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How frequently do clusters occur 
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Abstract 

Background:  Hierarchical cluster analysis (HCA) is a widely used classificatory technique in many areas of scientific 
knowledge. Applications usually yield a dendrogram from an HCA run over a given data set, using a grouping algo-
rithm and a similarity measure. However, even when such parameters are fixed, ties in proximity (i.e. two equidistant 
clusters from a third one) may produce several different dendrograms, having different possible clustering patterns 
(different classifications). This situation is usually disregarded and conclusions are based on a single result, leading to 
questions concerning the permanence of clusters in all the resulting dendrograms; this happens, for example, when 
using HCA for grouping molecular descriptors to select that less similar ones in QSAR studies.

Results:  Representing dendrograms in graph theoretical terms allowed us to introduce four measures of cluster 
frequency in a canonical way, and use them to calculate cluster frequencies over the set of all possible dendrograms, 
taking all ties in proximity into account. A toy example of well separated clusters was used, as well as a set of 1666 
molecular descriptors calculated for a group of molecules having hepatotoxic activity to show how our functions may 
be used for studying the effect of ties in HCA analysis. Such functions were not restricted to the tie case; the possibility 
of using them to derive cluster stability measurements on arbitrary sets of dendrograms having the same leaves is dis-
cussed, e.g. dendrograms from variations of HCA parameters. It was found that ties occurred frequently, some yielding 
tens of thousands of dendrograms, even for small data sets.

Conclusions:  Our approach was able to detect trends in clustering patterns by offering a simple way of measuring 
their frequency, which is often very low. This would imply, that inferences and models based on descriptor classifica-
tions (e.g. QSAR) are likely to be biased, thereby requiring an assessment of their reliability. Moreover, any classification 
of molecular descriptors is likely to be far from unique. Our results highlight the need for evaluating the effect of ties 
on clustering patterns before classification results can be used accurately.
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Molecular descriptor

© 2016 Leal et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Classification underlies many scientific enterprises 
where it provides predictive capability based purely on 
information about attributes of a given set of entities. 

Classification has been a fundamental step in devising 
and structuring knowledge in chemistry [1], as illus-
trated through several classifications of chemicals, e.g. 
homologous series, chemical elements, amino acids and 
drugs. It is also a key concept in pattern recognition [2], 
having broad applications in different fields of knowl-
edge acquisition. In chemo(bio)informatics it is used in 
different ways [3], e.g. speeding up lead selection in the 
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virtual screening of large databases for chemicals [4], 
grouping molecules according to structural similarity 
and biochemical activity in SAR studies [5, 6], or select-
ing variables in QSAR models [7]. Currently, methods 
such as k-means, hierarchical cluster analysis (HCA) 
and neural networks (to name but a few) are frequently 
mentioned in the scientific literature concerning drug 
design. HCA techniques have also been incorporated 
into several computational tools for a quite a long time 
now regarding statistical analysis and are still the subject 
of many recent computational applications in chemistry 
[8–10].

According to the ISI Web of Science data, HCA is one 
of the most used classification methods in chemistry 
(Aug 17, 2015), being widely used in analytical chemistry, 
biochemistry, and multidisciplinary chemistry [11]. As a 
token of this, recent HCA applications are found in drug 
design [12–14] and in air pollution detection methods 
[15]. Given the importance of HCA, it must be analyzed 
and its limitations faced to devise strategies for overcom-
ing them. The aim of this paper is to study some of these 
shortcomings related to the so called ties in proximity.

HCA and ties in proximity
The objective of HCA is to generate a graph structure 
(dendrogram) resulting from iterative coupling of clus-
ters according to similarity and grouping criteria. Such a 
graph structure can also be understood as a collection of 
neighborhoods leading to a topology, where each cluster 
becomes in a neighborhood [16]. Any HCA needs a set X 
of elements to classify, a set of attributes ai characterizing 
the elements, a similarity function sf to quantify resem-
blance between elements and a grouping methodology 
gm to form clusters of elements [17].

