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Abstract 

Background: Identification of novel drug–target interactions (DTIs) is important for drug discovery. Experimental 
determination of such DTIs is costly and time consuming, hence it necessitates the development of efficient com‑
putational methods for the accurate prediction of potential DTIs. To‑date, many computational methods have been 
proposed for this purpose, but they suffer the drawback of a high rate of false positive predictions.

Results: Here, we developed a novel computational DTI prediction method, DASPfind. DASPfind uses simple paths 
of particular lengths inferred from a graph that describes DTIs, similarities between drugs, and similarities between 
the protein targets of drugs. We show that on average, over the four gold standard DTI datasets, DASPfind significantly 
outperforms other existing methods when the single top‑ranked predictions are considered, resulting in 46.17 % of 
these predictions being correct, and it achieves 49.22 % correct single top ranked predictions when the set of all DTIs 
for a single drug is tested. Furthermore, we demonstrate that our method is best suited for predicting DTIs in cases of 
drugs with no known targets or with few known targets. We also show the practical use of DASPfind by generating 
novel predictions for the Ion Channel dataset and validating them manually.

Conclusions: DASPfind is a computational method for finding reliable new interactions between drugs and proteins. 
We show over six different DTI datasets that DASPfind outperforms other state‑of‑the‑art methods when the single 
top‑ranked predictions are considered, or when a drug with no known targets or with few known targets is consid‑
ered. We illustrate the usefulness and practicality of DASPfind by predicting novel DTIs for the Ion Channel dataset. 
The validated predictions suggest that DASPfind can be used as an efficient method to identify correct DTIs, thus 
reducing the cost of necessary experimental verifications in the process of drug discovery. DASPfind can be accessed 
online at: http://www.cbrc.kaust.edu.sa/daspfind.

© 2016 Ba‑alawi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Despite large research and development expenditures 
[1], only 27 new molecular entities were approved by 
the Food and Drug Administration (FDA) in 2013, illus-
trating the continued decline in drug discovery [2]. The 
approach to drug discovery based on in silico methods 
is thus becoming more attractive. Many efforts are put 
into developing methods for the prediction of drug–
target interactions (DTIs) that mitigate the expensive 
and time consuming experimental identification of lead 

compounds and their interactors [3]. Moreover, such 
methods allow for the identification of potentially new 
therapeutic applications for the existing drugs (drug 
repositioning) that may reduce research cost and time 
due to the existing extensive clinical history and toxicol-
ogy information of the drugs [4]. Furthermore, predic-
tion of DTIs reveals drugs acting on multiple targets, i.e. 
those that exhibit polypharmacology, which may aid in 
understanding side effects caused by the use of drugs [5]. 
For example, one such in silico DTI prediction method 
[6] uses the crystal structure of the target binding site 
to yield a good prediction of druggability and to identify 
the less-druggable targets before the deployment of any 
substantial funding and effort for experiments. The study 
[6] further successfully and experimentally, tested two of 

Open Access

*Correspondence:  vladimir.bajic@kaust.edu.sa 
1 Computational Bioscience Research Center (CBRC), King Abdullah 
University of Science and Technology (KAUST), Thuwal 23955‑6900, Saudi 
Arabia
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5435-4750
http://www.cbrc.kaust.edu.sa/daspfind
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-016-0128-4&domain=pdf


