounds (bc), unique to molecule 1 (b1), and unique to 
molecule 2 (b2) [72].

However, because our docking workflow specifically 
identified compounds that were predicted to be HLA 
binders in presence of all three peptides P1, P2, and P3, 
we wanted to specifically examine and analyze the bind-
ing modes for those hit compounds. It has been reported 
that interaction fingerprints are appropriate to evaluate 
molecular docking performance due to their accurate 
representation of docking poses [73]. As such, the bind-
ing environment was analyzed by computing the 3D pro-
tein–ligand interaction fingerprints (TIF) between each 
drug and the amino acids of the antigen-binding pocket 
of HLA-B*57:01 [74, 75]. These fingerprints notably take 
into account H-bond donor and -acceptor interactions, 
π–π stacking, electrostatics, and hydrophobic interac-
tions [74, 75]. Next, hierarchical clustering was per-
formed, where the distance matrix between drugs was 
measured using the Jaccard Distance Matrix as imple-
mented in the R package vegan [76]. Then, the Ward 
Linkage [77] was used to measure the distance between 
groups as implemented in the R package gplots [78]. 
Finally, the binding modes of the hit compounds were 
inspected manually.

(1)Tc =
bc

b1 + b2 ∗ bc

Fig. 1  Schematic of virtual screening protocol used to molecular dock DrugBank
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Comparison to Metushi et al. model
The study by Metushi et  al. [42] identified seven com-
pounds from their in silico analysis that we prepared for 
docking using LigPrep and EPIK. These compounds were 
docked using SP and XP scoring functions with peptides 
P1, P2, and P3 for direct comparisons with our model. 
Additionally, a recently published X-ray crystal structure 
(PDB: 5U98) from Yerly et al. [19] has identified a fourth 
peptide, P4 (VTTDIQVKV), that can bind with HLA-
B*57:01 in the presence of abacavir. Notably, both pep-
tides P3 and P4 were incorporated into peptide binding 
affinity assays for HLA-B*57:01 in the presence of acyclo-
vir [42].

After docking all of the Metushi et  al. compounds in 
our model (and with peptide P4) we conducted molecu-
lar dynamic simulations to explore the stability of docked 
acyclovir with peptide P3. Additionally, molecular 
dynamic simulations were performed with abacavir and 
peptide P3 for a baseline comparison. Future molecular 
dynamic simulations with additional peptides and drug 
combinations are currently underway and will be dis-
cussed in a later publication. All molecular dynamic sim-
ulations were performed using Desmond as implemented 
in the Schrödinger Suite [79–81]. Systems were prepared 
in 10 × 10 × 10 Å buffered cubic box with a TIP3P sol-
vent model. NPT simulations at 300  K were then per-
formed with an OPLS3 force field [64, 81–83] for 20 ns 
with a recording interval of 1 ps for both trajectory and 
energy calculation. Prior to each simulation, Desmond’s 
default relaxation protocol was performed to equilibrate 
the system of interest [79–81]. Molecular dynamic tra-
jectories were then analyzed for protein, peptide, and 
ligand RMSDs and protein–ligand interactions using the 
Schrödinger suite.

Results and discussion
Data curation and molecular docking workflow
This study was conducted using >  7000 approved and 
experimental drugs available in the DrugBank database 
[47]. Due to the high impact that non-standardized struc-
tural data can have upon a model’s predictive reliability 
and overall reproducibility, our first task was to clean and 
standardize the DrugBank dataset [49–51] as described in 
the “Methods” section. This resulted in a curated dataset 
of exactly 6094 compounds that were used for molecular 
docking targeting the HLA-B*57:01 variant. After gener-
ating biologically relevant protonation (pH = 7 ± 2) and 
tautomeric states using LigPrep and EPIK [55, 56, 61, 62], 
we obtained a total of 20,097 initial poses for docking at 
the HLA-B*57:01 variant. Again, molecular docking was 
performed using our new three-tiered workflow (where 
each tier represents the X-ray crystals 3VRI, 3VRJ, and 
3UPR) relying on GLIDE and both SP and XP scoring 

functions from the Schrodinger Suite as described in 
“Virtual screening of DrugBank by 3D molecular dock-
ing” and shown in Fig.  1 [65–68]. Docked drugs were 
considered to be HLA-B*57:01 binders (or “active”) if the 
docked pose had a measured DS ≤ −7 kcal/mol and an 
eM ≤ −50 kcal/mol [44, 69, 70, 84].

First, molecular docking was performed using the 
3VRI crystal in the absence of P1 using the SP scoring 
function (SP − P1). Initially, out of the 20,097 drug con-
formations considered for docking, only 15,044 entries 
were successfully docked using SP  −  P1 parameters. 
After applying our active selection thresholds (DS ≤ −7 
and eM ≤ −50 kcal/mol), there were only 2931 confor-
mations that remained. Next, duplicates were removed 
from the data set which resulted in 2072 unique hit com-
pounds under the SP −  P1 condition (see Fig.  2). Once 
duplicates were removed, the SP − P1 active compounds 
were once more subjected to LigPrep and EPIK optimiza-
tion before being used in the SP + P1 round of docking. 
The removal of duplicates after each round of docking 
was performed to avoid docking of duplicate conforma-
tions. One assumption we wanted to avoid in our dock-
ing protocol was that the same conformation of a drug 
would be the same ‘active’ conformation in the presence 
of peptides P1, P2, or P3. Our previous study had shown 
that some drugs (e.g., pazopanib) would adopt different 
binding conformations in the presence or absence of a 
co-binding peptide [44]. Attempting to avoid this bias 
also required repetitive rounds of LigPrep and EPIK opti-
mization steps to ensure that selected active compounds 

Fig. 2  Screening of docked compounds to identify actives 
(DS ≤ −7 kcal/mol and eM ≤ −50 kcal/mol). Data shown is from 
SP − P1 round of docking for 15,044 binding conformations



Page 7 of 24Van Den Driessche and Fourches ﻿J Cheminform  (2018) 10:3 

comprised all their relevant tautomeric and conforma-
tion states prior to the next step of docking.

Our docking protocol from tier 1 using crystal 3VRI 
and peptide P1, as shown in Fig. 1, identified 619 HLA-
B*57:01 liable compounds using both SP and XP scoring 
functions when peptide P1 is the specific co-binding pep-
tide. The second round of docking was performed using 
crystal 3VRJ which contained the co-binding peptide 
P2. Following the same sequential docking procedure 
(SP − P2, SP + P2, XP − P2, and XP + P2), we identified 
75 drugs that passed our thresholds for both co-binding 
peptides P1 and P2 (Fig. 1). The final stage of our consen-
sus molecular docking used these 75 P1/P2 active drugs 
and docked them using crystal 3UPR with co-binding 
peptide P3 (SP − P3, SP + P3, XP − P3, and XP + P3, see 
Fig. 1). This last round of docking ultimately identified a 
rather small set of 22 approved, experimental or investi-
gational drugs from DrugBank that passed all our dock-
ing thresholds in the presence and absence of peptides 
P1, P2, and P3.