Selecting sf and gm is usually based on the type of 
attributes and elements of the set. For instance, the 
Tanimoto coefficient is the proper sf in virtual screening 
where molecules are represented by fingerprints (attrib-
utes); it may be combined with any of Lance and Wil-
liams grouping methodologies [18–20]. The final HCA 
result is a dendrogram (Definition 0.1) depicting a hier-
archy of clusters from highest to lowest similarity. Many 
HCA applications involve an additional step (stopping 
rule) for pinpointing a similarity value in the hierarchy to 
select clusters; a review of these rules is found in refer-
ence [19].

X, ai, sf, and gm are usually set up in HCA applica-
tions and the resulting clusters analyzed. Questions arise 
regarding the permanence of such clusters when X, ai, 
sf, and gm are modified or when random noise is added 
to the input data; the more clusters remain the same, 
the more reliable the classification is and the results are 
expected to be inherent to X and not artifacts of the HCA 

method [19]. However, even if X, ai, sf, and gm are set up, 
the resulting clusters may not always be the same due to 
ties in proximity [21], i.e. equidistances between elements 
of X or between clusters in X. A simple tie in proximity 
results when the similarity between A and B is the same 
as that between B and C (A,B,C ⊂ X), thereby making 
it troublesome to determine whether B is part of a clus-
ter with A or with C. Ties in proximity are part of the 
clustering ambiguities that often occur when clustering 
discrete data (binary, multinomial or count data) or con-
tinuous data without sufficient precision [22], which are 
typical in chemo(bio)informatics [21, 23]. Several clus-
tering algorithms, besides HCA, such as Taylor–Butina 
leader, Jarvis–Patrick, k-means and others [22] treat ties 
in proximity arbitrarily by making decisions regarding 
how to break the ties depending on the input order of the 
data. This arbitrariness leads to ambiguous results that 
are normally overlooked. More generally, ties in proxim-
ity may lead to other ambiguous outcomes within not 
just HCA, but with most clustering algorithms. Problems 
concerning the use of discrete data may cascade to ties in 
merging criterion [22], e.g. Ward’s squared error merging 
criterion, or the use of performance enhancement rou-
tines, e.g. reciprocal nearest neighbors [22]. Even more 
broadly, other forms of tie breaking can lead to ambigu-
ous results in not only discrete data, but in continuous 
data, e.g. exclusion region clustering [22].

The ambiguities brought about by ties in proximity 
depend on several factors related to input data and meth-
odological decisions [22]: (i) size of X, the larger the set 
of elements to classify the more likely the ties; (ii) num-
ber of attributes and their precision, typically the lower 
the number of attributes the more likely there are going 
to be many ties; the lack of precision may lead to many 
ties even for cases with many attributes. The number 
of digits of precision needed to reduce the likelihood of 
ties is proportional to the size of X and the number of 
attributes. (iii) type of sf, for example, for fingerprints, 
the Euclidean metric is likely to produce a lot more ties 
than the Tanimoto coefficient and the cosine coefficient, 
which produces less. For continuous data, the number of 
ties depends on the number of possible measure values 
of each ai and on their distribution, which, depending 
on the kind of sf used, may lead to many ties. (iv) type 
of gm, where groping methodologies that mathematically 
operate on the data producing new measures, e.g. group 
average and Ward’s, reduce the number of ties, which 
contrast with grouping methodologies such as single and 
complete linkage that operate on the data as they are and 
that increase the likelihood of ties.

Being aware of clustering ambiguities given by ties in 
proximity and their aforementioned dependencies, clus-
tering users can make choices to reduce the ambiguities, 
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e.g. by transforming discrete data using binary independ-
ent component analysis [24] or they can look for meth-
odological alternatives such as using multidendrograms 
that group more than two clusters at the same time when 
ties occur [25], or using pyramidal clustering that allows 
cluster overlapping [26, 27], or using correlations instead 
of distances [28] or by exploring the possible solutions 
and assessing the distances among objects within them 
[23]. Another possibility is using the Markov chain clus-
tering algorithm [29] that may reduce to a big extent 
the number of ties, but which depends on the selection 
of a parameter (inflation factor) that is set up by the 
researcher. Nevertheless, the probability of ties occurring 
in large data sets is high [21] and it is therefore impera-
tive to consider the validity of clusters given ties. This 
paper thus studies how frequently clusters occur in HCA, 
given a fixed setting up of X , ai, sf , and gm, considering 
ties in proximity.