Page 2 of 9Ba‑alawi et al. J Cheminform  (2016) 8:15 

the generated predictions using high-throughput screen-
ing of a diverse collection of compounds, thereby dem-
onstrating the utility of their approach when dealing with 
difficult targets. Other studies, such as [7, 8], also suc-
cessfully demonstrated the use of similar docking meth-
ods in identifying DTIs and in drug repositioning. The 
drawback of these docking methods is that they require 
high-resolution X-ray crystal (3D) structures of proteins, 
which are not known for membrane-bound proteins, 
that account for more than 40 % of current drug targets 
[9, 10]. An alternative ligand-based approach has there-
fore been developed based on the use of machine learn-
ing methods to predict the binding of a candidate ligand 
based on the known ligands of a target protein [11, 12]. 
One such ligand-based method to predict DTIs using a 
drug two-dimensional (2D) structural similarity is pre-
sented in [11], and is known as the similarity ensemble 
approach (SEA). The study experimentally confirmed 23 
new DTIs, five of which were potent [13]. However, the 
performance of this ligand-based prediction method 
decreases as the number of known ligands of a particu-
lar target protein decreases. To further minimize the 
drawbacks of the above-mentioned methods, recently 
developed techniques have been based on supervised 
classification [4, 14–16] and graph interaction models 
[17]. In [17] the supervised inference method based on 
a bipartite graph is used to predict unknown DTIs. The 
study demonstrated the use of bipartite local models for 
generating two independent predictions: (a) prediction 
of target proteins of a given drug, and (b) prediction of 
drugs targeting a given protein. The obtained information 
is combined to give definitive predictions for each inter-
action. These predictions included known DTIs involving 
human enzymes, ion channels, G-protein-coupled recep-
tors (GPCRs) and nuclear receptors, and also suggested 
potential novel DTIs [17]. On the other hand, [18] used 
a network-based inference (NBI) method that imple-
ments a simplified version of the algorithm proposed 
in [19]. The results clearly show good performance, but 
one limitation is that the knowledge pertaining to drug–
drug similarities and target–target similarities has not 
been utilized, since only information from known drug–
protein interactions has been used. Another limitation 
of NBI is its inability to give predictions for new drugs 
without known targets. The first limitation has been dealt 
with in [20] by adding information from the drug similar-
ity and the targets similarity to the function used by NBI, 
which produced improved results. However, the result-
ing method (DT-Hybrid) still does not resolve the second 
limitation related to the target predictions for new drugs 
without known targets. The method, denoted as HGBI, 
presented in [21], also added a drug–similarity graph and 
a protein–similarity graph to the interactions graph used 

by NBI. This method allowed reducing both limitations 
of NBI. However, it used a restricted way of traversing the 
resultant network, so only partial information from the 
graph topology has been utilized and only partial ben-
efits were achieved. Another approach that deals with 
both limitations is NRWRH [22], which uses a method of 
network-based random walk with a restart applied to a 
heterogeneous network.

In this study, we propose a novel method (DASPfind) 
that relies on the graph interaction model. Our method 
uses a heterogeneous graph consisting of three sub-
graphs connected to each other. These sub-graphs rep-
resent: drug–drug similarity, protein–protein similarity, 
and known drug–protein interactions. Our algorithm for 
predicting new drug–protein interactions is based on all 
simple paths of particular lengths on such a graph model. 
The main idea in our method is to utilize the similar-
ity information within the sub networks and combine it 
with information from the topology of the heterogeneous 
graph. In the results, we predict DTIs (targets here are 
proteins from several groups), and show that our method 
is capable of correctly predicting individual DTI in 
27–53 % of cases (depending on the dataset and the target 
protein group) using only the single top-ranked predic-
tion for a drug, achieving on average the correct predic-
tion in 46.17  % of cases across the four gold standard 
datasets. Moreover, on the same datasets, the single top 
ranked DTI predictions by DASPfind are correct on aver-
age in 49.22 % of cases when predicting any of the known 
DTIs for a single drug, assuming there are no known 
DTIs for the drug. This last scenario corresponds to the 
case of predicting DTIs for a new drug without known 
targets. These results significantly outperform those pro-
duced by the other state-of-the-art methods. The notable 
advantage of DASPfind is demonstrated when consider-
ing the single top-ranked predictions and when there are 
no known or when there are very few known targets for a 
drug. We verified the utility of our method by providing 
a list of new predictions (not present in our datasets) sev-
eral of which had been experimentally confirmed in other 
studies.