The ideal docking study would have conducted com-
plete and independent full screens of all DrugBank 
compounds towards all three crystals 3VRI, 3VRJ, and 
3UPR without any removal of compounds until all dock-
ing scenarios would have been completed. However, 
this approach was determined to be computationally 
expensive (especially with the XP scoring function) and 
is believed to have resulted in a very similar outcome as 
our consensus docking protocol was reasonably strict 
(if only predicted active drugs at all three peptides were 
selected). Furthermore, only drugs that were forecasted 
as binders in the presence of all three peptides would be 
considered as ‘active’ because these compounds would 
most closely resemble the binding mode of abacavir in 
HLA-B*57:01 and our model’s applicability domain (still 
being abacavir-specific) [44].

Analysis of 22 predicted HLA‑B*57:01 liable DrugBank 
compounds
Twenty-two potential HLA-B*57:01 binders were iden-
tified using the molecular docking protocol. First, we 
plotted the Docking Scores (DS) of these compounds 
and analyzed their variations based on the type of co-
binding peptides. The Pearson correlation coefficients 
[85] between all Docking Scores are given in Fig.  3; a 
similar analysis was also done for eM scores (see Addi-
tional file  1: Figure  1). Interestingly, when either the SP 
or XP scoring function was used with peptide P1, there 
was a reasonable correlation (R  >  0.65) when the same 
scoring functions were used with peptides P2 or P3; how-
ever, when the SP scoring function was used for peptides 
P2 and P3, the observed Pearson correlation was greater 
than 0.8. For example, the Pearson correlation coefficient 

was approximately zero between XP + P1 and XP + P2 
DS results and was 0.4 when measured between the 
XP +  P1 and XP +  P3 results (Fig.  3). The best corre-
lation was observed between the SP + P2 and SP + P3 
DS results with a measured Pearson coefficient of 0.8 
(Fig. 3). There was a high degree of observed correlations 
between docking conditions for measured eM scores 
(Additional file 1: Figure 1).

The DrugBank database includes chemicals classified 
under various categories [47]: approved, investigational, 
illicit, and experimental. The docking platform identi-
fied 22 active compounds with two drugs being fully 
approved (Roflumilast and Ramosetron), two drugs that 
were flagged as approved and investigational (Clofarabine 
and Nelarabine), one drug that was flagged as approved, 
investigational, and illicit (Zaleplon), two drugs that were 
solely investigational (Isatoribine and Tecadenson), and 
15 drugs that are considered experimental. Table 1 pro-
vides information regarding those 22 hit drugs from our 
screening sorted by their DrugBank IDs along with their 
generic and/or IUPAC name and T2D similarity coeffi-
cient towards abacavir.

Overall, our screening protocol interestingly identified 
potential HLA-B*57:01 compounds with a low degree 
of similarity with abacavir. To examine this structural 
dissimilarity, we built a similarity matrix based on com-
pounds’ MACCS keys and using abacavir as the active 
reference probe (Table 1). When the pairwise Tanimoto 
similarity score (the closer to 1, the most similar) was cal-
culated between abacavir and all the 22 hits, we observed 
the resulting 2D similarity coefficients ranging from 0.18 

Fig. 3  Pearson correlation matrix between active compounds from 
molecular docking filters (Plot generated using R with CorrPlot 
(ellipse method))
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to 0.62. The least similar compound was DB02984, an 
experimental drug; whereas the most similar compound 
was DB00631 (clofarabine), an approved anti-cancer 
agent.

Next, the DS and eM distributions of the 22 predicted 
drugs were analyzed for peptides P1, P2, and P3. These 
distributions using the XP  +  Pn condition, where n is 
equal to 1, 2, or 3 respective to the co-binding peptide, 
are provided in Fig. 4. Interestingly, there are four drugs 
affording DS between −  9 and −  7  kcal/mol, 12 drugs 
with DS between −  10 and −  9  kcal/mol, five drugs 
with DS between − 11 and − 10 kcal/mol, and only one 
drug reaching a DS between −  12 and −  11  kcal/mol 
(DB08485) as shown in Fig. 4a. The eM distributions were 
more conserved as 10 of the drugs had eM values rang-
ing from − 60 to − 50 kcal/mol, only 9 drugs were found 
in the range of −  70 to −  60 kcal/mol, and three drugs 
had eM scores within the range of −  80 to −  70  kcal/
mol (Fig. 4b). When P2 was employed for docking, half 
of the drugs (11 out of 22) were observed with a DS rang-
ing from − 9 to − 7 kcal/mol, six drugs had DS between 
−  10 and −  9  kcal/mol, three drugs had DS between 
−  11 and −  10  kcal/mol, and two drugs (DB04954 and 
DB07151) had DS between −  12 and −  11  kcal/mol 
(Fig. 4c). Twelve drugs afforded eM scores ranging from 

−  60 to −  50  kcal/mol, six drugs were observed with 
eM scores between − 70 and − 60 kcal/mol, three drugs 
with eM scores between −  80 and −  70  kcal/mol, and 
one drug (DB01048) with an eM score between −  90 
and −  80 kcal/mol (Fig. 4d). These distributions resem-
ble those observed for peptide P1, even though there 
are slightly less compounds affording the lowest DS 
and eM scores. Interestingly, the distributions were sig-
nificantly altered when docking with peptide P3. There 
were six drugs with DS between − 9 and − 7 kcal/mol, 
seven drugs with DS between −  10 and −  9  kcal/mol, 
six drugs with DS between − 11 and − 10 kcal/mol, and 
three drugs (DB04860, DB07151, and DB08485) with DS 
between −  12 and −  11  kcal/mol (Fig.  4e). There were 
18 drugs with a measured eM score between −  70 and 
− 50 kcal/mol, three drugs with eM scores between − 80 
and − 70 kcal/mol, and one drug (DB01048) with an eM 
score between − 100 and − 90 (Fig. 4g). All XP + Pn DS 
values are provided in Table  2 and DS and eM scores 
under all conditions are available in Additional file  1: 
Tables 1 and 2, respectively.

Table 1  Twenty-two predicted HLA-B*57:01 drugs from DrugBank (with abacavir, DB01048) and measured T2D Similarity 
scores using abacavir as the reference compound

DATABASE_ID GENERIC_NAME Class T2D

DB00631 Clofarabine Approved; investigational 0.62

DB00962 Zaleplon Approved; illicit; investigational 0.49

DB01048 Abacavir Approved; investigational 1.00

DB01280 Nelarabine Approved; investigational 0.61

DB01656 Roflumilast Approved 0.35

DB09290 Ramosetron Approved 0.48

DB04860 Isatoribine Investigational 0.55

DB04954 Tecadenoson Investigational 0.61

DB01959 3,5-Dimethyl-1-(3-nitrophenyl)-1h-pyrazole-4-carboxylic acid ethyl ester Experimental 0.36

DB02096 FR221647 Experimental 0.60

DB02407 6-O-cyclohexylmethyl guanine Experimental 0.58

DB02502 8-hydroxy-2′-deoxyguanosine Experimental 0.60

DB02984 4-[3-Methylsulfanylanilino]-6,7-dimethoxyquinazoline Experimental 0.35

DB03365 4-[3-Hydroxyanilino]-6,7-dimethoxyquinazoline Experimental 0.42

DB03749 4-(1h-imidazol-4-yl)-3-(5-ethyl-2,4-dihydroxy-phenyl)-1h-pyrazole Experimental 0.40

DB03807 1-(2-Chlorophenyl)-3,5-dimethyl-1h-pyrazole-4-carboxylic acid ethyl ester Experimental 0.40

DB04518 3-[4-(2,4-Dimethyl-thiazol-5-yl)-pyrimidin-2-ylamino]-phenol Experimental 0.46

