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Abstract 

In mass spectrometry-based untargeted metabolomics, rarely more than 30% of the compounds are identified. 
Without the true identity of these molecules it is impossible to draw conclusions about the biological mechanisms, 
pathway relationships and provenance of compounds. The only way at present to address this discrepancy is to use 
in silico fragmentation software to identify unknown compounds by comparing and ranking theoretical MS/MS 
fragmentations from target structures to experimental tandem mass spectra (MS/MS). We compared the performance 
of four publicly available in silico fragmentation algorithms (MetFragCL, CFM-ID, MAGMa+ and MS-FINDER) that 
participated in the 2016 CASMI challenge. We found that optimizing the use of metadata, weighting factors and the 
manner of combining different tools eventually defined the ultimate outcomes of each method. We comprehensively 
analysed how outcomes of different tools could be combined and reached a final success rate of 93% for the training 
data, and 87% for the challenge data, using a combination of MAGMa+, CFM-ID and compound importance informa-
tion along with MS/MS matching. Matching MS/MS spectra against the MS/MS libraries without using any in silico 
tool yielded 60% correct hits, showing that the use of in silico methods is still important.
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Background
Many fields of research, from environmental analysis to 
forensics and biology, are moving towards hypothesis-
generating screening approaches using liquid chromatog-
raphy coupled with tandem mass spectrometry (LC–MS/
MS) [1, 2]. Such an approach yields hundreds to thou-
sands of signals per study, most of them having uniden-
tified structures even after comprehensive searches of 
existing mass spectral libraries such as NIST, MassBank, 

Metlin or MassBank of North America (MoNA). Over-
all, tandem mass spectral databases cover less than one 
per cent of the compound space that is covered in Chem-
spider or PubChem with 50 to 90 million compounds, 
respectively. As an alternative strategy for compound 
annotation of known compounds in silico fragmenta-
tion software tools have been developed and are used 
to identify MS/MS spectra when the reference MS/MS 
spectrum is not available. Such software tools include 
MetFrag [3], MIDAS [4], MAGMa [5, 6], MAGMa+ 
[7], MOLGEN–MS/MS [8], CSI:FingerID [9], CFM-
ID [10], FingerID [11], Input output kernel regression 
(IOKR) [12] and the MS-Finder software [13]. A number 
of commercial software solutions such as MassFrontier 
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(HighChem), MS-Fragmenter (ACD/Labs) or Molecular 
Structure Correlator (Agilent) are also available, but lack 
open access code or algorithm transparency.

The data for our investigation was obtained from the 
CASMI website (http://www.casmi-contest.org/2016/). 
The Critical Assessment of Small Molecule Identification 
(CASMI) contest was founded in 2012 to help scientists 
with their compound identification methods by provid-
ing community challenges and competitions [14]. For 
practical reasons, including the source code and model 
availability, error handling, batch processing capabilities 
and the ability to perform local database queries, we only 
covered in silico fragmentation software that was used 
for results submitted by the CASMI 2016 deadline.

We surveyed four different tools, all using different 
algorithms for in silico fragmentation, MetFragCL, CFM-
ID, MAGMa+ and MS-FINDER. MetFragCL retrieves 
candidate structures and fragments them using a bond 
dissociation approach and those fragments are then com-
pared to the product ions in a measured spectrum to 
determine which candidate best explains the measured 
compound by assigning it a score that is a function of the 
mass to charge ratio (m/z), intensity and bond dissocia-
tion energy (BDE) of the matched peaks, while 5 of neu-
tral loss rules account for rearrangements [3]. CFM-ID 
(competitive fragment modelling) employs a method for 
learning a generative model of collision-induced dissoci-
ation fragmentation [10]. CFM-ID can be used to assign 
fragments to spectra to rank the candidates, but also to 
predict MS/MS spectra from structures alone. MAGMa+ 
is a parameter-optimized version of the original MAGMa 
software [5]. MAGMa analyses substructures and utilizes 
different bond dissociations. It furthermore calculates 
a penalty score for all the bonds that are disconnected 
and form a specific substructure [15]. The improved 
MAGMa+ version utilized a parameter optimization 
approach to find optimal processing parameters [7]. The 
MS-FINDER algorithm simulates the alpha-cleavage of 
linear chains up to three chemical bonds and considers 
also bond dissociation energies. Multiple bonds (dou-
ble, triple, or cycles) are modelled as penalized single 
bonds in which hydrogens are lost (hydrogen rearrange-
ment rules). The total score also includes mass accu-
racy, isotopic ratio, product ion assignment, neutral loss 
assignment and existence of the compound in an inter-
nal structure database [13, 16]. First-principle quantum 
chemical models for spectrum prediction [17] have only 
been developed for electron ionization but not for elec-
trospray collision-induced dissociation tandem mass 
spectrometry (ESI-CID-MS/MS).

The CASMI 2016 contest consisted of three catego-
ries. Category 1: “Best Structure identification on Natu-
ral Products”, with 19 natural product dereplication 

challenges. The data for Categories 2 and 3 consist of 
training sets and challenge sets of 312 and 208 of known 
compounds, respectively. For Category 2: “Best Auto-
matic Structural Identification—In Silico Fragmentation” 
no other information than the in silico fragmentation 
was allowed [18]. Category 3: “Best Automatic Structural 
Identification—Full Information” allowed for any type of 
additional information to be used, including mixed mod-
els, structure rankings and MS/MS search [19].