Results and discussion
Performance evaluation
To measure the performance of our method we compared 
it with the method reported in [22], denoted as NRWRH, 
the method reported in [20] denoted as DT-Hybrid, and 
the method reported in [21] denoted as HGBI. HGBI and 
DT-Hybrid, to the best of our knowledge, is the most 
recent works that have shown to outperform other state-
of-the-art methods such as NBI [18] and BLM [17]. HGBI 
was demonstrated to perform better than NBI and BLM 
in terms of AUC and the ‘top 1’% of the predictions based 
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on the leave-one-out-cross-validation (LOOCV). For our 
comparison, we also adopted the LOOCV scheme. The 
following procedure is repeated for each known DTI. For 
a drug, a single known DTI was removed from the graph 
and treated as a testing link. We made predictions of 
DTIs for that drug and all targets, and ranked in descend-
ing order the prediction scores generated. For each spe-
cific score threshold, if the testing score of the link is 
above the threshold, it is considered as true positive, and 
if the score of an unknown interaction is found above 
the threshold, it is considered as false positive. By vary-
ing the thresholds, we calculated true positive rate (TPR) 
and false positive rate (FPR) and hence generate the ROC 
curve. We then use the area under the curve (AUC) to 
show the overall performance of the method. More prac-
tically, we also counted the cases where the correct pre-
dictions were among the ‘top 5’, ‘top 2’ or represent the 
single top-ranked prediction (‘top 1’). ‘Top 5’ means that 
the link under the test is found among the ‘top 5’ predic-
tions for that specific drug and so we report how many 
known interactions were found among these ‘top 5’. The 
same applies to the ‘top 2’ and ‘top 1’ prediction. Overall, 
the single top-ranked (‘top 1’) predictions are important 
for the utility of the method, as the aim is to find reli-
able predictions that can significantly reduce the set of 
required validation experiments.

Performance
We used the four gold standard datasets of DTIs reported 
as benchmark data by many studies [14, 17, 18, 23]. To 
these four datasets, we added the set of approved drugs 
from DrugBank [24, 25] with their targets. For the pur-
pose of fair comparison with HGBI, we added the data-
set used by that method. Table  1 shows a summary of 
results when applying NRWRH, DT-Hybrid, HGBI and 
our DASPfind method to all benchmarking datasets. As 
shown in Table 1, the AUC values on most of the data-
sets appear to be similar for the four methods. The AUC 
information, however, is not of a great practical value 
in the context of narrowing down the number of candi-
date DTIs for downstream evaluation. The more useful 
appears to be the assessment of the correct DTI predic-
tion from the top-ranked predictions. Different criteria 
have been used [20–22] to determine true positive pre-
dictions. We opted to use as the correct prediction, only 
the best one (the single top-ranked prediction from the 
ranked set of predictions for an individual drug, i.e. ‘top 1’ 
prediction), since such predictions will be ranked above 
all known DTIs for the drug, thus suggesting the high-
est confidence in such predictions. Two other custom-
ary ways would be to count a predicted DTI for a drug as 
correct, if it is top-ranked after removing known DTIs for 
that drug as used in [22], or to count a DTI prediction as 

correct if it is within the ‘top 1’% (5 or 10 %) of all predic-
tions for the drug. In both of these cases it frequently hap-
pens that the predicted DTI is ranked below the known 
DTIs for the drug, thus confidence for such predictions 
is essentially smaller than by choosing the single top-
ranked prediction for the drug. DASPfind outperformed 
the other methods significantly with respect to retriev-
ing known DTIs as the single top-ranked (‘top 1’) predic-
tions. For example, when considering only the ‘top 1’ DTI 
predictions found by DASPfind, based on the Enzyme 
target dataset in LOOCV, 52.08  % of these predictions 
were correct (known interactions), while this was the 
case for only 1.06 % of NRWRH, 2.36 % of HGBI and 0 % 
of DT-Hybrid. For the same dataset, in LOOCV, 62.74 % 
of the known interactions were retrieved among the ‘top 
5’ DTI predictions by DASPfind, while among the ‘top 5’ 
DTI predictions by NRWRH, HGBI and DT-Hybrid only 

Table 1 Comparison between  methods over  six different 
datasets based on LOOCV for each known DTI

Method AUC (%) ‘Top 1’ (%) ‘Top 2’ (%) ‘Top 5’ (%)