DB04769 5-Quinoxalin-6-ylmethylene-thiazolidine-2,4-dione Experimental 0.35

DB07051 3,5-Dimethyl-1-phenyl-1H-pyrazole-4-carboxylic acid ethyl ester Experimental 0.43

DB07151 4-(4-Hydroxy-3-methylphenyl)-6-phenylpyrimidin-2(5H)-one Experimental 0.32

DB08048 4-(6-Hydroxy-1H-indazol-3-yl)benzene-1,3-diol Experimental 0.37

DB08485 (1S,4S,5S)-1,4,5-trihydroxy-3-[3-(phenylthio) phenyl]cyclohex-2-ene-1-carboxylic acid Experimental 0.19



Page 9 of 24Van Den Driessche and Fourches ﻿J Cheminform  (2018) 10:3 

Hierarchical clustering of the top‑22 predicted 
HLA‑B*57:01 liable DrugBank compounds
After docking was completed, the binding modes of the 
22 predicted HLA-B*57:01 liable DrugBank compounds 
were analyzed using interaction fingerprints due to 
their accurate representation of docking poses [73]. The 
respective binding modes of proposed active drugs were 
analyzed using 3D protein–ligand interaction finger-
prints, which map out the intermolecular interactions 
between the ligand and protein binding pocket [74, 75]. 
This type of fingerprint can be further used to generate 
an interaction fingerprint Tanimoto (TIF) similarity coef-
ficient by comparing the interaction fingerprints of the 22 

predicted active drugs versus that of the native binding 
mode of abacavir.

Once the interaction fingerprints were generated for 
all 22 predicted HLA-B*57:01 compounds, we con-
ducted a hierarchical clustering using those fingerprints 
as input descriptors; distances between compounds 
were measured with a Jaccard distance index as imple-
mented by the vegan package in R [76] and distances 
between clusters were measured using a Ward linkage 
as implemented by the gplots package in R [77, 78]. The 
hierarchical clustering results using the binding modes 
from XP  +  P1 docking are provided in Fig.  5. There 
were six observed clusters of compounds on the den-
drogram. Cluster 1 contained two compounds (DB03807 
and DB07051), Cluster 2 consisted of six compounds 
(DB04954, DB003365, DB04769, DB02984, DB01959, and 
DB07151), Cluster 3 had two compounds (DB08048 and 
DB00631), Cluster 4 also had two compounds (DB02502 
and DB03749), Cluster 5 included four DrugBank com-
pounds and native abacavir (native abacavir, DB01048, 
DB02407, DB04860, and DB01280), and Cluster 6 had six 
compounds (DB041518, DB01656, DB09290, DB02096, 
and DB00962).

Fig. 4  DS and eM distributions for the 22 active compounds using 
the XP + Pn condition (where n is equal to 1, 2, or 3 depending on 
the peptide utilized in docking). a Distribution of XP + P1 DS, b distri-
bution of XP + P1 eM scores, c distribution of XP + P2 DS, d distribu-
tion of XP + P2 eM scores, e distribution of XP + P3 DS, f distribution 
of XP + P3 eM scores

Table 2  Docking Scores (DS) of 22 active compounds iden-
tified from screening of DrugBank

The top-5 binders for each docking condition (XP + P1, XP + P2, and XP + P3) 
are in italics

DRUGBANK ID DS XP + P1 DS XP + P2 DS XP + P3

DB00631 − 8.06 − 8.61 − 7.98

DB00962 − 9.46 − 8.02 − 9.14

DB01048 − 9.60 − 9.20 − 10.06

DB01280 − 9.29 − 8.86 − 10.18

DB01656 − 9.79 − 9.74 − 9.45

DB09290 − 10.20 − 8.44 − 8.84

DB04860 − 9.42 − 10.47 − 11.22

DB04954 − 9.65 − 11.05 − 10.54

DB01959 − 9.02 − 8.62 − 9.14

DB02096 − 9.90 − 9.21 − 9.10

DB02407 − 9.20 − 7.36 − 7.79

DB02502 − 9.81 − 8.99 − 10.29

DB02984 − 10.60 − 8.26 − 8.20

DB03365 − 9.81 − 10.00 − 10.17

DB03749 − 8.61 − 9.01 − 8.87

DB03807 − 10.52 − 8.53 − 9.73

DB04518 − 10.40 − 9.32 − 9.63

DB04769 − 8.87 − 10.10 − 10.22

DB07051 − 9.69 − 9.23 − 9.28

DB07151 − 10.58 − 11.04 − 11.25

DB08048 − 7.75 − 8.32 − 8.79

DB08485 − 11.25 − 7.57 − 11.51
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Interestingly, there were four DrugBank compounds 
clustered with native Abacavir in Cluster 5 (DB01048, 
DB02407, DB04860, and DB01280). DB01048 is the 
actual DrugBank ID for abacavir. This indicates that 
from a database of 7000 compounds, our docking plat-
form could successfully re-identify this drug as HLA-
B*57:01 binder. However, TIF between the two binding 
modes is not exactly 1.0 because the hydroxyl group of 
abacavir from DrugBank is not H-bonding with TYR74 
(like the actual native abacavir); furthermore, the meas-
ured RMSD between native abacavir and DB01048 is 
1.11 Å, which occurs due to differing orientations of the 
cyclo-pent-2-en-yl-methanol functional groups. This 
conformational difference is a result of the flexible bind-
ing mode of abacavir. Previously, we reported that the 
hydroxyl group could H-bond with the ALA3 backbone 

of peptide P1 [44]. Clearly, molecular dynamic simula-
tions are needed to further investigate the preferred 
binding orientation of the hydroxyl group of abacavir. 
The closest cluster to Cluster 5 was Cluster 6, which 
contained six compounds that had TIF ranging from 0.5 
to 0.7; the furthest cluster from Cluster 5 was Cluster 1, 
which contained two compounds with TIF less than 0.5 
(Fig.  5). Notably, Clusters 1–4 had low measured TIF 
values when compared to the binding mode of native 
abacavir.

Unexpectedly, when hierarchical clustering was con-
ducted using the interaction fingerprints from peptides 
P2 and P3, the same drugs were not clustered together 
(Additional file 1: Figures 2 and 3). Clustering with pep-
tide P2 revealed that only abacavir and DB01048 (Drug-
Bank abacavir) were clustered together (Additional file 1: 

Fig. 5  Drug binding mode fingerprint similarity matrix clustered using the Ward algorithm. Red indicates a low tanimoto similarity (0–0.3), yellow 
indicates moderate tanimoto similarity (0.3–0.7), and green indicates high tanimoto similarity (0.7–1.0)
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Figure  2); P3 clustering resulted in the drugs DB00962, 
DB04954, and DB01048 all clustering with abacavir 
(Additional file  1: Figure  3). Clearly, these results dem-
onstrated again that the co-binding peptide is extremely 
important in a drug’s ability to bind with HLA-B*57:01. 
The binding modes of the clustered drugs from XP + P1 
screening were then selected for further analysis and 
comparison with the XP +  P2 and XP +  P3 screening 
results.

