
Ropp et al. J Cheminform (2017) 9:52
DOI 10.1186/s13321-017-0237-8

SOFTWARE

Scoria: a Python module
for manipulating 3D molecular data
Patrick Ropp1, Aaron Friedman2 and Jacob D. Durrant1*

Abstract 

Third-party packages have transformed the Python programming language into a powerful computational-biology
tool. Package installation is easy for experienced users, but novices sometimes struggle with dependencies and com-
pilers. This presents a barrier that can hinder the otherwise broad adoption of new tools. We present Scoria, a Python
package for manipulating three-dimensional molecular data. Unlike similar packages, Scoria requires no dependen-
cies, compilation, or system-wide installation. One can incorporate the Scoria source code directly into their own pro-
grams. But Scoria is not designed to compete with other similar packages. Rather, it complements them. Our package
leverages others (e.g. NumPy, SciPy), if present, to speed and extend its own functionality. To show its utility, we use
Scoria to analyze a molecular dynamics trajectory. Our FootPrint script colors the atoms of one chain by the frequency
of their contacts with a second chain. We are hopeful that Scoria will be a useful tool for the computational-biology
community. A copy is available for download free of charge (Apache License 2.0) at http://durrantlab.com/scoria/.

Keywords:  Molecular modeling, Structural biology, Computational biology, Python

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Even small usability barriers hinder the widespread adop-
tion of new computational tools. When an experienced
computational biologist wishes to analyze 3D molecular
data, she might turn to popular Python packages such as
MDAnalysis [1]. These packages have dependencies that
experts can easily install from the command line. But
when creating software for broader consumption (e.g., by
structural biologists with less computational experience),
the required dependencies sometimes complicate instal-
lation. Novice end users using Python-powered tools via
graphical user interfaces may not even be familiar with
the command line. To address this challenge, we present
Scoria, a simpler package for manipulating 3D molecular
data. Scoria has no required dependencies, so program-
mers can easily insert the Scoria source code directly into
their existing scripts.

Python, a popular and powerful programming lan-
guage for scientific computing, is an interpreted lan-
guage with easy-to-read, intuitive syntax. The real power

of Python comes from its extendibility. Rich Python-
package ecosystems (e.g., the Python Package Index and
Anaconda Cloud) extend its functionality. New Python
classes and functions expose libraries written in faster
languages such as C. Unfortunately, this extendibility can
impact usability. Many computationalists use packages
that depend on NumPy and SciPy, add-ons that speed
mathematical operations. These in turn often require the
installation of a C compiler. NumPy is incompatible with
PyPy, a popular just-in-time Python-2.7 compiler that is
faster than the standard Python executable. If a program
uses a NumPy-dependent package only lightly, any speed
NumPy provides may be offset by the slowness of stand-
ard Python. And third-party packages are not universally
supported on all versions of Python and on all operating
systems.

These challenges limit many existing molecular-mod-
eling packages. The excellent package MDAnalysis is a
good example. It depends on NumPy and so is incompat-
ible with PyPy, it does not support the Windows oper-
ating system, and it is only partially compatible with
Python 3 (“highly experimental… mostly nonfunctional
and dramatically untested,” per a humorous user warning
on import). Packages like MDAnalysis are also complex

Open Access

*Correspondence: durrantj@pitt.edu
1 Department of Biological Sciences, University of Pittsburgh, Pittsburgh,
PA 15260, USA
Full list of author information is available at the end of the article

http://durrantlab.com/scoria/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0237-8&domain=pdf

Page 2 of 7Ropp et al. J Cheminform (2017) 9:52

because of their many powerful features. While well
suited for many projects, some projects need only more
basic operations.

We have developed a set of functions over the last sev-
eral years in service of our own published software pro-
jects [2–14]. We have integrated these functions into a
single package called Scoria. Scoria has several advan-
tages over other packages. (1) It is well suited for projects
that need only basic features (e.g., loading, saving, simple
structural manipulation, etc.). (2) It requires no system-
wide installation, compilation, or dependencies; one need
only copy the scoria directory into their own Python pro-
ject to use it. (3) It is compatible with Python 2, Python
3, and PyPy. (4) It runs on all major operating systems
(macOS, Linux, and Windows).