In order to obtain the ground truth of performance of 
in silico fragmentation software it is important to exclude 
all pre-knowledge or any bias such as molecular for-
mula lookup, database ranking or any other means that 
would influence the score. Furthermore, it is important 
to include a large number of unknown compounds in 
order to improve the statistical power of the investiga-
tion. We therefore chose the 312 training and 208 chal-
lenge MS/MS spectra for investigating the capabilities of 
current software to perform unbiased batch processing 
of hundreds of test and validation cases. Additionally, we 
compare the tools’ performances when more information 
is allowed to be used and how consensus modelling can 
improve results.

Methods
Tandem mass spectral input data
The CASMI 2016 website (http://www.casmi-contest.
org/2016/) provided 312 training and 208 validation files 
containing MS/MS information as *.MGF file. The MS/
MS spectra were acquired on a Q Exactive Plus Hybrid 
Quadrupole-Orbitrap mass spectrometer (Thermo 
Fisher), with <5  ppm mass accuracy and MS/MS reso-
lution of 35,000 using ESI ionization. Spectra were 
collected in stepped 20, 35 and 50  eV in mode. Only 
[M+H]+ (positive) and [M−H]− ion species were avail-
able. Spectral meta-data included the ChemSpider ID, 
compound name, the monoisotopic mass, molecular 
formula, SMILES, InChI and InChIKey. Some of the can-
didate structures provided by the organizers were errone-
ous and did not match the provided formula, SMILES or 
InChIKey. After the contest deadline, the CASMI organ-
izers provided all correct results for the 312 training and 
208 challenge cases that were used in our evaluation.

Query compounds from ChemSpider
For each of the training and validation cases the CASMI 
team provided possible candidate lists. These compounds 
were obtained from ChemSpider with a ±5  ppm search 
window and the structure files contained the ChemSpider 
ID, compound name, monoisotopic mass, molecular for-
mula, SMILES, InChI and InChIKey. Because compound 
masses are unevenly distributed, some mass spectra 
yielded up to 8000 possible structure candidates within 
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the 5 ppm mass window, whereas one mass spectrum was 
only associated with a single possible candidate structure, 
pentabromophenol. A total of 432,511 candidates were 
available for the training set and 258,808 candidates were 
obtained for the validation set (challenge set).

Each of the four software tools used different structure-
handling libraries or routines, hence structure conver-
sion issues occurred. Such errors can be attributed to 
salt forms, isotopic elements, radical compounds and 
conversion issues. Each of the four tested software tools 
required different input formats and output formats. For 
that purpose, an application was written in Java to pro-
cess all output files and analyse the results. It also includes 
short scripts to help with preparing input files for each 
tool. Source and result files can be found under (https://
sourceforge.net/projects/insilico-fragmentation/).

Software settings
MS‑FINDER
The MS-FINDER software (version 1.70) was down-
loaded from the Riken institute website (http://prime.
psc.riken.jp/Metabolomics_Software/MS-FINDER/
index.html) and was used on a standard personal com-
puter with a 2.50 GHz Intel Core-i7 CPU and 16 GBytes 
of RAM under the Windows 10 operating system. MS-
FINDER requires specially formatted MS1 and MS2 files 
as input. The settings are listed in Additional file 1: Table 
S1. The MS-FINDER program has a resource folder 
where two databases are located that the software uses to 
rank the candidate structures. The file ExistStructureDB_
vs8.esd is an internal structure lookup database and the 
file ExistFormulaDB_vs8.efd (comprising formula from 
13 metabolomics databases) is used to prioritize gener-
ated molecular formulas. These databases were emp-
tied in order to evaluate the pure in silico fragmentation 
performances for challenge 2 and a new database was 
created, analogous to the one of MS-FINDER, using can-
didate structures provided by the CASMI organizers.

Both databases were opened in Notepad++ and all 
data except the header row was deleted and saved in the 
same format. Settings were adjusted to ±5  ppm mass 
accuracy and all compounds were processed in batch 
mode. Detailed information about the process can be 
obtained from the supplement section.

CFM‑ID
The CFM-ID software (version 2.2, revision 26) was 
downloaded from https://sourceforge.net/projects/cfm-
id/and was used on a server with 48-core AMD Opteron 
6344 processor (2.6 GHz) running CentOS Linux 7. Out 
of several available command line utilities, the cfm-id 
executable was used for this project. Given an input 
spectrum and a list of candidate SMILES (or InChI) as 

provided by CASMI, cfm-id computes a predicted spec-
trum for each candidate and compares it to the input 
spectrum. It returns a ranking of the candidates accord-
ing to how closely they match. The original CFM positive 
and negative models were used for the spectrum pre-
diction, which were originally trained on data from the 
METLIN database. Mass tolerances of ±5 ppm were used 
and the Jaccard score and dot product score were applied 
for spectral comparisons. The dot product produced 
better rankings when applied in the voting/consensus 
model and was therefore used. The input spectrum was 
repeated for the low, medium and high energies, which 
originally emulate 10, 20 and 40 eV CID MS/MS spectra. 
Additional information is contained in Additional file 1.

MetFragCL
The command line version of MetFragCL software (ver-
sion 2.2-CL) was downloaded from https://github.com/c-
ruttkies/MetFrag and was used on MacBook Pro with 
2.7  GHz Intel Core i5 and 16  GB DDR3. MetFragCL 
needs a parameter file of specific layout as input and it 
contains all necessary information for the processing of a 
given MS/MS peak list. Parameters for fragmentation are 
shown in Additional file 1: Table S2. Candidate files were 
prepared with the same application used for the analy-
sis of the results, as mentioned previously. Finally, the in 
silico fragments are matched against the query peak list 
provided by CASMI. The measured peaks correspond to 
the charged fragments, so the matching function adds 
(positive mode) or removes (negative mode) a proton 
(1.007 Da) to or from the fragment mass. Additional set-
tings are described in Additional file 1.