The compounds from Cluster 5 (abacavir (native), 
DB01048, DB01280, DB02407, and DB04860) were 
superimposed (Fig.  6a) in the binding pocket of HLA-
B*57:01 and their respective protein–ligand interac-
tions were analyzed (Fig.  6b–e). The same set of drugs 
was superimposed in the HLA-B*57:01 binding pocket 
from XP + P2 (Additional file 1: Figure 4A) and XP + P3 
(Additional file 1: Figure 5A) screening. Additionally, the 
binding modes of these same drugs were analyzed with 
peptides P2 and P3 (Additional file  1: Figures  4B-E and 
5B-E), respectively.

The 3D superimposition revealed that these top drugs 
occupy similar binding domains as abacavir in the HLA-
B*57:01 binding pocket. Interestingly, the three top per-
forming drugs share a significant number of structural 
similarities with native bound abacavir from X-ray crys-
tal 3VRI. Notably, two of the clustered drugs (DB01280 
and DB02407) share the same purine scaffold as abacavir 
with key substitutions occurring at the six and nine posi-
tions of the purine ring. The six position of abacavir has 
a cyclopropylamino functional group, while the nine 
position has a cyclopent-2-en-yl-methanol functional 
group. These differing functional groups have a signifi-
cant impact upon the observed binding modes of each 
drug in the pocket. For example, the methanol substitu-
ent of abacavir provides H-bonding with TYR74, while 
the purine scaffolding provides several H-bonds with 
ASH114 (neutral ASP), SER116, and ILE124; additionally, 
the purine scaffold provides stabilization via π–π stack-
ing with TRP147 (Fig.  6b). These same AA interactions 
are observed in the binding modes of native abacavir 
with P2 (PDB: 3VRJ) and P3 (PDB: 3UPR), respectively 
(Additional file 1: Figures 4B and 5B).

Compound DB01280 (nelarabine) shares the same 
AA interactions as abacavir, but has key substitutions 
at the six and nine positions of the purine scaffold, see 
Fig. 6c. DB01280 (nelarabine) has a methoxy functional 
group at the six position and an alcohol functional-
ized tetrahydrofuran ring (ribose) at the nine position. 
The computed DS for DB01280 (nelarabine) was as low 
as −  9.3  kcal/mol, while the computed eM score was 
−  59.2  kcal/mol indicating that DB01280 could be pre-
dicted to be an HLA-B*57:01 liable compound (Table 2). 
The binding mode of DB01280 with peptide P2 is similar, 

but is missing two key H-bonds with ILE124 and TYR74. 
However, a hydroxyl group from the ribose ring does 
form an H-bond with the LEU5 peptide backbone of P2 
(Additional file  1: Figure  4C). This results in a slightly 
worst DS of −  8.9  kcal/mol, but an extremely favorable 
eM of − 75.0 kcal/mol. When DB01280 (nelarabine) was 
docked with P3, the DS was extremely favorable too with 
a value as low as − 10.2 and eM of − 62.0 kcal/mol. This 
increased stability most likely results from additional 
H-bonding of the ribose ring (Additional file  1: Fig-
ure  5C). DB01280’s (nelarabine) ribose ring is observed 
to H-bond with LEU5 of P3, but also has H-bonding with 
TYR74 occurring with the O-heteroatom of the tetrahy-
drofuran scaffolding. Interestingly, Cohen et al. reported 
in 2008 the observance of grade 3 and 4 ADR events 
resulting in hematologic and neutrophil toxicity during 
a clinical trial [86]. As DB01280 is a chemotherapy drug 
used in the treatment of acute T-cell lymphoblastic leu-
kemia, it is likely that this drug’s ADRs are mainly due to 
its overall cytotoxicity and any association with HLA is 
unclear at this point.

The experimental drug, DB02407, also has a purine 
scaffolding like abacavir, but has significant functional 
group deviations at the six and nine positions. The six 
position contains a cyclohexylmethoxy functional group 
which is sterically much larger than abacavir’s cyclopro-
pylamino substituent. Additionally, the nine position of 
DB02407 is protonated which prevents it from reach-
ing the TYR74 residue; however, the ligand–protein AA 
interactions surrounding the purine scaffold are con-
served between abacavir and DB02407, see Fig. 6d. Even 
with the missing H-bond, the measured DS and eM 
scores were extremely favorable for DB02407, − 9.2 and 
−  66.5  kcal/mol, respectively (Table  2). However, when 
docking was performed using P2 or P3, the computed DS 
were less favorable (though still passing our threshold) 
at − 7.4 and − 7.8 kcal/mol for P2 and P3, respectively. 
Interestingly, the AA interactions between abacavir and 
DB02407 are conserved surrounding the purine scaffold 
for both P2 and P3 (Additional file 1: Figures 4D and 5D). 
However, the decrease in DS most likely results from the 
increased steric hindrance from the cyclohexylmethoxy 
substituent. DB02407 is currently an experimental drug 
and there is no additional indication provided by Drug-
Bank; as such, no ADR reports are available for this drug.

The last drug identified as a top performer from the 
(XP + P1) clustering results was the compound DB04860 
(isatoribine). Instead of a purine scaffolding, DB04860 
(isatoribine) has an oxoguanine scaffold where the seven 
position N-heteroatom is a S-heteroatom. A key differ-
ence between a purine scaffold and an oxoguanine scaf-
fold is that the six and eight position carbons are fully 
oxidized carbonyl groups. Additionally, the nine position 
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Fig. 6  Three compounds determined most likely to be active from Ward clustering using interaction fingerprint (DB01280, DB02407, and DB04860). 
a Superimposition of clustered drugs, abacavir (red), DB01048 (abacavir from DrugBank, orange), DB01280 (purple), DB02407 (green), and DB04860 
(blue). Binding modes of b native abacavir (PDB: 3VRI), c DB01280, d DB02407, and e DB04860 with the measured DS and eM scores from XP + P1 
docking. The binding mode of DB01048 is not shown
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has an alcohol substituted tetrahydrofuran ring (or 
ribose) like DB01280 (nelarabine). Interestingly, when 
docking with P1, H-bonds are conserved with ASH114, 
ILE124, and TYR74, but the H-bond with SER116 is lost 
due to protonation of the five position N-atom. Addition-
ally, the π–π stacking that was observed with purine scaf-
folds and TRP147 is no longer present (Fig. 6e). Notably, 
the loss of π–π stacking does not appear to significantly 
impact the binding mode stability as the measured XP 
DS and eM scores were still extremely favorable when 
docking with P1 at −  9.4 and −  55.0  kcal/mol, respec-
tively (Table 2). Interestingly, when docking with P2 or P3 
was performed, the H-bond with ILE124 was no longer 
observed, but H-bonding was observed between hydroxyl 
groups of the ribose ring and LEU5 of P2 and TYR5 of 
P3. Additionally, the O-heteroatom of the tetrahydro-
furan substructure of the ribose ring was observed to 
H-bond with TYR74 when docking with P3 (Additional 
file 1: Figures 4E and 5E). Overall, DB04860 (isatoribine) 
afforded extremely favorable XP docking results with 
HLA-B*57:01 when docked with P2 (DS: −  10.5  kcal/
mol, eM: − 64.6 kcal/mol) and P3 (DS: − 11.2 kcal/mol, 
eM: −  53.2  kcal/mol). The drug, DB04860, is an inves-
tigational drug used in the treatment of hepatitis C, but 
was discontinued during clinical trials in 2007 as a prod-
rug due to overt immunostimulation [87].