Though it has no required dependencies, Scoria does
use NumPy and SciPy installations, if present, to speed
and extend its own functionality. A separate, derivative
version of Scoria, called Scoria MDA, can additionally
leverage MDAnalysis. Scoria thus provides the best of
both worlds. It is a simple, independent package for those
who need basic functionality, but it provides compatibil-
ity with external libraries for those who need speed.

Scoria is useful for both analyzing molecular dynamics
(MD) trajectories and molecular modeling. For exam-
ple, we have used beta-version Scoria functions to create
large-scale lipid-bilayer models [13], to construct small-
molecules models with improved predicted binding
affinities [2, 11], to measure MD-sampled binding-pocket
shapes and volumes [4, 14], and to develop neural-net-
work docking scoring functions [3, 7, 15], among other
applications [5, 6, 8–10]. As an additional example, in
this manuscript we describe a trajectory-analysis Scoria
script that colors the atoms of one protein chain by the
frequency of their contacts with a second chain.

We hope that Scoria will be a useful open-source tool
for the community. Users can copy the scoria direc-
tory directly into their projects; alternatively, they can
install Scoria via popular package managers (i.e., pip
and conda). Docstrings describe the key functions, show
proper usage, and present informative tables. The pack-
age itself, as well as an HTML help file generated from
the docstrings, can be found online at http://durrantlab.
com/scoria/.

Implementation
Basic features
Scoria provides functions that read and write several file
types. It natively supports PDBQT as well as single and
multi-frame PDB formats. Scoria also has its own sin-
gle-frame molecular file format, the PYM format. PYM
files have optimized read/write speeds for use in high-
throughput computational projects. Finally, Scoria MDA

can import other file types via MDAnalysis, both as file
lists and from MDAnalysis Universe objects.

Scoria stores molecular and atomic information. It
tracks individual atom names, residues, chain ids, residue
sequences, occupancies, temperature factors, elements,
charges, atomic coordinates, and trajectories. The user
can perform calculations on the entire molecule or on
subsets of atoms. Selections by atomic properties, molec-
ular affiliations, and spatial properties define these sub-
sets. The user can also specify custom selection criteria
based on any stored atom, residue, or chain data. The user
can translate and rotate molecular coordinates. Rotations
about single points and lines are possible. Aside from
using 3D coordinates to define these points and lines,
the user can also specify atoms. In the latter case, Scoria
uses the atomic coordinates. The user can also compare,
contrast, align, and merge two Molecule objects. Scoria
includes functions for calculating distances, steric clashes,
and root-mean-square deviations between molecules.

For ease of use, the above functions are all accessible
from the main Molecule class. After creating a molecule
object (e.g., mol), the user accesses the functions via the
mol.fileio, mol.information, mol.selections, mol.manipu-
lation, and mol.other_molecule namespaces. For conveni-
ence, users can also access these functions directly from
the Molecule object, e.g., mol.save_pdb() is identical to
mol.fileio.save_pdb().

Rock1/shroom2 simulation: technical details
To show how Scoria can be used to analyze a molecular
dynamics (MD) simulation, we ran a simulation of the
rock1-dimer/shroom2 complex using Amber [16, 17] on
the Frank cluster (University of Pittsburgh’s Center for
Research Computing). In brief, we downloaded a model
of the rock1 dimer bound to shroom2 from the Protein
Data Bank (PDB ID: 5F5P) [18, 19] and retained chain
A (shroom2) and chains C/D (the rock1 dimer). Visual
Molecular Dynamics (VMD) [20] was next used to add
sufficient Na+ cations to bring the system to electrical
neutrality. We then added extra Na+ and Cl– ions to
reach a concentration of 150 mmol. VMD was also used
to create a water box that encompassed the entire protein
complex.

The AmberTools tleap program [17] parameterized
the system according to the ff14SB [21] and ionsjc_tip3p
force fields [22]. We minimized the parameterized sys-
tem in five rounds. First, only the hydrogen atoms were
allowed to move. Second, most of the protein was held
fixed, and the geometry of the waters was optimized.
Next, most of the protein backbone was held fixed, and
the side-chain geometry was optimized. Finally, all com-
ponents of the system were further minimized, without
any constraints.

http://durrantlab.com/scoria/
http://durrantlab.com/scoria/

Page 3 of 7Ropp et al. J Cheminform (2017) 9:52

We then restrained most of the protein backbone and
heated the system. We first heated from 0 to 100 K at
constant volume, and then from 100 to 300 K at constant
pressure. The simulation continued at 300 K, constant
pressure, during a third step of the heating phase. Follow-
ing heating, the system was further equilibrated with the
same backbone restraints. We then removed all restraints
for a second round of equilibration. 50 ns of productive
simulation followed, which were used for analysis.