Enzyme

 NRWRH 92.89 1.06 8.07 12.82

 HGBI 91.60 2.36 8.1 12.41

 DT‑Hybrid 89.80 0 7.55 10.95

 DASPfind 92.91 52.08 55.29 62.74

Ion channels

 NRWRH 91.56 1.69 2.91 10.16

 HGBI 88.93 1.42 2.24 6.1

 DT‑Hybrid 92 0 1.42 14.3

 DASPfind 90.68 32.72 35.09 46.54

GPCR

 NRWRH 84.93 2.52 11.50 40.94

 HGBI 91.29 5.83 12.28 31.5

 DT‑Hybrid 83.87 0 6.93 31.65

 DASPfind 88.10 46.61 51.18 64.4

Nuclear receptors

 NRWRH 73.9 7.78 32.22 52.22

 HGBI 87.57 15.56 42.22 57.78

 DT‑Hybrid 69.95 0 14.44 22.22

 DASPfind 85.27 53.3 65.5 77.7

HGBI_Dataset

 NRWRH 86.19 0 5.9 20.47

 HGBI 89.07 0 5.17 16.19

 DT‑Hybrid 86.75 0 5.74 21.04

 DASPfind 89.61 28.30 33.32 42.51

DrugBank_Approved

 NRWRH 89.5 1.04 5.65 18.63

 HGBI 80.10 2.11 4.36 11.32

 DT‑Hybrid 84.44 0.34 5.88 22.69

 DASPfind 88.84 27.82 32.89 48.56
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12.89, 12.41, and 10.95  %, respectively, were the known 
ones. DASPfind outperformed the other methods we 
evaluated with respect to retrieving known interaction as 
the ‘top 1’ DTI predictions using all other datasets. On 
average, in the scenario when the ‘top 1’ ranked predic-
tion of DTIs are considered in LOOCV, DASPfind makes 
a correct prediction in 46.17  % of cases across the four 
gold standard datasets and in 40.13 % across all six data-
sets we used. Overall, our results demonstrate that in this 
regard DASPfind is significantly superior to NRWRH, 
HGBI and DT-Hybrid. We also applied the tenfold cross-
validation for the same scenario, which resulted in simi-
lar results (Additional file 1: Table S1).

We performed another experiment using LOOCV, 
each time removing for a drug all its known interactions 
and attempting to retrieve any of them as the ‘top 1’ pre-
diction. This is equivalent to assessing the ability to pre-
dict a correct DTI for a new drug for which no DTIs are 
known. This scenario will generate a ranked list of DTI 
predictions for each drug like in the previous experiment. 
The difference here is that, in this case, we remove all 
known DTIs for the drug, while in the previous experi-
ment we were removing individual DTIs. Table 2 shows 
the results for this new experiment between NRWRH, 
HGBI and DASPfind. We do not include the DT-Hybrid 
here, as it cannot produce predictions for drugs that are 

without known DTIs. On average, across the four gold 
standard datasets, the ‘top 1’ DTI predictions by DASP-
find are correct in 49.22 % of cases, demonstrating that 
DASPfind performs better than NRWRH and HGBI, 
which achieve 27.26 and 41.94  %, respectively. In the 
same setup, across all six datasets, DASPfind, NRWRH, 
and HGBI make on average 42.34, 20.32, and 33.93  %, 
respectively, correct ‘top 1’ predictions. This means that 
in this setting DASPfind performs 2.084-fold and 1.248-
fold better that NRWRH and HGBI, respectively. Note 
that in this experiment, a true positive would be any of 
the removed known DTIs between the drug and its tar-
gets, which increases the chances to get one of these 
removed links as the ‘top 1’ prediction.

To complement our performance comparison study 
of different methods, we also used the same criterion as 
in [22] for NRWRH, where the predicted DTI is consid-
ered correct if it appears to be the top-ranked prediction 
after the removal of all predicted known DTIs. We dem-
onstrate that in this case too, our method outperforms 
NRWRH when the targets for a drug are not known, 
or when there are only a few known targets of the drug 
(Additional file 1: Table S2, Figure S1).

In our study, we utilized information representing 
chemical similarity and protein similarity in addition 
to the information of the drug–protein interactions. In 
future, we plan to add different types of information, like 
drug side effects [26] and information derived from inte-
grating multiple biological databases [27]. The complete 
lists of ‘top 1’ ranked predictions across all six datasets 
we used are provided in additional files (Additional file 1: 
Tables S3–S8).