Interestingly, the measured TIF similarities from inter-
action fingerprints compared to native abacavir’s binding 
mode varied significantly for each peptide as well. When 
P1 was used, the TIF similarity ranged from 0.2 to 1.0, 
while both P2 and P3 had the most dissimilar compounds 
with TIF similarities of 0.4 or greater. These drastic 
changes in measured TIF likely occur from slight changes 
in the binding pocket caused by different co-binding 
peptides P1, P2, and P3. Future studies will attempt to 
explore this possibility using molecular dynamics and 
Schrodinger’s peptide docking procedure implemented 
by GLIDE [88]. All the computed TIF similarity scores 
derived from drug interaction fingerprints (using native 
abacavir as the reference compound) are provided in 
Additional file 1: Table 3 for peptides P1, P2, and P3.

Unexpectedly, when we began looking at the most dis-
similar binding modes of DrugBank compounds com-
pared to abacavir’s docking pose, we found that the TIF 
similarity scores were peptide-dependent. For example, 
DB00631 (clofarabine) was determined to have the least 
similar binding mode with abacavir for the XP  +  P1 
screening with a TIF similarity score of 0.24 (Additional 
file 1: Table 3) and a T2D similarity score of 0.62 (Table 1). 
However, when XP +  P2 or XP +  P3 screenings were 
performed, this same compound afforded significantly 
higher similarity scores of 0.68 and 0.75, respectively. 
Strangely, when DB00631’s (clofarabine) binding mode 

from XP +  P1 was superimposed with the XP +  P2 or 
XP + P3 clofarabine binding modes the measured RMSD 
was 1.6 and 1.2  Å, respectively; while the superimposi-
tion of the XP + P2 and XP + P3 binding modes had a 
measured RMSD of 0.8 Å. Clearly, the binding conforma-
tion of DB00631 was impacted by the co-binding peptide. 
DB00631 (clofarabine) is an anticancer agent especially 
used to treat leukemia. Bonate et al. and others reported 
the observance of several ADRs including febrile neutro-
paenia and hypotension [89], but these are classical ADRs 
for such chemotherapy drugs. Unclear is if any HLA-
mediated ADR has ever been observed with this drug.

Next, we superimposed DB00631 (clofarabine) with 
abacavir and analyzed the individual binding modes of 
clofarabine (Fig. 7). Interestingly, the chemical scaffold of 
DB00631 shares the same purine subunit as abacavir, but 
has key differences in functional group placement at the 
two and six position. Unlike abacavir, the attached amino 
group is not at the two position, but is instead at the six 
position; the two position of the purine scaffold, in fact, 
has a chlorine atom present. Like the compounds DB01280 
(nelarabine) and DB04860 (isatoribine), DB00631 (clofara-
bine) has a ribose like group attached at the nine position 
of the purine ring, but instead of a hydroxyl group attached 
to the two position of the tetrahydrofuran ring there is a 
fluorine atom. These small differences result in significant 
binding mode differences with peptide P1.

Superimposition between abacavir and DB00631 (clo-
farabine) with P1 revealed that there is minimal overlap 
between the binding modes of these two drugs (Fig.  7a): 
only π–π stacking with TRP147 and H-bonding with 
ASH114 are conserved with the purine scaffold (Fig. 7b). 
Interestingly, H-bonding with ILE124 is not observed due 
to the substitution of a chlorine atom at the two posi-
tion of the purine scaffold. When P2 was incorporated in 
docking, the superimposition revealed that abacavir and 
DB00631 occupied similar binding domains as shown in 
Fig. 7c. Under these conditions, H-bonding with SER116 
is regained while there is also H-bonding with LEU5 of P2 
(Fig. 7d). Analogous to docking with P2, superimposition 
of DB00631 and abacavir when docked with P3 revealed 
a conserved binding mode and H-bond stabilization pro-
vided by TYR5 or P3 (Fig. 7e, f ). Interestingly, the meas-
ured DS were − 8.0 kcal/mol for both P1 and P2, while DS 
was observed to be − 8.6 kcal/mol. This indicates that even 
though the binding location of DB00631 fluctuates with 
different peptides, the overall binding affinity is conserved.

The most dissimilar drug when using interaction fin-
gerprints from the P2 screening was DB04954 (tecadeno-
son) which has a TIF similarity of 0.42. Interestingly, TIF 
similarity was only slightly increased to 0.56 when dock-
ing with peptide P1, but when docked with P3 this drug 
had a highly similar binding mode as abacavir with a TIF 
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Fig. 7  Binding mode analysis of the most dissimilar DrugBank compound, DB00631 (Purple), from abacavir (Yellow) identified using XP + P1 
screening. a Superimposition of abacavir and DB00631 from XP + P1 screening with P1 shown in red, b XP + P1 binding mode of DB00631, c 
Superimposition of abacavir and DB00631 from XP + P2 screening with P2 shown in green, d XP + P2 binding mode of DB00631, e Superimposi-
tion of abacavir and DB00631 from XP + P3 screening with P3 shown in blue, f XP + P3 binding mode of DB00631
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similarity score of 0.81 (these binding modes are not pro-
vided). The observed 2D-similarity between the DB04954 
(tecadenoson) and abacavir scaffolds was 0.61 (Table  1). 
This compound was observed to have very favorable DS 
under all docking conditions with DS ranging from −  9 
to − 11 kcal/mol (Table 2). DB04954 is an investigational 
drug used in the treatment of arrhythmia and atrial fibril-
lation, but has been reported with mild ADR events of 
headaches, chest pain, and hypesthesia [90, 91]. These 
mild ADRs are common drug side-effects and it is unclear 
if these symptoms are caused by a HLA-mediated pathway.

When docking with P3, the most dissimilar binding 
mode, when compared to abacavir, was DB08048 (an 
experimental drug) with a TIF similarity of 0.55. How-
ever, when docking with P1, the observed TIF was as low 
as 0.30, whereas the similarity when docking with P2 
was 0.48. Interestingly, it was also observed that the T2D 
similarity score (generated from MACCS fingerprints) 
between DB08048 and abacavir were also highly dissimi-
lar with a measured value of 0.37 (Table 1). The observed 
DS scores for DB08048 passed our threshold with meas-
ured values of − 7.8, − 8.3, and − 8.8 kcal/mol for pep-
tides P1, P2, and P3, respectively (Table 2). Remarkably, 
the chemical scaffolding of DB08048 was quite differ-
ent from abacavir as the purine scaffold was replaced by 
an indazole scaffold connected to a diol benzene ring. 
DB08048 is an experimental drug whose primary target 
listed on DrugBank is the estrogen receptor [47].

Next, using the measured DS scores in Table 2, we deter-
mined what the top five strongest HLA-B*57:01 bind-
ers were in the presence of P1, P2, and P3. Interestingly, 
each docking condition resulted in a unique set of top five 
drugs with some overlaps. The top five binding drugs with 
P1 were DB02984, DB03807, DB04518, DB07151, and 
DB08485; which are all classified as experimental drugs. 
When docking with P2 the top five drugs were DB03365, 
DB04769, DB04860 (isatoribine), DB04954 (tecadeno-
son), and DB0715. Lastly, the top five drugs when docking 
with P3 provided some overlap with P1 and P2 conditions 
resulting in the following: DB02502, DB04769, DB04860 
(isatoribine), DB07151, and DB08485. Notably, all the listed 
compounds afforded extremely low DS between − 12 and 
− 10 kcal/mol, which are strong indicators for significant 
binding affinity. Furthermore, some compounds obtained 
excellent DS for multiple peptides. The drug DB07151 was 
a top binder for all three peptides, while DB08485 was a top 
binder for peptides P1 and P2, and the drugs DB04769 and 
DB04860 were top binders for peptides P2 and P3.