Results and discussion
Scoria is a Python package that can load, save, analyze,
and manipulate 3D molecular models without requiring
compilation, dependencies, or system-wide installation.
Scoria’s use of NumPy and SciPy is optional; most of the
basic features of the package do not require any depend-
encies. Extra features are available if NumPy or SciPy
are present. A separate, derivative version (Scoria MDA)
similarly integrates MDAnalysis support.

Compatibility
We have tested Scoria’s basic functionality on all major
operating systems using both Python and PyPy. Table 1
presents a list of all compatibility tests.

Optional dependencies
Scoria’s basic features are written in pure Python. But
when the user needs more intensive calculations (e.g.,
calculating the pairwise distances between many atoms,
molecular alignments, etc.), she can install NumPy and
SciPy. When she wishes to use binary formats (e.g., DCD
files), she can use Scoria’s MDAnalysis-enabled version.
Table 2 lists select Scoria features that are available if
these other packages are installed. A more complete list
is given in the Additional file 1: Table S1.

Benchmarks
File input/output is often the greatest bottleneck when
analyzing large numbers of molecular models. Scoria
supports reading and writing to several formats, so we
performed several benchmarks. As a test PDB file, we

used 51 consecutive residues (401 atoms) taken from the
1XDN structure [23]. To calculate the average execution
time, we ran each operation 100 times on a MacBook
Pro (Retina, 15-inch, Mid 2015, 2.8 GHz Intel Core i7).
Table 3 summarizes the results.

Scoria saved to a binary PYM file 2.3 times faster than
to the equivalent text-formatted PDB file, and it loaded
the PYM file 12.7 times faster than the PDB. PYM files
are thus well suited to high-throughput projects when
fast file I/O is critical.

The Python executable and installed dependencies
also affected load and save times. We tested two differ-
ent executables: the standard Python interpreter (some-
times called CPython) and PyPy, which uses just-in-time
compilation to speed run times. We also tested CPython
installations with and without dependencies such as
NumPy. Loading and saving to the PYM and MDAnalysis
formats requires NumPy, so only the PDB format is use-
ful for comparing these three Python setups.

When saving the PDB file, PyPy was the fastest, despite
lacking dependencies such as NumPy and SciPy. PyPy
saved the test file 1.5 times faster than CPython with
dependencies installed, which was in turn 1.5 times faster
than CPython when those dependencies were absent.
When loading the test PDB file, dependencies such as
NumPy allowed CPython to load 6.2 faster than CPython
without dependencies installed. PyPy support for NumPy
is incomplete, but even so CPython/NumPy was only 1.9
times faster than PyPy (without NumPy).

It is easy to imagine scenarios in which PyPy would be
the fastest choice. For example, we loaded the test file
without calculating bonds by distance and saved 500 cop-
ies to disk (each 1 Å apart along the X axis). PyPy finished
3.1 times faster than CPython with NumPy (2.2 vs. 7.1 s)
because this test script greatly favors output (saving,
where PyPy excels) over input (loading).

PyPy is also faster when code includes time-consum-
ing features that are NumPy independent. To illustrate,
we wrote a script that performed 50 million variable
assignments before using Scoria to load the test PDB
file. CPython/NumPy loaded the molecular model faster,

Table 1  Compatibility tests

We tested Scoria’s basic functionality on macOS 10, Ubuntu Linux, and Windows 10, using Python 2.7, Python 3.6, and PyPy 1.8. PyPy does not support NumPy, SciPy,
or MDAnalysis; MDAnalysis does not support Windows; and MDAnalysis was error prone when installed under Python 3. These limitations did not prevent Scoria from
passing all basic-functionality tests, though it ran slower

OS Python NumPy SciPy MDAnalysis

macOS Sierra (10.12.3) Python 2.7.13/Anaconda 4.2.13 1.11.2 0.18.1 0.15.0

macOS Sierra (10.12.3) PyPy 1.8.0 N/A N/A N/A

Ubuntu 16.04.1 LTS Python 2.7.13/Anaconda 4.3.14 1.11.3 0.18.1 0.15.0

Windows 10 Pro Version 1607 Python 2.7.13/Anaconda 4.3.14 1.11.3 0.18.1 N/A

Ubuntu 16.04.1 LTS Python 3.6.0/Anaconda 4.3.14 1.11.3 0.18.1 N/A

Page 4 of 7Ropp et al. J Cheminform (2017) 9:52

but PyPy accelerated variable assignment and so ran 8.3
times quicker overall (0.3 vs. 2.8 s).