New predictions
To illustrate the utility of DASPfind, we applied it to the 
Ion Channel dataset without removing any of the known 
DTIs and attempted to predict new DTIs. Our method 
for this dataset generates 210 predictions as the ‘top 1’ 
DTI predictions (one for each drug). Out of these 210 
DTI predictions, 91 are already known (the dataset we 
used has not been updated since 2008), while the remain-
ing predicted DTIs are not present in that dataset. From 
the remaining 119 DTIs, which are from the viewpoint 
of our method new predictions, we selected 15 (Table 3) 
with the highest prediction score and evaluated them 
manually. We searched online resources (DrugBank [25], 
KEGG [28], SuperTarget [29], PubChem [30], GeneCards 
[31] and literature) to verify our predictions. We found 
that 12 out of these 15 do exist in the above-mentioned 
online resources indicating an interaction between the 
corresponding drugs and targets. We further investigated 
these 12 predictions as drug databases may contain noise. 
We found that 4 DTIs out of the 12 (pairs 2, 5, 12, and 

Table 2 Comparison between  methods over  six different 
datasets based on LOOCV for each drug, assuming no DTIs 
are known for each drug. This is equivalent to estimating 
capacity to predict DTIs for new drugs without known tar-
gets

Data Method ‘Top 1’ (%)

Enzyme NRWRH 18.65

HGBI 43.6

DASPfind 49.66

Ion channels NRWRH 33.33

HGBI 35.71

DASPfind 44.28

GPCR NRWRH 25.56

HGBI 42.15

DASPfind 51.12

Nuclear receptors NRWRH 31.48

HGBI 46.30

DASPfind 51.85

HGBI_Dataset NRWRH 5.04

HGBI 11.36

DASPfind 11.49

DrugBank_Approved NRWRH 7.9

HGBI 24.49

DASPfind 45.69
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13 in Table  3) are explicitly confirmed through experi-
ments as reported in the literature (marked as italics in 
Table  3). For example, [32] studied the mechanosensi-
tivity of SCN5A also known as NaV1.5, because muta-
tions in NaV1.5 can result in disorders such as long QT 
type 3 (LQT3) in the heart and some pathologies in the 
gastrointestinal tract. Their experiments revealed that 
Benzocaine (pair 2, Table  3) could modulate NaV1.5 
mechanosensitivity. Another 5 pairs from the list (pairs 
1, 6, 9, 10, and 15 in Table 3) have targets that are related 
to sodium channels. These DTIs were reported explicitly 
in databases like DrugBank, KEGG, ZINC [33], Matador 
[29], and Drug2Gene [34]. However, we did not find in 
the references listed in these databases as support for the 
DTIs in question, that these DTIs are explicitly experi-
mentally confirmed. Instead, we found information about 
these drugs to be typical drugs affecting the voltage-gated 
sodium channels in general. For example, Cocaine (pair 
10, Table 3) is well known and one of the first local anes-
thetic drugs (LA) that has a confirmed effect to block 
sodium channel gates. Because of its severe side effects, 
clinical studies were conducted with similar drugs, but 
with less side effects. That led to a group of LAs with the 
‘–caine’ suffix, such as dibucaine (pair 9, Table 3). Same 
observation applies to four other pairs (pair 4, 8, 11, 
and 14 in Table 3), which describe targets that belong to 
L-type calcium channels. Nimodipine (pair 4, Table 3) is a 
well-known drug for L-type calcium channels in general. 

Diltiazem hydrochloride (pair 11, Table 3) was reported 
to interact with the corresponding target in SuperTar-
get, which is a manually curated database, but without a 
link to a reference. We did not find any public informa-
tion that validates pairs 3, 7, or 15. However, that does 
not imply that any of these are false. Overall, the results 
suggest that our method does provide reliable predictions 
useful for further downstream analyses.