Model comparisons to Metushi et al
Herein, we would like to address the recent and excellent 
study by Metushi et al. [42] who conducted a full in silico 
to in vitro screening of the ZINC database. In their study, 

they conducted a 2D-similarity screening of the ZINC 
database using abacavir as the reference compound. 
Then taking the most similar compounds from this 
2D-screening, Metushi et  al. conducted a 3D-similarity 
screening by superimposing generated 3D conformations 
with native abacavir and filtered inactive compounds by 
measured RMSD (with abacavir) [42]. Additionally, com-
pounds that did not share similar structure activity rela-
tionships (SAR) as abacavir were also removed [42]. This 
combination of 2D- and 3D-screening resulted in the 
identification of 54 compounds that were docked in the 
HLA-B*57:01 binding site (PDB: 3UPR) using GOLD5.2 
and GOLD-Score scoring functions [42]. Based on these 
docking results, the top seven compounds were selected 
for in vitro analysis using a previously developed radio-
labeled peptide competitive binding assay [92] with three 
nine mer peptides (M1: KVAKVEPAV, M2: RVAGI-
HKKV, M3: HSITYLLPV). The seven selected com-
pounds were: Roscovitine (not in DrugBank), cladribine 
(DB00242), acyclovir (DB00787), arranon (DB01280 or 
nelarabine), minoxidil (DB00350), sangivamycin (not in 
DrugBank), and bohemine (not in DrugBank). Notably, 
Metushi et  al. [42] determined that only acyclovir sig-
nificantly increased peptide binding with HLA-B*57:01 
from this radio-labelled peptide competitive binding 
assay. Acyclovir (DB00787) was then subjected to bind-
ing affinity assays with multiple peptides to determine 
the best HLA-B*57:01-acyclovir-peptide combination for 
T-cell activation studies. However, it was observed that 
acyclovir did not induce a T-cell response and was there-
fore determined to not cause ADR events via a binding 
mechanism with HLA-B*57:01. Acyclovir is a guanosine 
analog antiviral used for treatment of herpes zoster (shin-
gles), genital herpes, and chicken pox and has a robust 
safety profile with limited ADR case reports [42, 93–95].

Interestingly, four of the seven compounds identi-
fied by Metushi et  al.’s docking procedure [42] can also 
be found in the DrugBank database (acyclovir, arranon, 
cladribine, and minoxidil); however, only the compound 
arranon (DB01280 or nelarabine) was identified as an in 
silico active compound in both models. Our model iden-
tified acyclovir (DB00787), cladribine (DB00242), and 
minoxidil (DB00350) as inactive compounds that failed 
at the SP − P1 (PDB: 3VRI), XP − P2 (PDB: 3VRJ), and 
SP  −  P1 (PDB: 3VRI) levels of docking, respectively. 
Notably, as discussed in methods “Virtual screening of 
DrugBank by 3D molecular docking”, our consensus 
screening platform discarded inactive compounds after 
each round of docking to generate a set of “active” com-
pounds with all three peptides P1, P2, and P3. As such, 
we generated the 3D-conformations of the seven actives 
proposed by Metushi et al. [42] using LigPrep and docked 
with peptides P1, P2, and P3 using GLIDE SP and XP 
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scoring functions. Notably, a recent publication by Yerly 
et  al. [19] has solved a fourth X-ray crystal structure of 
HLA-B*57:01 with bound abacavir and a 9-mer co-bind-
ing peptide (PDB: 5U98, P4: VTTDIQVKV). The crys-
tal structure obtained from 5U98 was curated using the 
same workflow as described in the methods. Since this 
study does not include experimental validation, we posit 
that a fourth peptide, P4, allowed a more thorough in 
silico analysis of the compounds proposed by Metushi 
et al. Additionally, there are now two peptides that have 
experimental measured IC50 values available for compari-
son between Metushi et al.’s [42] study and our docking 
model. This was performed to fully determine why our 
docking protocol did not identify the same compounds 
as Metushi et al. The measured DS are provided in Fig. 8 
and measured eM scores are provided in Additional 
file 1: Figure 6.

Using GLIDE docking, it was observed that the only 
compound identified as active would be arranon (or 
nelarabine, DB01280); all other compounds failed the DS 
and/or eM thresholds for at least one docking condition. 
For example, the compound bohemine afforded a DS 
range of − 10 to − 7 kcal/mol (indicating it is active for 
DS, Fig. 8), but had multiple conditions with suboptimal 
eM scores (Additional file 1: Figure 6). Interestingly, the 
compound cladribine (DB00242) had favorable DS and 
eM scores for all conditions except when docking with 
peptide P3 (DS > −7). Acyclovir (DB00787) obtained eM 
scores that passed our threshold (Additional file  1: Fig-
ure  6), but failed the DS threshold under all conditions 
except when docked with peptide P4 using the SP scoring 
function (− 8.17 kcal/mol) (Fig. 8).

As noted earlier, Metushi et  al.’s study [42] tested 
in  vitro if the seven proposed actives enhanced peptide 
binding affinity with co-binding peptides M1, M2, and 
M3, and determined that only the drug acyclovir had a 
significant impact on binding affinity. Then acyclovir was 
selected for further evaluation with over 15 different pep-
tides and tested for T-cell activation with an optimized 
binding peptide. The results from the T-cell activation 
assay revealed that binding acyclovir did not activate 
T-cells. Notably, both in silico models used crystal 3UPR 
(peptide P3 or M3) to conduct virtual screening, but our 
docking platform also included three additional peptides 
(P1, P2, and P4) to determine a drug’s binding ability with 
HLA-B*57:01. Interestingly, Metushi et al. screened both 
P3 and P4 for their binding affinity with acyclovir. Peptide 
P3’s binding affinity for HLA-B*57:01 was shown to sig-
nificantly increase in the presence of acyclovir; an obser-
vation that contradicts our model’s prediction. However, 
Metushi et  al. demonstrated that the binding affinity of 
peptide P4 for HLA-B*57:01 was marginally impacted 
by acyclovir agreeing with our model’s XP results, but 

conflicting with our SP results (Fig.  8) [42]. Conflict-
ing results like these demonstrate that molecular dock-
ing might not be efficient enough as a stand-alone tool 
for modeling complex tripartite systems such as HLA-
drug-peptide combinations. Furthermore, we want to 
emphasize that since our screening platform was not con-
structed using a HLA-B*57:01 variant complexed with a 
T-cell, predicting if a drug binding to HLA-B*57:01 will 
induce T-cell activation is well beyond the model’s scope 
and abilities. Our approach might be considered when 
used to determine if a drug can bind with HLA-B*57:01 
when peptides P1, P2, or P3 are present in an abacavir-
specific binding mechanism. Clearly, the relationship 
between HLA-drug binding and T-cell activation needs 
to be explored in greater detail through a combination of 
in silico and experimental techniques.