Practical demonstration
To show Scoria’s utility, we created a simple script that
calculates molecular “footprints.” When simulating multi-
domain systems, users may wish to identify inter-domain
contacts. Surfaces with high contact residence times are
likely to participate in critical inter-domain interactions.
These regions may be good targets for mutagenesis stud-
ies aiming at disrupting protein–protein interfaces.

The script first loads a simulated trajectory and divides
it into two parts (i.e., the two domains of interest). For
each atom, it calculates a contact residence time by con-
sidering how often that atom comes within 3 Å of the

other domain. Scoria stores these residence times in
the occupancy fields of each atom and saves the molec-
ular data to a PDB file. VMD [20] is then used to color
the protein surface by occupancy, from red (0%) to blue
(100%). The complete Scoria footprint-analysis script is
shown in Fig. 1, with comments.

We applied this script to a brief MD simulation of
the rock1-dimer/shroom2 complex. Previous work has
shown that shroom proteins bind rho kinase (rock), regu-
lating rock distribution and activity [19, 24, 25]. Active
rock activates the actomyosin network, thereby defining
cellular morphology and driving tissue morphogenesis
[26]. In humans and vertebrate model systems, shroom
mutations produce neural tube defects [27, 28], chronic
kidney disease [29, 30], X-linked intellectual disability

Table 2  Select optional Scoria functions available when third-party libraries are installed

Features Optional dependencies

Module Definition Notes NumPy SciPy MDAnalysis

fileio load_pym_into Load PYM file ✓
fileio load_via_MDAnalysis Load from file(s) via MDAnalysis ✓ ✓
fileio load_MDAnalysis_into Load from MDAnalysis Universe object ✓ ✓
fileio save_pym – ✓
selections select_all_atoms_bound_to_selection Select atoms bound to user-specified selection ✓
selections select_branch Selects an individual branch of a molecule ✓
selections select_atoms_from_same_molecule Select atoms belonging to same molecule ✓
selections selections_of_constituent_molecules Gets a list of all selections based on their

molecule
✓

selections select_atoms_near_other_selection – ✓ ✓
selections select_close_atoms_from_different_molecules – ✓ ✓
manipulation rotate_molecule_around_pivot_point – ✓
manipulation rotate_molecule_around_pivot_atom – ✓
other_molecules get_other_molecule_aligned_to_this ✓
other_molecules steric_clash_with_another_molecule – ✓ ✓
other_molecules get_distance_to_another_molecule – ✓ ✓
other_molecules get_rmsd_heuristic Calculate RMSD between two sets of atoms ✓ ✓
atoms_and_bonds create_bonds_by_distance Determine which atoms are bonded based on

distance between them
✓ ✓

Table 3  Average Scoria execution times for various file I/O tasks, running in three different Python environments

Saving and loading PYM files requires NumPy and so could only be tested in environments with that module installed (“N/A” otherwise)

Action Python with NumPy/SciPy Python without dependencies PyPy (incompatible with depend-
encies)

Save PDB 0.0055 ± 0.0010 0.0085 ± 0.0016 0.0036 ± 0.0043

Load PDB (without calculating bonds by
distance)

0.0104 ± 0.0010 0.0643 ± 0.0028 0.0198 ± 0.0163

Save PYM 0.0024 ± 0.0013 N/A N/A

Load PYM 0.0008 ± 0.0004 N/A N/A

Page 5 of 7Ropp et al. J Cheminform (2017) 9:52

[31, 32], and cancer [33, 34]. In mice, a single shroom3
amino-acid change that disrupts the interaction with
rock phenocopies a shroom3 null mutation [35]. These
data show that the shroom-rock module is a vital, poten-
tially druggable signaling nexus.