MAGMa+
The MAGMa+ software was downloaded from https://
github.com/savantas/MAGMA-plus and was used on 
a cluster node with a 48-core AMD Opteron 6344 pro-
cessor running CentOS Linux 7. MAGMa+ is an opti-
mized version of the software MAGMa and is written as a 
Python wrapper script with identical command line argu-
ments as the original MAGMa program with few changed 
parameters. Each candidate molecule was used to anno-
tate the corresponding spectral tree with in silico gener-
ated substructures according to the algorithm published 
previously [15]. A Python script (process_hmdb.py) is 
provided that generates an SQLite.db database file from 
the public HMDB.sdf structures file, which is then used 
when running MAGMa. This script was modified to pro-
duce an analogous database file from the provided InChIs 
for each set of CASMI candidates. An additional Python 
script was written to generate spectral-tree files required 
by MAGMa from the CASMI peak lists and metadata. 
Additional information can be found in Additional file 1.
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Results
CASMI Category 2 (Best Automatic Structural 
Identification: In Silico Fragmentation Only): parameter 
optimization and development of a voting/consensus 
model
We tested the four tools that were used in the CASMI 
challenge, and for which the authors of the tools submit-
ted result data by the CASMI deadline. Figure  1 gives 
the overview of our workflow for comparing results for 
CASMI Category 2 (in silico fragmentation tools only, 
Fig. 1a) and CASMI Category 3 (complementing results 
of in silico fragmentation tools with metadata queries, 
here: presence in chemical databases and MS/MS librar-
ies). We first investigated whether the structures used in 
the CASMI training and validation sets were similar to 
each other. We decomposed the structures into molecu-
lar descriptors (structure fingerprints) and used these 
for variance analysis by Principal Component Analysis 
(PCA), (see Fig.  2). This analysis showed that both data 
sets were structurally highly similar, and only few com-
pounds in the validation set were structurally different 
from the training set. Indeed, discrepancies in structure 
similarities between model building and model testing 
will certainly also occur when researchers try to identify 

unknown compounds in exposome or metabolomics 
research, as one cannot expect that ‘unknowns’ in untar-
geted profiling experiments will indeed fully resemble 
structures of identified compounds.

Not surprisingly, simple parameter optimization 
already resulted in improved structure annotation accu-
racies in comparison to the results the tool authors had 
submitted to CASMI. Such parameter optimization 
includes using a 5 ppm window for spectral comparison. 
Detailed parameter setting for each tool is listed in the 
Additional file 1. Secondly, each tool provided a ranked 
list of all MS/MS spectra (training and challenge) which 
was then used as an input for voting/consensus model 
resulting in new improved rankings, as described below.

In silico performance using the training set
Following the guidelines of the Category 2 challenge by 
the 2016 CASMI organizers, we evaluated each in silico 
software individually by using the best recommended 
settings and without secondary database rankings or use 
of other metadata. We utilized the 312 MS/MS spectra 
from the CASMI training set for parameter optimiza-
tion of each tool and development of voting/consensus 
model. The number of compounds to be queried for each 

Fig. 1  Structure elucidation workflow of small molecules. a In silico fragmentation can be used to identify and rank unknown MS/MS spectra by 
matching theoretical fragments to experimental MS/MS spectra. b The voting/consensus combines the output of multiple in silico fragmentation 
tools, uses compound and MS/MS databases lookups to further boost compound ranks
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individual case ranged from less than 20 to over 8000 
compounds. The individual software tools were able 
identify between 10 and 17% of the training set as top 
hits (see Table 1). CFM-ID ranked the correct metabolite 
first in 15% of the cases and 40% as top 5 candidates. MS-
FINDER ranked the correct metabolite first in 10% of 
cases and 27% in the top 5. MAGMa+ ranked 16% of the 
compounds correctly. MetFragCL was the best perform-
ing tool in our comparison placing 17% cases correctly in 
the top rank and 43% in the top 5 hits (Table 1).

Voting/consensus model
Each software provided candidate ranking for each MS/
MS spectrum from the training and challenge data set. 
For ranking of the structures we considered only the first 
block of an InChiKey to discard enantiomeric or dias-
tereomeric isomers. The voting/consensus model com-
bines the ranking results of all tools and creates a new 
ranking system based on two criteria. The primary score 
of the voting/consensus model is calculated as the sum 
of the number of tools that successfully ranked a candi-
date compound. When all four tools found the candidate 
structure, this primary score was four. When none of the 
tools ranked a candidate, the score was zero. The second-
ary score for every voting/consensus model was calcu-
lated for each candidate structure by:

S =

∑

A

Ranking
(

software A
)

ω

(

top 10 software A
)

where ω represents the calculated sensitivity. The sensi-
tivity for each software was calculated using a training 
data set as follows:

Correctly assigned structures were tested with differ-
ent thresholds: top rank (the correct structure had to be 
ranked #1 by the software), top 5 (the correct structure 
had to be found within the top 5 structures), top 10 and 
top 20. We obtained best results when the sensitivity 
was calculated for the top 10 correctly assigned struc-
tures as shown in Table 3, and the calculated sensitivities 
were used for the validation set later on. By sorting the 
results in two levels with primary scores in descending 
and secondary scores in ascending order, new rankings 
are obtained for each candidate structure. The best vot-
ing/consensus model was chosen for each experiment. 
The voting/consensus model was written in R script and 
Java. The code is freely available at https://sourceforge.
net/projects/insilico-fragmentation/. The application of 
the voting/consensus model to both categories is shown 
in the Fig. 1.