Conclusions
Our study introduces a method (DASPfind) that infers 
drug–protein interactions from a heterogeneous graph 
accompanied with information about similarities 
between drugs and similarities between targets. DASP-
find relies on finding all simple paths of a specific length 
between any drug–protein pair, efficiently utilizing the 
drug similarity and protein similarity information and 
topology of the graph than the other current methods. 
We show that our method is significantly more accurate 
than the other state-of-the-art approaches when the sin-
gle top-ranked DTI predictions are considered, as well as 
for the new drugs without known DTIs or for drugs with 
only a few known DTIs. These make DASPfind important 
and relevant for practical use. We show that our method 
is able to reliably predict novel DTIs with very high con-
fidence, and validation of these DTIs proved DASPfind’s 
utility.

Table 3 Fifteen novel ‘top 1’ predictions over the whole ion channel dataset

Pair chemID (KEGG) chemName protID (KEGG) protName Score Evidence Type of evidence

1 D00538 Zonisamide 6331 SCN5A 177.46 [KEGG: D00538, PMID: 20025128] Inferred

2 D00552 Benzocaine 6331 SCN5A 145.43 [KEGG: D00552, PMID: 22874086] Direct

3 D00294 Diazoxide 6328 SCN3A 119 NA

4 D00438 Nimodipine 779 CACNA1S 79.37 [DrugBank: DB00393, PMID: 17705883] Inferred

5 D03365 Nicotine 1137 CHRNA4 72.05 [PMID: 20061993] Direct

6 D00649 Amiloride hydrochloride 55800 SCN3B 67 Matador (http://matador.embl.de/
proteins/9606.ENSP00000299333/)

Inferred

7 D00648 Ibutilide fumarate 779 CACNA1S 52.08 NA

8 D05024 Mibefradil dihydrochloride 775 CACNA1C 52 [GeneCards: CACNA1C, PMID: 
16306443]

Inferred

9 D00733 Dibucaine 6328 SCN3A 50.22 [KEGG: D00733, Drug2Gene: 
103927525]

Inferred

10 D00110 Cocaine 6328 SCN3A 50.21 [KEGG: hsa6328, PMID: 22185904] Inferred

11 D00616 Diltiazem hydrochloride 776 CACNA1D 49.31 [SuperTarget: has776, PubChem: 
CID39186]

Inferred

12 D03830 Diltiazem malate 776 CACNA1D 49.31 [KEGG: D03830, PMID: 17949410] Direct

13 D00619 Verapamil hydrochloride 778 CACNA1F 41.25 [DrugBank: DB00661], unpublished 
data (http://edoc.ub.uni‑muenchen.
de/5321/)

Direct

14 D01108 Magnesium sulfate 779 CACNA1S 38.08 [DrugBank: DB00653] Inferred

15 D01969 Gallopamil hydrochloride 778 CACNA1F 34.07 NA

http://matador.embl.de/proteins/9606.ENSP00000299333/
http://matador.embl.de/proteins/9606.ENSP00000299333/
http://edoc.ub.uni-muenchen.de/5321/
http://edoc.ub.uni-muenchen.de/5321/
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Methods
Experimental datasets
We used the gold standard datasets as collected by [23]. 
Each of the gold standard datasets represents one of 
four major families of drug targets, namely enzymes, 
ion channels, GPCRs, and nuclear receptors, and we 
refer to them using these names. As reported in [23], 
known interactions were extracted from the KEGG 
BRITE [35], BRENDA [36], SuperTarget [29] and Drug-
Bank databases [25]. Chemical structures of the drugs 
were extracted from the KEGG LIGAND database [35], 
while the similarities between drugs were computed 
using SIMCOMP [37]. Similarity scores between the tar-
gets were computed using a normalized version of the 
Smith–Waterman algorithm [38]. Note that these data-
sets were compiled in 2008 and have not been updated 
since that time. We also added another dataset that we 
named DrugBank_approved, which contains all the FDA 
approved drugs in the DrugBank database along with 
their corresponding protein targets. We calculated simi-
larities between drugs and between proteins in the same 
way as for the four gold standard datasets. In addition to 
that, we added the dataset used by HGBI for fair com-
parison. Table 4 shows a summary of these datasets. All 
datasets used in this study are available in additional files 
(Additional files 2, 3).