Figure 2a, c illustrates the atomic-contact footprints
of shroom2 and the rock1 dimer. For the purposes of
this study, two atoms are said to be in contact if they
are within 3.0 Å of each other. Colors range from red
(no contact, 0%) to blue (full contact in every trajectory
frame, 100%). The script considered an entire trajectory
rather than a single static structure, so it is possible to
distinguish between atoms that are in persistent versus
transient contact with those of the neighboring chain.

Experimental evidence supports the hypothesis that the
most persistent contacts are among those most critical
for binding. Recent mutagenesis experiments [25] identi-
fied two regions of mouse shroom3 that are critical for
rock1 binding: 1834SLSGRLA1840 and 1878LKENLDRR1885.
These two regions are highly homologous to two human
shroom2 regions (Fig. 2b, in blue). Both regions include
residues that were persistently in contact with rock1.

A second mutagenesis study published in 2016 iden-
tified shroom2 and rock1 residues that are critical for

binding [19]. Rock1 F852A and L855A mutations pre-
vent complex formation, but Y851A, Q859A, and E862A
do not. In the 5F5P structure (chain C), all these resi-
dues come within 3.0 Å of shroom2 (chain A), making
it impossible to identify the most critical rock1 residues
using crystallographic proximity alone.

Predicting residues critical for complex formation by
considering dynamic contacts is more effective. Atoms
from the critical residues F852 and L855 came within
3.0 Å of shroom2 atoms in 100 and 99% of the simulation
frames. Persistent contacts show stability that promotes
shroom2/rock1 binding. In contrast, Q859 and E862,
which are not critical for binding, had 73 and 87% con-
tact persistence. The analysis would have misidentified
Y851 as critical (100% contact), yielding 80% accuracy
overall.

The shroom2 mutations L1501A, L1548A, and K1487A
are also critical [19]. Our analysis revealed 98% L1501
and 93% L1548 contact persistence. K1487, with 79% per-
sistence, was a false negative (i.e., it is critical for bind-
ing despite having a lower contact persistence). Zalewski
et al. themselves were surprised that K1487A abolished
complex formation given how peripheral it is to the core
binding interface [19].

Fig. 1  The footprint-analysis code, based on Scoria. This Python code is included with the Scoria download, in the demo directory

Page 6 of 7Ropp et al. J Cheminform (2017) 9:52

While imperfect, this contact-footprint method may be
useful in prospective studies aimed at prioritizing resi-
dues for mutagenesis. Regardless, that such a tool could
be constructed in a few lines of code demonstrates Sco-
ria’s utility.

Conclusion
Scoria is a Python package for simple molecular mod-
eling and data-collection tasks that need a light over-
head. It can improve the usability of new analysis tools,
encouraging broader adoption among end users who are
uncomfortable installing Python dependencies.

Unlike some similar packages, Scoria is compatible
with the Windows operating system as well as PyPy. If a
script performs only limited molecular manipulation, the
speed benefits of PyPy make Scoria an attractive option.

We will continue to add new functionality to Sco-
ria per our ongoing projects’ needs. Additions will be
broadly useful; simple (to prevent codebase bloating);

and, to the extent possible, free of any required depend-
encies. As Scoria is an open-source project, we will make
future changes publically available. Contributions from
other users that meet these same inclusion criteria are
welcome.

We have used Scoria components in other published
software packages [2–14] under the name PyMolecule.
Scoria updates these components and brings them
together in a single Python package. This easy-to-use
module is now available to aid other computational biol-
ogists and chemists.

Authors’ contributions
All authors contributed to Scoria’s design and programming. JDD wrote the
manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
15260, USA. 2 Biomedical Sciences Graduate Program, University of California
San Diego, La Jolla, CA 92093, USA.

Acknowledgements
We would like to thank John Joseph Ringe for performing background
research. We would also like to thank the University of Pittsburgh’s Center for
Research Computing. This work relied on a startup allocation provided by the
Extreme Science and Engineering Discovery Environment (XSEDE), which is
supported by National Science Foundation Grant Number ACI-1053575.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The latest version of Scoria is available at http://durrantlab.com/scoria.
Archived versions, both with and without MDAnalysis support, have also been
submitted as Additional files 2 and 3.