Voting/consensus model applied to in silico results
Subsequently we improved overall rankings by applying 
the voting/consensus model as detailed in the method 
section. In comparison to each individual tool’s results, 
the voting/consensus model built from a combination of 
MetFragCL and CFM-ID improved the overall results by 
5%, ranking 22% cases in the top rank, 49% in the top 5 
and 63% of the compounds in the top 10, an overview is 
shown in Fig. 3. The voting/consensus model takes into 
account the quality of each software which is why a sec-
ondary score is calculated using the number of hits in the 
top 10, assuming that experts will usually rely on and use 
the top 10 candidates proposed by a software.

CASMI Category 3 (Best Automatic Structural 
Identification: Full Information): application of database 
and MS/MS similarity boosting
In Category 3, any additional information could be used 
to aid in the identification of the challenge spectra, for 
example, retention time information, mass spectral 
libraries, patents, reference count or biological relevance. 
Therefore, this CASMI category allowed a comparison of 
results obtained from pure in silico fragmentation tools 
with the integration of context metadata and in silico 
tools. Here, we exemplify the power of combining data-
base presence with MS/MS similarity boosting in order 
to improve the accuracy of structure annotations from 
mass spectra, an approach which was successfully imple-
mented previously [20].

ω =
correctly assigned structures

correctly assigned structures + falsely assigned structures

Fig. 2  Principal component analysis of the molecular descriptor 
space from the training and validation sets. Individual outliers show 
compounds only found in a specific data set. Overlapping dots show 
very similar compounds

https://sourceforge.net/projects/insilico-fragmentation/
https://sourceforge.net/projects/insilico-fragmentation/
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Table 1  Results for the training data of the CASMI 2016 contest