Results and discussion
Cluster frequency regarding ties in proximity
Our starting point is an HCA algorithm where X, ai, sf, 
and gm are set up and fixed during the whole HCA study. 
We devise two extreme situations for exploring cluster 
frequency given ties in proximity, i.e. tie and no-tie cases. 
It should be noted that frequency is understood as empir-
ical probability, i.e. the appearance of a cluster in the total 
number of dendrograms given by ties.

Tie case all similarity values between every couple in X 
are the same, including those obtained at each coupling 
step, i.e. all elements are equidistant.

No-tie case all similarity values between every couple 
in X are different, i.e. no equidistance is found during an 
HCA run.

In the tie case (Proposition  0.1), the frequency for 
every cluster C in the total number of dendrograms given 
by ties is lower than 1 if C has more than two elements 
(Proposition  0.1, item 2) and clusters having the same 
number of elements have the same likelihood of show-
ing up (Proposition  0.1, item 3). In the no-tie case, every 
cluster has frequency 1.

Any HCA result is in between tie and no-tie cases. 
The question arising is thus how to quantify cluster fre-
quency in X, produced by ties, if the distribution of 
similarity values does not fit the tie or no-tie cases. The 
following describes our procedure for quantifying such 
frequencies.

We start by taking a set X with n elements and run 
an HCA. As ai, sf, and gm remain constant, the possible 
number of dendrograms F(n) is given by Felsenstein [30].

(1)F(n) =
(2n− 3)!

2n−2(n− 2)!

Since ties may yield m ≤ F(n) different dendrograms of 
the possible F(n), we define {Di}i≤m as the set of such den-
drograms. The aim is to determine whether a cluster C, 
derived from X, is present in {Di}i≤m and to what extent, 
this being regarded as the frequency of C in the HCA study.

We characterize C as a set and as a graph. As a graph, 
C is a subtree (Definition 0.2) of at least one dendrogram 
in {Di}i≤m, i.e. C is any branch of any of the possible F(n) 
dendrograms. As a set, C corresponds to the elements of 
X present in the subtree C, i.e. C ⊆ X.

To assess the presence of C in {Di}i≤m we select a den-
drogram Di from {Di}i≤m and determine whether C is in 
Di; the same procedure is run over all Di in {Di}i≤m. As 
C is characterized as a graph and as a set, we devise two 
methods for determining the presence of C as a graph 
and two for determining its presence as a set. We call 
these methods cluster contrasts, which are schematically 
depicted in Fig. 1.

Graph‑cluster contrast
We partition Di into its subtrees (graphs) gj, which are 
gathered in P(Di) = {gj}j∈J (Fig.  1). Note that the parti-
tioning is thought of as containing only nontrivial sub-
trees to avoid the consideration of singletons. C is then 
contrasted with P(Di) by assessing whether C is one of 
the elements of P(Di). If that is the case, it is said that the 
graph-cluster contrast of C in Di is 1, otherwise 0, as is 
the case in the example of Fig. 1 (red).

The graph-cluster contrast of C in Di is defined as:

in other words, CCg (C ,Di) is 1 if and only if C is a 
“branch” of Di or the whole dendrogram Di.

Relaxed‑graph‑cluster contrast
Our interest then focus on quantifying the presence of C 
in Di; this is done by characterizing C like Di in the graph-
cluster contrast, i.e. as graph partition set. Hence, the 
graph partition of C is P(C) (Fig. 1, blue). To quantify the 
presence of the parts of P(C) in P(Di) we expand the parts 
of P(Di) into their respective graph partition sets P(g1) 
and P(g2) (Fig.  1, blue). It is against these sets that the 
graphs of P(C) are contrasted by intersection, i.e. by deter-
mining the common graphs between P(C) and P(g1) and 
between P(C) and P(g2). As shown in Fig. 1 (blue), there is 
no common graph, the contrast is therefore 0 (blue).