Project name: Scoria.
Project home page: http://durrantlab.com/scoria.
Operating systems: Linux, macOS, Windows.
Programming language: Python.
Other requirements: None.
License: Apache License 2.0 (without MDAnalysis support) or GNU General

Public License 3.0 (with MDAnalysis support).
Any restrictions to use by non-academics: None.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Additional files

Additional file 1: Table S1. Main Scoria functions, with associated
dependencies (if any).

Additional file 2. An archived version of Scoria, without MDAnalysis
support.

Additional file 3. An archived version of Scoria, derived from the main
Scoria branch, that includes MDAnalysis support.

Fig. 2  The shroom2-rock1 contact footprint. a The shroom2 protein.
Atoms that frequently come in contact with the rock1 dimer are
shown in blue. Atoms that have no contacts with rock1 are shown
in red. b The shroom2 protein, with residues known to participate in
rock1-dimer/shroom3 binding shown in blue. c The rho-associated
protein kinase 1 (rock1) dimer. Atoms are colored by contact resi-
dence times, as in part a

http://durrantlab.com/scoria
http://durrantlab.com/scoria
http://dx.doi.org/10.1186/s13321-017-0237-8
http://dx.doi.org/10.1186/s13321-017-0237-8
http://dx.doi.org/10.1186/s13321-017-0237-8

Page 7 of 7Ropp et al. J Cheminform (2017) 9:52

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 17 April 2017 Accepted: 4 September 2017

References
	1.	 Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) Software

news and updates MDAnalysis: a toolkit for the analysis of molecular
dynamics simulations. J Comput Chem 32(10):2319–2327

	2.	 Durrant JD, Amaro RE, McCammon JA (2009) AutoGrow: a novel algo-
rithm for protein inhibitor design. Chem Biol Drug Des 73(2):168–178

	3.	 Durrant JD, McCammon JA (2010) NNScore: a neural-network-based
scoring function for the characterization of protein-ligand complexes. J
Chem Inf Model 50(10):1865–1871

	4.	 Durrant JD, de Oliveira CA, McCammon JA (2011) POVME: an algo-
rithm for measuring binding-pocket volumes. J Mol Graph Model
29(5):773–776

	5.	 Durrant JD, McCammon JA (2011) BINANA: a novel algorithm for ligand-
binding characterization. J Mol Graph Model 29(6):888–893

	6.	 Durrant JD, McCammon JA (2011) HBonanza: a computer algorithm for
molecular-dynamics-trajectory hydrogen-bond analysis. J Mol Graph
Model 31:5–9

	7.	 Durrant JD, McCammon JA (2011) NNScore 2.0: a neural-network
receptor-ligand scoring function. J Chem Inf Model 51(11):2897–2903

	8.	 Durrant JD, McCammon JA (2012) AutoClickChem: click chemistry in
silico. PLoS Comput Biol 8(3):e1002397

	9.	 Durrant JD, Friedman AJ, McCammon JA (2011) CrystalDock: a
novel approach to fragment-based drug design. J Chem Inf Model
51(10):2573–2580

	10.	 Lindert S, Durrant JD, McCammon JA (2012) LigMerge: a fast algorithm to
generate models of novel potential ligands from sets of known binders.
Chem Biol Drug Des 80(3):358–365

	11.	 Durrant JD, Lindert S, McCammon JA (2013) AutoGrow 3.0: an improved
algorithm for chemically tractable, semi-automated protein inhibitor
design. J Mol Graph Model 44:104–112

	12.	 Van Wart AT, Durrant JD, Votapka L, Amaro RE (2014) Weighted imple-
mentation of suboptimal paths (WISP): an optimized algorithm and tool
for dynamical network analysis. J Chem Theory Comput 10(2):511–517

	13.	 Durrant JD, Amaro RE (2014) LipidWrapper: an algorithm for generating
large-scale membrane models of arbitrary geometry. PLoS Comput Biol
10(7):e1003720

	14.	 Durrant JD, Votapka L, Sorensen J, Amaro RE (2014) POVME 2.0: an
enhanced tool for determining pocket shape and volume characteristics.
J Chem Theory Comput 10(11):5047–5056

	15.	 Durrant JD, Friedman AJ, Rogers KE, McCammon JA (2013) Comparing
neural-network scoring functions and the state of the art: applications to
common library screening. J Chem Inf Model 53(7):1726–1735

	16.	 Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr et al
(2005) The amber biomolecular simulation programs. J Comput Chem
26(16):1668–1688