# Tools Top hits Top 5 Top 10 Top 20

1 MetFrag + CFM-ID + DB + MS/MS Voting/consensus 290 304 305 306

2 CFM-ID + ID_sorted + MAGMa(+) + DB + MS/MS Voting/consensus 289 304 306 308

3 MetFrag + ID_sorted + DB + MS/MS Voting/consensus 288 305 306 308

4 MetFrag + DB + MS/MS 288 305 305 307

5 MAGMa(+) + ID_sorted + DB + MS/MS Voting/consensus 288 304 307 309

6 CFM-ID + ID_sorted + MAGMa(+) + MetFrag + DB + MS/MS Voting/consensus 288 304 305 308

7 MetFrag + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 288 304 305 307

8 CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 288 303 306 307

9 MetFrag + MAGMa(+) + DB + MS/MS Voting/consensus 288 303 305 307

10 CFM-ID + ID_sorted + DB + MS/MS Voting/consensus 287 304 306 308

11 CFM-ID + DB + MS/MS 287 304 304 306

12 ID-sorted + DB + MS/MS 286 306 306 308

13 MetFrag + MS-FINDER + DB + MS/MS Voting/consensus 286 302 305 307

14 MS-FINDER + CFM-ID + DB + MS/MS Voting/consensus 286 301 304 305

15 MAGMa(+) + DB + MS/MS 286 301 302 303

16 MetFrag + MS-FINDER + CFM-ID + DB + MS/MS Voting/consensus 285 303 305 307

17 MS-FINDER + ID_sorted + DB + MS/MS Voting/consensus 285 302 306 307

18 MetFrag + MS-FINDER + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 285 302 305 307

19 MS-FINDER + DB + MS/MS 285 300 302 303

20 CFM-ID + ID_sorted + MAGMa(+) + MetFrag + MS-FINDER + DB + MS/MS Voting/consensus 284 303 306 307

21 MetFrag + MS-FINDER + MAGMa(+) + DB + MS/MS Voting/consensus 284 302 306 306

22 MS-FINDER + MAGMa(+) + DB + MS/MS Voting/consensus 284 301 305 306

23 MS-FINDER + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 283 302 305 305

24 MetFrag + CFM-ID + DB Voting/consensus 243 291 296 304

25 MetFrag + MS-FINDER + CFM-ID + DB Voting/consensus 242 289 298 301

26 MetFrag + CFM-ID + MAGMa(+) + DB Voting/consensus 240 290 297 304

27 MS-FINDER + DB 239 284 294 296

28 MetFrag + DB 238 290 296 301

29 MS-FINDER + CFM-ID + DB Voting/consensus 238 287 297 298

30 MS-FINDER + CFM-ID + MAGMa(+) + DB Voting/consensus 237 288 298 300

31 CFM-ID + MAGMa(+) + DB Voting/consensus 236 289 298 303

32 MetFrag + MS-FINDER + DB Voting/consensus 236 289 297 300

33 MetFrag + MS-FINDER + MAGMa(+) + DB Voting/consensus 236 288 298 300

34 MAGMa(+) + DB 236 287 294 299

35 CFM-ID + DB 236 286 295 302

36 MetFrag + MAGMa(+) + DB Voting/consensus 235 290 298 301

37 MS-FINDER + MAGMa(+) + DB Voting/consensus 235 288 298 299

38 ID-sorted + DB 227 291 301 303

39 Randomize + DB + MS/MS 195 273 289 305

40 Randomize + DB 193 268 283 298

41 ID-sorted 143 249 267 270

42 MetFrag + CFM-ID in silico Voting/consensus 69 155 194 230

43 MetFrag + CFM-ID + MAGMa(+) in silico Voting/consensus 62 154 187 228

44 MetFrag + MS-FINDER + CFM-ID + MAGMa(+) in silico Voting/consensus 62 145 180 228

45 MetFrag + MS-FINDER + CFM-ID in silico Voting/consensus 58 145 179 221

46 MS-FINDER + CFM-ID + MAGMa(+) in silico Voting/consensus 58 133 170 213

47 CFM-ID + MAGMa(+) in silico Voting/consensus 55 134 179 221

48 MetFrag in silico only 52 134 171 210

49 MetFrag + MAGMa(+) in silico Voting/consensus 52 133 171 210
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Ultimately, a modified voting/consensus model was 
generated starting with the primary ranking obtained 
by the in silico fragmentation voting/consensus model 
sorted in descending order. The final score was then cal-
culated by adding in the presence in compound data-
bases, giving special emphasis on the presence of a 
structure in the STOFF-IDENT database, and adding 
MS/MS spectrum matching scores. When this rank-
ing yielded a tie for two structures, the solution with the 
higher in silico ranking was given priority.

The rationale for these boosting factors is given as 
follows:

(1) Using database boosting In silico fragmentation tools 
have never been published as a stand-alone tool without 

Final score = in silico consensus rank + DB presence

+ 2XDBSTOFF−IDENT + 4XDBMS/MS

searching structure databases [21]. Querying public data-
bases enables ranking in silico results according to the 
occurrence or importance of compounds. For example, if 
a candidate result structure is contained in multiple data-
bases, it is most likely an often observed or important 
molecule, and might be more likely the correct structure 
than a less frequently observed isomer. Using this infor-
mation would, hence, boost the ranking of isomers of in 
silico fragmentation tools. Other methods could employ 
the frequency of literature citations or the presence in tar-
get databases (e.g. for compounds known to be present in 
species or organs of interest). Here, we have used boosting 
structure rankings by its membership in the local data-
base of MS-FINDER. This local compound database cov-
ers structures from the 13 most important metabolomic 
databases, including BMDB, CheBI, DrugBank, ECMDB, 
FoodDB, HMDB, KNApSack, PlantCyc, SMPDB, T3DB, 
UNPD, YMDB and STOFF-IDENT [22], containing 
220,213 entries sorted according to InChIKey, PubChem, 
exact mass, formula and SMILES.

(2) Using database presence emphasis factors Many 
compounds in the CASMI training and challenge sets 
were environmentally relevant. We have therefore used 
the STOFF-IDENT compound database [22] which is 
used for environmentally relevant substances with a two-
fold boost factor. Other compound databases such as the 
EPA Dashboard [21] can be used accordingly. The boost-
ing factor should be higher than one but lower than the 
MS/MS boosting factor. We recommend that this for-
mula should be adapted when searching for structures 
that have other origins. When investigating endogenous 
metabolites, it is important to utilize biochemical data-
bases like KEGG and to boost them accordingly.

(3) Using mass spectral similarities If an unknown 
compound has a perfect MS/MS similarity hit in a stand-
ard spectral library such as MassBank or NIST14, such 
a compound must be ranked very highly in the overall 
score. Even for medium spectral similarities, there are 

Table 1  continued

# Tools Top hits Top 5 Top 10 Top 20

50 MAGMa + in silico only 50 121 151 189

51 MS-FINDER + CFM-ID in silico Voting/consensus 50 111 141 188

52 MetFrag + MS-FINDER + MAGMa(+) in silico Voting/consensus 49 128 153 210

53 CFM-ID in silico only 48 124 170 209

54 MS-FINDER + MAGMa(+) in silico Voting/consensus 44 105 135 183

55 MetFrag + MS-FINDER in silico Voting/consensus 43 120 143 178

56 MS-FINDER in silico only 32 86 117 145

57 Randomize 4 13 27 46

‘MetFragCL, CFM-ID, MAGMa+ and MS-FINDER’ designate results obtained by the in silico fragmentation software tools. ‘DB’ designates priority ranking by presence 
in chemical and biochemical databases. ‘MS/MS’ designates presence in MS/MS libraries based on >400 dot-product similarity. 312 MS/MS spectra of the CASMI 2016 
training data were used

Fig. 3  Comparison of the accuracy of compound annotations 
obtained by in silico fragmentation tools alone and in combination 
with metadata for both CASMI data sets
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reasons to assume that differences between the experi-
mental spectrum and library spectra might be due to 
differences in MS/MS parameters. Hence, candidate 
structures were boosted by mass spectral similarity 
matching against MS/MS libraries [23]. The NIST MS 
PepSearch program is a batch command-line version 
of the NIST MS search GUI program. Originally aimed 
at peptide scoring, this software can also be used for 
small molecule MS/MS similarity. Using.msp as input 
files, the NIST [24] and MassBank [11] MS/MS libraries 
were searched with a 5 ppm precursor window. Detailed 
parameters are listed in Additional file  1: Table S3. Out 
of 312 MS/MS spectra in the training set, 276 challenge 
spectra (88.4%) yielded hits in the MS/MS libraries 
with dot product scores ranging from very low similar-
ity matches of 183 (for the training spectrum 109) up to 
optimal dot product scores of 999 (for the training spec-
trum 029). In the challenge data set, 208 MS/MS spectra 
were matched against the combined MassBank and NIST 
libraries. 125 spectra (60%) had positive matches with 
dot product scores ranging from 441 (for the challenge 
spectrum 182) up to a dot product score of 999 (for the 
challenge spectrum 049). We tested different cut offs for 
dot product matching scores in order to determine which 
threshold yielded results with most true positive com-
pound annotations and the fewest false positive identi-
fications. We found that for this CASMI data set, a dot 
product score threshold of 400 gave the best results on 
the training MS/MS spectra data set. We therefore used 
the same threshold for the CASMI challenge data set.