Methods
We consider a set of drugs C = {c1, c2, . . .} and a set of 
proteins T = {t1, t2, . . .}. A graph is constructed with 
nodes from C and T. The weight of an edge between two 
drug nodes represents the similarity between them and 
the weight of an edge between protein nodes represents 
similarity between the linked proteins. The degree of 
similarity is a score between (0, 1]. In our case, if the sim-
ilarity between the nodes is smaller than 0.5 we do not 
show such links in the graph. An edge between a drug 
and a protein represents a known interaction between 
them with the weight of 1. Figure 1 shows an example of 
such a graph representing the nuclear receptor dataset, 
which is the smallest of our benchmark datasets.

In our method we traverse all simple paths between a 
drug and a target protein. A simple path means a path 
where nodes are not repeated so there are no cycles along 
the path. We do this by using a modification of a classical 
traversal algorithm like depth-first search to keep track of 
the visited nodes. The depth-first search is implemented 
as a recursive function that traverses the graph moving 
along the edge. We modify it to mark the nodes as they 
are visited in the recursion, and then remove the mark 
just before returning from the recursive call. This way we 
ensure no nodes are visited more than once in a specific 
path. We have tested our approach with different lengths 
and found that the length of up to three edges is the most 
suitable. Thus, for the application in this study we con-
sidered only paths up to the length three (although the 
method is not restricted to this length), i.e. a path should 
not have more than three edges. This constraint also sig-
nificantly decreases the time required to find these paths. 
The assumption behind our method is that a drug and a 
protein have a higher probability to interact if there are 
more paths connecting them as the paths represent con-
fident relationships between the nodes. Since the paths 
can vary in lengths (up to three edges long), we believe 
that, in general, longer paths should have less contribu-
tion to the aggregated score that represents the confi-
dence of an interaction occurring between the end nodes 
of the path. So, we introduce an exponential decay func-
tion that gives less support for paths as the length of the 
path increases. Equation  (1), defines how we aggregate 
the score from these different paths:

where p = {p1, p2, . . . , pn} is the set of the paths con-
necting a specific drug and a specific protein, pw is the 
weights of the edges along an individual path, and len(p) 
is the number of edges of that path; α is a parameter that 
we choose here to be equal to 2.26 as we found this value 
maximizes the average result across different benchmark 
datasets. However, it is possible to assign different val-
ues to each dataset for somewhat better results. Figure 2 
shows the effect of changing this parameter across dif-
ferent datasets. For a path between a drug and its target 
we multiply the edges weights along the path. After that, 
we do the same for all other paths between this drug–
target pair and aggregate the score through summation. 
We show the pseudocode for the DASPfind algorithm in 
additional files (Additional file  1: Figure S1). DASPfind 
can be accessed online at: http://www.cbrc.kaust.edu.sa/
daspfind.

Our method differs from other methods in that it uses, 
in a specific manner not utilized by other methods, the 

(1)score =

n
∑

p=1

(

∏

pw

)

α×len(p)

Table 4 Summary of the datasets used in this study

Dataset Drugs Target  
proteins

Known 
interactions

Enzyme 445 664 2926

Ion channels 210 204 1476

GPCR 223 95 635

Nuclear receptors 54 26 90

DrugBank_approved 1556 1610 5877

HGBI_Dataset 1409 4063 1915

http://www.cbrc.kaust.edu.sa/daspfind
http://www.cbrc.kaust.edu.sa/daspfind
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similarities between drugs and between proteins along 
with the topology of the heterogeneous graph. For exam-
ple, our method can utilize the following path over the 
network: drug1 (start) → protein1 → drug2 → protein2 
(end), which maps to the following example path in the 

bottom-right side of Fig. 1: D00316 → hsa5915 → D000
94  →  hsa6096. Such a path gives the additional infor-
mation that drugs interacting with the same target have 
some degree of similarity between them. Also, in most of 
the studies utilizing the network structure, all paths over 

Fig. 1 The heterogeneous graph built from the nuclear receptor dataset. Nodes represent drugs and proteins. Edges between drugs and proteins 
represent known interactions and are shown in solid lines. Edges between drugs alone or between proteins alone represent the similarity between 
them and are also represented by solid lines. Dashed edges represent predicted potentially new interactions
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the network contribute equally to the score, while we 
apply a decay function so that longer paths would have a 
lower total score.
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