The relaxed-graph-cluster contrast of C in Di is defined 
as:

(2)

CCg (C ,Di) =

{

1 if P(C) = P(gj), for some j ∈ J
0 otherwise

(3)CCrg (C ,Di) = max
j

|P(C) ∩ P(gj)|

|P(C) ∪ P(gj)|
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This cluster contrast is equivalent to calculating the 
Jaccard index between P(C) and P(gj). Current interest 
regarding contrast lies not only in assessing whether the 
whole structure of C is present in Di, but whether some 
parts (subdendrograms) of C are in Di.

Set‑cluster contrast
As C is characterized as a set too, we devised this cluster-
contrast to assess the presence of C in Di. Here C is char-
acterized by its elements (leaves), which we call the set 
L(C) = {a, c, d}. The graph Di, to be contrasted with L(C), 

is characterized by its collection of subtrees (their leaves) 
N = {sj}j∈J (Fig. 1). L(C) is contrasted with N by evaluat-
ing whether L(C) is any of the elements of N. If this hap-
pens, the cluster contrast is 1, otherwise 0. As shown in 
Fig. 1 (green), the cluster contrast is 1.

The set-cluster contrast of C in Di is defined as:

Relaxed‑set‑cluster contrast
We then quantify to what extent the elements of L(C) are 
present in the subtrees (sets) of N (Fig. 1, purple). This is 
done by intersecting L(C) with each subtree of N, which 
yields sets {a, c, d} and {c, d} (Fig. 1, purple). The first set 
indicates that there are three common elements between 
L(C) and {a, c, d} out of the three elements of L(C) and 
{a, c, d}. The second set shows that there are two com-
mon elements between L(C) and {c, d} out of the three 
elements of L(C) and {c, d}. It is therefore possible to 
state that the cluster contrast of C in Di is 1 (3/3), which 
is the maximum overlapping between L(C) and N (Fig. 1, 
purple).

The relaxed-set-cluster contrast of C in Di is defined as:

Figure 1 shows how both graph-cluster contrasts yield 
different results than the set-cluster contrasts. In graph 
theoretical terms, C is not present in Di, while in set the-
oretical ones, it is. This occurs as graph-cluster contrasts 
are more stringent than set ones, for the formers take the 
hierarchical structure of C and Di into account while the 
second ones do not. A relaxed-set-cluster contrast equal 
to 1 (Fig. 1, purple) shows that C shares all its elements 
with a subtree of Di, namely {a, c, d}, which implies that 
the set-cluster contrast is also 1 (Fig. 1, green).

Although C and Di are the same in set theoretical 
terms, they are not the same regarding their structures, 
as shown in the graph and graph-relaxed-cluster con-
trasts, which are equal to 0 (Fig. 1, red and blue).

To show some other features of each cluster contrast 
and to analyze the similarities and differences among 
them, we devise the examples of Figs. 2 and 3.

Figure  2 shows how CCrg accounts for more details 
than CCg. Whenever we ask for CCs, we wonder whether 
there is a subtree in Di such that its elements are the ele-
ments of C. Hence, CCs(C ,Di) will always be 1 if and only 
if the elements of C are the elements of a subtree of Di. 
If CCg (C ,Di) = 1, meaning a perfect matching between 
the graph of C and one branch (subtree) of Di. Conse-
quently, a more relaxed matching like that of CCrg (C ,Di) 
will always be 1 (Proposition  0.3). On the other hand, 
if CCrg (C ,Di) = 0, it means that there is no common 

(4)CCs(C ,Di) =

{

1 if L(C) = sj , for some j
0 otherwise

(5)CCrs(C ,Di) = max
j

|L(C) ∩ sj|

|L(C) ∪ sj|

Fig. 1  The four contrast functions are schematically depicted by 
means of an example illustrating how both graph-cluster contrasts 
yielded different results to those of the set-cluster contrasts. (1) 
Graph-cluster contrast: Di is partitioned into its subtrees (graphs) g1 
and g2, which are gathered in P(Di) = {g1, g2}. C is then contrasted 
with P(Di) by assessing whether C is one of the elements of P(Di) 
(red), as in this case it is not, we have CCg(C ,Di) = 0. (2) Relaxed-
graph-cluster contrast: to quantify the presence of the parts of P(C) 
in P(Di), the parts of P(Di) are expanded into their respective graph 
partition sets P(g1) and P(g2) (blue) determining the common graphs 
between P(C) and P(g1) and between P(C) and P(g2), if any. There 
is no common graph in this example, thus CCrg(C ,Di) = 0. (3) As 
set, C is characterised by its elements (leaves), called L(C) = {a, c, d}