In order to ensure that good hits in the MS/MS spec-
tral comparisons were given a high priority in ranking, 
we boosted hits for MS/MS similarity by a four-fold fac-
tor. We did not further use the actual MS/MS similar-
ity match score but only the presence of an ‘MS/MS dot 
score >400’ hit, because the CASMI spectra represented 
data from different experiments and different MS/MS 
conditions, similar to spectra in NIST and MassBank 
libraries. The final rankings were obtained by sorting the 
sum of the scores in descending order. The higher the 
final score—the higher the new ranking.

Using this multi-parameter model, we boosted the 
overall accuracy of the model significantly by including 
each individual in silico fragmentation tool.

(4) Using other metadata We also noted that CASMI 
structure entries were listed by ChemSpider numbers, a 
database listing over 50 million chemicals [25]. Chem-
Spider entries are numbered by increasing numbers 
according to date of entry. We hypothesized that early 
ChemSpider entries (with low entry numbers) might be 
more relevant than high-entry numbers and tested if sim-
ple ID-number ranking (reported as ID-sorted) improved 
the overall ranking accuracy (Table 1).

A total of 57 different combinations were tested and 
the related data can be found in Table 1. The best voting/
consensus model, built on CFM-ID and MetFragCL and 
it placed ~93% correctly in the top rank and ~98% in the 
top 10. However, it should be noted that simple boosting 
(i.e. querying for presence in databases or MS/MS simi-
larity libraries) yielded almost as good results as a com-
bination of in silico fragmentation and database/library 
boosting (Table  1): boosting alone yielded 286 correct 
hits which was only slightly worse than the best combi-
nation of in silico fragmentation tools and boosting. In 
comparison, in silico fragmentation tools alone (without 
boosting), yielded a maximum of 69 correct hits, even in 
a voting/consensus model, and a maximum of 52 correct 
hits when a single in silico tool was used.

Validation set performance for Categories 2 and 3
Finally, all 57 combinatorial methods were calculated 
on the training set and subsequently applied to the vali-
dation set (Table  2). This validation result mimics the 
approach an experienced investigator would take when 
identifying unknown compounds, by developing and tun-
ing and cross-validating the algorithm on the training set 
and then applying the optimized parameters on the vali-
dation set. Again, each tool was used individually with-
out any additional information and the voting/consensus 
model was applied using the weights calculated from the 
training set (see Table 3).

The validation set corroborated the findings from the 
training set performances. With 25% correctly assigned 
structures as the top hit, MetFragCL was the best stand-
alone in silico fragmentation tool. CFM-ID followed with 
14% correctly identified compounds and MAGMa+ and 
MS-FINDER identified less than 14% correct. The voting/
consensus model built on MetFragCL, CFM-ID and MS-
FINDER did not improve the top hit results of MetFrag, 
however there were 9% more correctly assigned struc-
tures noted in the top 10.

When boosting the pure in silico outputs by database 
presence and MS/MS scoring, the best individual tool to 
use was CFM-ID, correctly assigning 86% of the cases in 
the top rank. Indeed, results for each of the in silico tools 
were drastically improved by DB and MS/MS boosting. 
The best results (top hit) were obtained with 87% correct 
annotations for the CFM-ID and ID-sorted voting/con-
sensus model. Additional file 2 contains all the combina-
torial methods that wereused but were not shown in the 
manuscript.

Calculation times
We investigated a total of 520 compounds. However, 
each individual in silico tool had to process 691,319 com-
pounds from the query database. This large number of 
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Table 2  Results for the challenge (validation) data of the CASMI 2016 contest