	17.	 Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TEI, Darden TA et al
(2014) AMBER 2014. University of California, San Francisco, San Francisco

	18.	 Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al
(2000) The protein data bank. Nucleic Acids Res 28(1):235–242

	19.	 Zalewski JK, Mo JH, Heber S, Heroux A, Gardner RG, Hildebrand JD et al
(2016) Structure of the shroom-rho kinase complex reveals a binding
interface with monomeric shroom that regulates cell morphology and
stimulates kinase activity. J Biol Chem 291(49):25364–25374

	20.	 Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics.
J Mol Graph 14(1):33–38

	21.	 Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling
C (2015) ff14SB: improving the accuracy of protein side chain and back-
bone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

	22.	 Joung IS, Cheatham TE (2008) Determination of alkali and halide mono-
valent ion parameters for use in explicitly solvated biomolecular simula-
tions. J Phys Chem B 112(30):9020–9041

	23.	 Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WG (2004) High resolution
crystal structure of a key editosome enzyme from Trypanosoma brucei:
RNA editing ligase 1. J Mol Biol 343(3):601–613

	24.	 Mohan S, Das D, Bauer RJ, Heroux A, Zalewski JK, Heber S et al (2013)
Structure of a highly conserved domain of Rock1 required for Shroom-
mediated regulation of cell morphology. PLoS ONE 8(12):e81075

	25.	 Mohan S, Rizaldy R, Das D, Bauer RJ, Heroux A, Trakselis MA et al (2012)
Structure of Shroom domain 2 reveals a three-segmented coiled-coil
required for dimerization, Rock binding, and apical constriction. Mol Biol
Cell 23(11):2131–2142

	26.	 Hildebrand JD (2005) Shroom regulates epithelial cell shape via the apical
positioning of an actomyosin network. J Cell Sci 118(Pt 22):5191–5203

	27.	 Hildebrand JD, Soriano P (1999) Shroom, a PDZ domain-containing actin-
binding protein, is required for neural tube morphogenesis in mice. Cell
99(5):485–497

	28.	 Lemay P, Guyot MC, Tremblay E, Dionne-Laporte A, Spiegelman D, Hen-
rion E et al (2015) Loss-of-function de novo mutations play an important
role in severe human neural tube defects. J Med Genet 52(7):493–497

	29.	 Kottgen A, Glazer NL, Dehghan A, Hwang SJ, Katz R, Li M et al (2009)
Multiple loci associated with indices of renal function and chronic kidney
disease. Nat Genet 41(6):712–717

	30.	 Khalili H, Sull A, Sarin S, Boivin FJ, Halabi R, Svajger B et al (2016) Develop-
mental origins for kidney disease due to Shroom3 deficiency. J Am Soc
Nephrol 27(10):2965–2973

	31.	 Armanet N, Metay C, Brisset S, Deschenes G, Pineau D, Petit FM et al
(2015) Double Xp11.22 deletion including SHROOM4 and CLCN5
associated with severe psychomotor retardation and Dent disease. Mol
Cytogenet 8:8

	32.	 Dickson HM, Wilbur A, Reinke AA, Young MA, Vojtek AB (2015) Targeted
inhibition of the Shroom3-Rho kinase protein-protein interaction circum-
vents Nogo66 to promote axon outgrowth. BMC Neurosci 16:34

	33.	 Closa A, Cordero D, Sanz-Pamplona R, Sole X, Crous-Bou M, Pare-Brunet L
et al (2014) Identification of candidate susceptibility genes for colorectal
cancer through eQTL analysis. Carcinogenesis 35(9):2039–2046

	34.	 Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N et al
(2012) Common variation near CDKN1A, POLD3 and SHROOM2 influ-
ences colorectal cancer risk. Nat Genet 44(7):770–776

	35.	 Das D, Zalewski JK, Mohan S, Plageman TF, VanDemark AP, Hildebrand JD
(2014) The interaction between Shroom3 and Rho-kinase is required for
neural tube morphogenesis in mice. Biol Open 3(9):850–860

	Scoria: a Python module for manipulating 3D molecular data
	Abstract
	Background
	Implementation
	Basic features
	Rock1shroom2 simulation: technical details

	Results and discussion
	Compatibility
	Optional dependencies
	Benchmarks
	Practical demonstration

	Conclusion
	Authors’ contributions
	References