Comparisons between these two very complementary 
studies can provide valuable insights for the development 
of future virtual screening workflows for HLA-medi-
ated ADRs (especially for other HLA variants). First, 

Fig. 8  Glide measured DS of abacavir (DB01048) and seven proposed 
HLA-B*57:01 active compounds proposed by Metushi et al. from the 
ZINC database. The seven Metushi et al. compounds are: Acyclovir 
(DB00787), arranon (DB01280 or nelarabine), bohemine, cladribine 
(DB00242), minoxidil (DB00350), roscovitine, and sangivamycin. 
Measured DS are reported as boxplots with superimposed 1D-vertical 
scatter plots with applied horizontal jitter to prevent datapoint 
overlap. Each data point is color coded per the condition of docking: 
SP without peptide (salmon), PDB: 3VRI), SP with P1 (gold), XP with 
P1 (olive green), SP with P2 (green), XP with P2 (turquoise), SP with 
P3 (light blue), XP with P3 (blue), SP with P4 (purple), and XP with 
P4 (pink). Peptide P1 corresponds to crystal 3VRI, P2 corresponds to 
crystal 3VRJ, P3 corresponds to crystal 3UPR, and P4 corresponds to 
crystal 5U98. The DS threshold (DS ≤ −7 kcal/mol) is marked as a 
black line on the plot
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our ensemble docking protocol successfully eliminated 
six out of the seven proposed compounds by Metushi 
et al. indicating that incorporating multiple peptides can 
dramatically improve model efficiency. However, our 
screening platform did identify arranon (DB01280 or 
nelarabine) as an active, whereas Metushi et al.’s experi-
mental evidence indicates the opposite; this could be a 
result of arranon (DB01280 or nelarabine) exhibiting 
peptide specificity for either P1 or P2, but not peptides 
M1 and M2 that were used in the binding assay. Future 
experimental validation will likely test this possibility by 
measuring arranon’s (DB01280) binding affinity towards 
peptides P1, P2, P3, and P4. The second takeaway from 
these two studies is that for any structure-based docking 
model to be successful, multiple co-binding peptides will 
need to be considered when docking any drug of inter-
est. Clearly, the ideal docking protocol would include 
all (or a set of most representative) peptides with high 
affinities for the targeted HLA-variant to ensure experi-
mental success, but in the absence of fully solved HLA-
peptide binding modes, this will be a difficult challenge 
to solve. A recent study by Gürsoy and Smieško [96] 
tested the reliability of force fields to accurately predict 
biologically active conformations of drugs, and revealed 
that conformational accuracy of a force field decreases as 
the number of rotatable bonds in a compound increases. 
Obviously, accurately predicting the binding conforma-
tion of peptides will be a major obstacle due to the high 
number of rotatable bonds, despite some significant 
progress [88]. Furthermore, the development of models 
capable of distinguishing compounds capable of activat-
ing T-cells need to be developed.

Molecular dynamic simulations of abacavir and acyclovir 
with co‑binding peptide P3
After our initial docking comparison with the pro-
posed HLA-B*57:01 liable compounds from the model 
employed by Metushi et  al. [42], we decided to con-
duct molecular dynamic simulations to examine why 
our model did not identify acyclovir as an active drug 
for HLA-B*57:01 in complex with peptide P3. Using 
the crystal structure 3UPR, we conducted 20 ns simula-
tions of HLA-B*57:01 with either abacavir or acyclovir 
and co-binding peptide P3 in a TIP3P water environ-
ment (see “Methods”). We selected the peptide P3 for 
two reasons: (1) the binding mode of abacavir with P3 is 
explicitly known in a crystal structure (PDB: 3UPR) and 
(2) Metushi et  al.’s [42] finding demonstrated that the 
binding affinity of P3 for HLA-B*57:01 was significantly 
enhanced in the presence of acyclovir.

It is important to reiterate that these tripartite systems 
of HLA-drug-peptide are extremely complex to model 
and the relationships between the individual components 

is not well understood. As such, we decided to begin 
investigating the stability of protein, ligand, and peptide 
by measuring their respective RMSDs along the MD 
simulations as shown in Fig. 9. Notably, the HLA-B*57:01 
protein was not significantly impacted by either abacavir 
or acyclovir as the overall RMSD for both models was 
less than 2  Å (Fig.  9a). However, when the fluctuation 
of peptide P3 was considered, we observed that, when 
binding with abacavir, the overall flexibility of P3 in the 
first 10 ns was rather low (RMSD ≤ 1.5 Å); however, the 
RMSD of P3 increased to 2 Å in the second part of the 
simulation (Fig. 9b). Meanwhile, peptide P3 was observed 
to have an almost constant RMSD of 2  Å when acyclo-
vir was present. Finally, we computed the RMSD fluc-
tuations of abacavir and acyclovir in the binding pocket 
(Fig.  9c). Abacavir was found to be extremely stable in 
the binding pocket with minimal conformational changes 
(RMSD ≤  0.5  Å); however, the observed RMSD of acy-
clovir ranged from 0.5 to 1.5 Å. This larger fluctuation in 
measured RMSD for acyclovir is caused by the increased 
rotation of the diethyl-ether functional group, which 
contains several rotatable bonds. Though there are some 
discrepancies between the measured RMSDs between 
abacavir and acyclovir, the overall systems are stable with 
RMSDs less than 2 Å.

Next, we analyzed the time dependencies of drug-pro-
tein interactions by comparing binding modes of abacavir 
and acyclovir with P3 across the entire simulation. Unlike 
the top-scored binding modes obtained from molecular 
docking, MD simulations enabled us to (1) analyze all the 
binding modes by averaging all ligand–protein interac-
tions identified in each frame of the simulation, and (2) 
determine the most favorable interactions. Figure 10 dis-
plays these time-averaged interactions between the bind-
ing pocket of 3UPR (chain A) and peptide P3 (labelled 
chain P) with either abacavir (Fig.  10a) or acyclovir 
(Fig. 10b) as histogram plots where the x-axis represent 
the amino acid and the y-axis represents the Interac-
tion Fraction (IF). Additionally, Fig. 10 provides insights 
into H-bonding (green bars), H-bonding through water-
bridges (blue bars), and hydrophobic interactions (purple 
bars).

Interestingly, abacavir and acyclovir share several key 
interactions that are conserved throughout the simula-
tion (IF ≥ 0.8). These conserved interactions are H-bond-
ing with residues TYR74, ASH114, SER116 from chain 
A (binding pocket) and hydrophobic interactions (π–π 
stacking) with TRP147 also from chain A (Fig.  10a, 
b). There are some moderately conserved interactions 
(IF  =  0.4–0.6) shared between both simulations with 
a water bridge formation between ligand and ASN77 
and hydrophobic interactions with VAL 97 (both with 
chain A). Intriguingly, the biggest difference between 
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simulations of abacavir and acyclovir occurred with the 
ligand-peptide interactions. Abacavir showed very strong 
hydrophobic interactions with ILE3 of P3 and moderate 
interactions with LEU7 and VAL9 as shown in Fig. 10a. 
A weak interaction (IF  ≤  0.3) was observed between 
TYR5 of P3 and abacavir as well. Intriguingly, no strong 
interactions were observed between acyclovir and pep-
tide P3, but there were moderate hydrophobic interac-
tions with LEU7 and water-bridge formation with TYR5 
of P3 (Fig. 10b). Several weak interactions were observed 
between acyclovir and P3 including: a weak water bridge 
with LEU7, weak direct H-bond formation with TYR5, 
and weak hydrophobic interactions with ILE3.