# Tools Top hits Top 5 Top 10 Top 20

1 CFM-ID + ID_sorted + DB + MS/MS Voting/consensus 181 194 201 204

2 CFM-ID + ID_sorted + MAGMa(+) + DB + MS/MS Voting/consensus 180 195 200 205

3 CFM-ID + ID_sorted + MAGMa(+) + MetFrag + DB + MS/MS Voting/consensus 180 194 200 204

4 CFM-ID + DB + MS/MS 180 193 199 201

5 MAGMa(+) + ID_sorted + DB + MS/MS Voting/consensus 180 193 197 201

6 CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 180 192 195 202

7 MetFrag + MAGMa(+) + DB + MS/MS Voting/consensus 180 188 194 198

8 MAGMa(+) + DB + MS/MS 180 188 192 198

9 MetFrag + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 179 190 196 201

10 MetFrag + CFM-ID + DB + MS/MS Voting/consensus 178 192 199 203

11 CFM-ID + ID_sorted + MAGMa(+) + MetFrag + MS-FINDER + DB + MS/MS Voting/consensus 175 191 200 203

12 MetFrag + MS-FINDER + CFM-ID + DB + MS/MS Voting/consensus 175 189 194 200

13 MetFrag + MS-FINDER + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 175 189 194 200

14 MS-FINDER + ID_sorted + DB + MS/MS Voting/consensus 175 189 194 199

15 MS-FINDER + CFM-ID + MAGMa(+) + DB + MS/MS Voting/consensus 175 188 196 201

16 MetFrag + MS-FINDER + MAGMa(+) + DB + MS/MS Voting/consensus 175 186 191 197

17 MS-FINDER + MAGMa(+) + DB + MS/MS Voting/consensus 175 185 190 195

18 ID_SORTED + DB + MS/MS 174 195 198 204

19 MetFrag + ID_sorted + DB + MS/MS Voting/consensus 174 194 199 203

20 MS-FINDER + CFM-ID + DB + MS/MS Voting/consensus 174 189 195 201

21 MetFrag + DB + MS/MS 174 189 192 197

22 MetFrag + MS-FINDER + DB + MS/MS Voting/consensus 174 187 190 197

23 MS-FINDER + DB + MS/MS 174 184 185 191

24 MetFrag + CFM-ID + MAGMa(+) + DB Voting/consensus 151 184 192 198

25 CFM-ID + DB 151 183 191 197

26 MetFrag + MS-FINDER + CFM-ID + DB Voting/consensus 151 180 191 198

27 MS-FINDER + CFM-ID + MAGMa(+) + DB Voting/consensus 151 179 191 198

28 CFM-ID + MAGMa(+) + DB Voting/consensus 150 184 189 199

29 MetFrag + MAGMa(+) + DB Voting/consensus 150 181 189 194

30 MetFrag + MS-FINDER + MAGMa(+) + DB Voting/consensus 150 178 186 193

31 MS-FINDER + MAGMa(+) + DB Voting/consensus 150 174 183 191

32 MetFrag + CFM-ID + DB Voting/consensus 149 186 196 201

33 MAGMa(+) + DB 149 180 185 193

34 MS-FINDER + CFM-ID + DB Voting/consensus 149 179 189 199

35 MS-FINDER + DB 148 173 178 186

36 MetFrag + DB 147 185 188 194

37 MetFrag + MS-FINDER + DB Voting/consensus 147 178 184 193

38 ID_SORTED + DB 134 188 194 202

39 Randomize + DB + MS/MS 123 184 189 197

40 Randomize + DB 119 176 180 189

41 ID_SORTED 106 169 177 186

42 MetFrag in silico 53 92 111 137

43 MetFrag + MS-FINDER + CFM-ID in silico Voting/consensus 51 95 129 151

44 MetFrag + CFM-ID in silico Voting/consensus 47 102 129 153

45 MetFrag + MS-FINDER + CFM-ID + MAGMa(+) in silico Voting/consensus 46 97 128 152

46 MetFrag + CFM-ID + MAGMa(+) in silico Voting/consensus 42 104 126 150

47 CFM-ID + MAGMa(+) in silico Voting/consensus 39 94 123 148

48 MetFrag + MAGMa(+) in silico Voting/consensus 39 90 111 128

49 MetFrag + MS-FINDER + MAGMa(+) in silico Voting/consensus 38 79 117 138
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database compounds made it challenging for a number of 
tools. Performance-wise, MetFragCL was the fastest with 
only a 12-h calculation time for the 312 training com-
pounds, MAGMa+ needed 18  h, whereas MS-FINDER 
needed one day, using a regular personal computer as 
given in the method section. CFM-ID needed two days 
on a 48-CPU cluster to finish the calculation of the train-
ing set. Here additional time-out parameters can be set 
in the future to avoid very long computational times for 
individual compounds.

Discussion
Results uploaded to the CASMI contest website as well 
as our post hoc tool comparison clearly show that in sil-
ico algorithms alone are still far away from practical use 
for identification of true unknowns, for example, com-
pounds that are not currently represented in chemical 
or biochemical databases. Only 17% of the answers were 
correctly annotated structures from MS/MS spectral 
information in the training data set. Even when combin-
ing all in silico tools in a voting/consensus model, only 
22% of the compounds were ranked as top-candidates. 
Importantly, even these numbers rest on the assumption 
that ‘unknowns’ detected in LC–MS/MS of metabolomic 

or environmental studies are present as existing struc-
tures in PubChem or ChemSpider, as CASMI gave lists of 
potential structures that were to be ranked using Chem-
Spider structures. It is very likely that in actual untar-
geted profiling studies, many structures would have to 
be considered ‘unknown unknowns’, i.e. compounds that 
have not been structurally described before and that are 
not represented by the 70 million compounds found in 
PubChem or ChemSpider. Few approaches exist to enu-
merate such database derivative structures, for example 
the ‘metabolic in silico network expansion DB (MINE)’ 
[23]. Completely de-novo spectra-to-structure calcula-
tions are yet impossible.

Currently, best results were obtained when struc-
ture database importance and MS/MS search were used 
along with in silico voting/consensus models. Interest-
ingly, each of the in silico tools experienced tremendous 
boosts, leading to 93% correctly assigned structures 
when combining CFM-ID and MetFragCL results in the 
training data set. Indeed, combined approaches have 
been successfully used in past CASMI challenges [6, 12, 
26, 27]. However, previous challenges did not include a 
large enough number of compounds for full testing. Our 
step-wise combinatorial multi-model approach shows 
a more detailed view of overall performances. Once 
customizable tools are available, we will extend our 
searches to other in silico fragmentation algorithms such 
as CSI:FingerID [9] or the novel Input Output Kernel 
Regression models (IOKR) [28]. The two latter tools are 
of interest, because they are user-friendly, very fast and 
were top performers in the official CASMI contest in the 
in silico-only category. CSI:FingerID currently does not 
allow for localized database search, and CSI:IOKR is still 
not publicly available.

The compounds provided in the CASMI 2016 contest 
were environmental xenobiotics and drugs, all covered 
in structure databases. About 70 MS/MS spectra had not 
yet been deposited in commercial or publicly available 

Table 2  continued

# Tools Top hits Top 5 Top 10 Top 20

50 MS-FINDER + CFM-ID + MAGMa(+) in silico Voting/consensus 34 97 127 147

51 MetFrag + MS-FINDER in silico Voting/consensus 33 76 103 125

52 MS-FINDER + MAGMa(+) in silico Voting/consensus 32 69 93 119

53 MS-FINDER + CFM-ID in silico Voting/consensus 30 76 110 139

54 CFM-ID in silico (dot product) 29 76 104 122

55 MAGMa(+) in silico 28 72 98 117

56 MS-FINDER in silico 23 57 79 93

57 Randomize 20 27 28 121

‘MetFragCL, CFM-ID, MAGMa+ and MS-FINDER’ designate results obtained by the in silico fragmentation software tools. ‘DB’ designates priority ranking by presence 
in chemical and biochemical databases. ‘MS/MS’ designates presence in MS/MS libraries based on >400 dot-product similarity. 208 MS/MS spectra of the CASMI 2016 
training data were used

Table 3  Sensitivity, ω, calculated for each tool (MetFragCL, 
CFM-ID, MAGMa+ and MS-FINDER) based on the correctly 
assigned structures in the top rank, top 5, top 10 and top 
20 using the training data set of 312 MS/MS spectra

The sensitivity was calculated as follows: ω = true positive/(true positive + false 
negative). The calculated sensitivities were used on the challenge data set

# Tools Top hits Top 5 Top 10 Top 20

1 MetFragCL in silico only 0.1666 0.4294 0.548 0.673

2 MAGMa+ in silico only 0.1602 0.3878 0.4839 0.6057

3 CFM-ID in silico only 0.1538 0.3974 0.5448 0.6698

4 MS-FINDER in silico only 0.10256 0.27564 0.3750 0.4647
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MS/MS databases. Therefore, these MS/MS spectra were 
not available for any software to be used as training sets, 
rendering these spectra an excellent test for the CASMI 
2016 contest to test in silico fragmentation algorithms. 
Moreover, 37,957 compounds contained fluorine atoms 
in their structure, for which fragmentation patterns are 
harder to interpret. Similar to real LC–MS/MS runs, 
a range of challenge MS/MS spectra were sparse in the 
number of product ion peaks, causing in silico tools to 
fail for lack of data (Additional file  1: Table S4). While 
often hundreds of isomers are retrieved per chemical 
formula, annotation tools must fail if too few MS/MS 
product ions are generated [29]. We recommend acquir-
ing and combining MS/MS data under multiple collision 
energies, or even with different mass spectrometers, for 
important unknowns that are detected as statistically sig-
nificant in metabolomics studies.

Offering a command-line version for in silico fragmen-
tation software that is capable to run batches of tests is 
required to process potentially thousands of unknown 
tandem mass spectra from profiling studies. Multi-thread-
ing and use of all CPU cores is required. However, the true 
challenge lies in providing tools that can be used in batch 
mode, but are still user-friendly enough for untrained 
investigators. Many of these software tools operate across 
Windows, Linux and MacOS and require different librar-
ies and dependencies, demanding a team environment 
that is skilled in cheminformatics techniques. Structure 
clean-up steps from the provided structure databases 
proved to be time-consuming, involving tasks such as 
removing counter ions, adduct salts, or isotopes. Offer-
ing a web-based research tool is recommended. However, 
data transfer over the web is often forbidden in industrial 
environments and is also prone to network errors and 
server outages. Because almost all mass spectrometry 
vendors use the Windows platform, we further recom-
mend providing Windows-based tools for in silico frag-
mentations. For individual performance checking it is also 
useful to investigate each individual result with graphical 
user interfaces. Here MS-FINDER provides a convenient 
desktop solution for Windows.

Our newly developed voting/consensus model soft-
ware can automatically evaluate hundreds of optimiza-
tion models and report overall outcomes or top hits, top 
ten hits and the specificity of the model. Our software is 
suited to be extended to include more in silico software 
tools, with output statistics to be modified to calculate 
additional statistical figures of merit. Such extensions 
require that in silico software tools are publicly available 
in a usable form so the results can be independently vali-
dated. One could imagine future CASMI contests com-
pletely run automatically by software, preventing errors 
and individual interventions.

Conclusions
In silico algorithms for structural fragmentation of com-
pounds are still in early development. In many cases, 
existing tools only cover simple fragmentations, but not 
more complex rearrangement reactions [29]. Once more 
MS/MS spectra become available and corresponding 
structural diversity increases, these can be used to train 
and optimize in silico algorithms which will lead to better 
performance [30].

Pure in silico algorithms only identified 17–25% of the 
compounds correctly. Once the database and MS/MS 
search were added, the algorithm was able to correctly 
identify 87–93% of the “known-unknown” compounds 
as the first hit. Our results show that for the “known-
unknown” compounds the choice of in silico fragmenta-
tion software is negligible, when database and MS/MS 
boosting are aiding the annotation process. These results 
confirm that voting/consensus models can be used for 
real-world applications. Our software will also allow for 
automatic testing and performance tuning without user 
interaction.

The true challenge is presented by the identification of 
“unknown unknown” compounds that are not yet cov-
ered in compound databases or that are computation-
ally derived as chemical or enzymatic derivatives [23]. 
Here classical experimental ways of structure elucidation, 
including compound purification and subsequent NMR, 
UV and MS will play a role in elucidating the correct iso-
mer structure.
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