MD simulations can provide valuable insights into the 
binding mode stability and favored dynamic ligand–pro-
tein interactions. Clearly, the simulations conducted in 
this study demonstrate that abacavir affords an increased 
stabilization from peptide P3 resulting in a more stable 
conformation and lower DS (and eM) than acyclovir. 
While these insights explain why our docking model 
identified acyclovir as HLA-B*57:01 inactive, it does not 
explain why the experimental findings by Metushi et  al. 
[42] indicate acyclovir is HLA-B*57:01 liable with peptide 
P3. However, this disagreement could occur due to sev-
eral different factors. First, our molecular docking plat-
form uses two empirical thresholds for DS and eM that 
have previously been determined to accurately predict 
ligand binding [69, 70], that we validated using a lim-
ited number of test molecules [44]. From this test, there 
was only one fully solved binding mode of an HLA-drug 
complex available (abacavir) and two other proposed 
HLA-B*57:01 active compounds (flucloxacillin and pazo-
panib) from the use of odds ratios. Building any predic-
tive model with limited experimental evidence, such as 
HLA-induced ADR models, severely limits the model’s 
reliability and applicability domain. Therefore, the use of 
any empirical scoring thresholds needs to be constantly 
reevaluated as new experimental data emerges. Indeed, 
virtual screening of large chemical database can provide 
valuable guidance to experimentalists for the prioritiza-
tion of drugs to test for HLA-B*57:01 binding and T-cell 
activation. Such experimental studies could assist in con-
firming, lowering, or increasing our model’s threshold for 
selecting the predicted-to-be-active molecules. Second, 
our MD simulation of acyclovir with peptide P3 demon-
strated that the formation between HLA-B*57:01, acy-
clovir, and peptide P3 was stable; however, our docking 
procedure was based on a rigid (SP) or semi-flexible (XP) 
protein and peptide. Therefore, it is likely that allowing 
peptide’s full flexibility and/or employing an ensemble 
docking technique (using multiple protein conforma-
tions) may be necessary to reevaluate fringe compounds 
(compounds within 1  kcal/mol of our DS threshold). 

Fig. 9  Measured RMSD for 20 ns molecular dynamic simula-
tions of abacavir (red) and acyclovir (blue) when complexed with 
HLA-B*57:01 protein, ligand, and peptide P3 (PDB: 3UPR). a RMSD 
fluctuation of HLA-B*57:01 protein with respect to ligand, b RMSD 
fluctuation of peptide P3 with respect to ligand, c ligand fluctuation 
inside the pocket
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Third, the assay employed by Metushi et  al. [42] moni-
tored the binding affinity of the peptide towards the 
HLA, not the actual binding affinity of the drug. Our 
molecular docking platform explored the binding associ-
ation of various drugs inside the binding pocket, but did 
not analyze the peptide’s binding affinity for these drugs. 
The development of a peptide-specific molecular dock-
ing platform could provide complementary insights into 
the complex binding relationship between HLA-protein, 
drug, and co-binding peptides.

Conclusions and future work
Using our multi-peptide, abacavir-specific, consensus 
docking protocol for the HLA-B*57:01 variant [44], we 
have screened the whole DrugBank database [47] con-
taining over 7000 drugs and drug candidates. After dock-
ing based on two scoring functions, three X-ray crystals 
3VRI, 3VRJ, and 3UPR with and without their associated 
co-binding peptides P1, P2, and P3, respectively, we iden-
tified 22 potentially HLA-B*57:01 liable compounds. The 
chemical scaffolds of these 22 compounds are provided 
in Fig.  11, while DS are available in Table  2 (eM scores 

Fig. 10  Protein–ligand interaction fragment histograms and 2D-plots for 20 ns molecular dynamic simulation of HLA-B*57:01 with ligand and co-
binding peptide P3. a Abacavir as ligand, b acyclovir as ligand. Hydrogen bond interactions are represented as green bars, water-bridges are blue 
bars, and hydrophobic interactions (including π–π stacking) are purple bars
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are available in Additional file  1: Table  2). Additionally, 
our platform could be extended to a 4-tiered approach 
using the recently solved X-ray crystal structure of 

HLA-B*57:01 with bound abacavir in the presence of a 
new co-binding peptide, P4 [19].

Fig. 11  Structures of the 22 active drugs identified from DrugBank screen
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After identifying those 22 potential actives, hierarchi-
cal clustering was performed using 3D interaction finger-
prints from the binding modes of abacavir with peptides 
P1, P2, or P3. These clustering results revealed three top 
drug candidates: DB01280 (nelarabine), DB02407, and 
DB04860 (isatoribine). However, clustering revealed that 
these drugs were not necessarily the top drug candidate 
for every peptide. Indeed, clustering with P2 revealed 
no other drugs clustered with abacavir, while clustering 
with P3 indicated that the drugs DB00962 and DB04954 
were the top candidates. Furthermore, it was determined 
that each screening with peptide P1, P2, or P3 resulted 
in a different drug being most dissimilar from abacavir. 
Clearly, the role of co-binding peptide will need to be 
investigated further to elucidate its role in signaling 
ADRs.

Using these 22 predicted HLA-B*57:01 liable com-
pounds, we plan to collaborate with experimentalists for 
the development of an efficient and accurate screening 
assay for T-cell activation to confirm our model’s pre-
dictive capabilities. One possible assay for consideration 
is the radio-labelled competitive peptide binding assay 
used by Metushi et al. [42] and the T-cell activation assay 
developed by Lucas et  al. [43]. Notably, as discussed 
in “Model comparisons to Metushi et  al.”, our dock-
ing protocol identified 22 new potentially HLA-B*57:01 
compounds with only the drug nelarabine (DB01280) 
overlapping with the Metushi et  al. study [42]. Once 
experimental binding data has been collected, we will 
continue to refine our ensemble docking protocol for 
improved prediction accuracy, while simultaneously 
developing a quantitative structure activity relationship 
(QSAR) model for the prediction of ADR events that are 
mediated by a drug’s ability to bind the HLA-B*57:01 
variant. Additionally, we performed some preliminary 
MD simulations to investigate the differences between 
abacavir and acyclovir when complexed with peptide P3. 
These initial findings revealed that both abacavir and acy-
clovir were stable in the HLA-B*57:01 binding pocket, 
but had significantly different ligand–protein interac-
tions with peptide P3. Future MD simulations will be 
conducted to elucidate the dynamic intermolecular inter-
actions between the HLA-B*57:01 binding pocket, the 
different co-binding peptides (P1, P2, P3, and P4), and 
abacavir, all forming challenging tripartite complexes. 
There is also a need to explore molecular docking’s capa-
bility to accurately score and rank peptide binding modes 
with HLA-drug complexes to address the diverse num-
ber of possible co-binding peptides. Lastly, this study 
underlines the need of developing a pan-HLA virtual 
screening workflow incorporating at least 50 variants 
being the most relevant and frequent in the global pop-
ulations. This panel of virtual HLA pockets will serve a 

dual purpose by further exploring drug and HLA binding 
promiscuity, as observed with the drug carbamazepine 
and the HLA-A*31:01 and -B*15:02 variants, and devel-
oping a co-binding peptide in silico library that deter-
mines the most likely HLA-peptide pairings. Conducting 
such virtual screening studies will provide new insight 
and guidance for experimentalists attempting to test a 
drug’s likelihood of inducing ADR events. In return, new 
experimental data will provide new information for the 
creation of more sophisticated in silico models and the 
advancement of Precision Medicine.
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