. Graph Di, to be contrasted with L(C), is characterized by the col-
lection N = {s1, s2} where sj = L(gj) i.e. the set of its leaves. L(C) is 
contrasted with N by evaluating whether L(C) is any of the elements 
of N (green). In this case, s2 = L(C) and the cluster contrast as set is 1 
CCs(C ,Di) = 1. (4) L(C) is intersected with each element of N to quan-
tify to what extent the elements of L(C) are present in the subtrees of 
Di, yielding sets {a, c, d} and {c, d} (purple). The first set indicates that 
there are three common elements between L(C) and {a, c, d} out of 
the three elements of L(C) and {a, c, d}. The second set shows that 
there are two common elements between L(C) and {c, d} out of the 
three elements of L(C) and {c, d}. It can thus be stated that the cluster 
contrast of C in Di is 1 (3/3), which is the maximum overlap between 
L(C) and N (purple)
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subtree between C and Di, therefore a stringent cluster 
contrast such as CCg (C ,Di) (Proposition  0.4) will be 0 
(Proposition 0.3).

Another question concerns the following: how many of 
the subtrees of C and Di are shared? This entails the ratio 
between the subtrees common to all those considered in 
the contrast. In the example of Fig. 2, the common sub-
tree is that formed by b and c, which yields a CCrg of 1/3 
(Fig.  2, blue), as the contrast between the subtrees of 
P(g1) and P(C) is what maximizes the ratio between their 
union and intersection (Eq. 3). As the graph Di and those 
derived from C do not perfectly match, which gives a 
non-integer CCrg, then the CCg is 0 (Fig. 2, red).

From the aforementioned relationship between CCs 
and CCrs, we see that they are only different if the ele-
ments of C are not exactly the same elements of a subtree 
in Di (Propositions 0.5 and 0.6). To give an example, we 
take C as shown in Fig. 3, where all cluster contrasts are 
zero, except for CCrs. Thus, when contrasting C with Di 
(Fig.  3), as graphs, C is not a subtree of Di and the ele-
ments of C are different from the elements of Di, there-
fore the cluster contrast of C in Di as a graph and as a set 
is 0 (Fig. 3, red and green, respectively).

The two elements of C are part of the elements of the 
largest subtree in Di (Fig. 3). In fact, the elements of C (2) 
are two out of the three of the largest subtree in N, which 
gives a CCrs(C ,Di) of 2/3 (Fig. 3, purple).

Calculating cluster frequencies assuming ties in proximity
So far, we have shown four methodologies to assess 
whether a cluster is in a dendrogram, regardless of the 
actual values of the distances between the elements of the 
cluster. Recalling our aim, we want to determine the fre-
quency of a cluster in all possible dendrograms obtained 
by ties. To take them into account, we calculate the fre-
quency of C, fj(C), in {Di}i≤m as a function of the cluster 
contrast values in each dendrogram Di with any of the j-
th cluster contrast methodologies. The frequency is given 
by:

which is an average of the cluster contrasts throughout 
{Di}i≤m. This frequency function allows building stability 
measures of clusters, as is discussed below.

In general, graph and set cluster contrasts take as the 
basis for their contrasts the same number of elements. 
The graph contrast uses subtrees and the set contrast 
uses sets associated with these subtrees, as there is a 
one-to-one relationship between subtree and its set rep-
resentation, the number of elements to contrast in both 

(6)fj(C) =
1

m

m
∑

i=1

CCj(C ,Di)

Fig. 2  Relaxed graph-cluster contrast CCrg accounts for more details 
than graph-cluster contrast CCg. In this example C is not a subtree of 
Di, leading to CCg = 0. Nevertheless, C and Di share a subtree named 
g1, leading to CCrg > 0; in fact, they share one out of three subtrees 
having CCrg = 1/3. Regarding the set-cluster contrast functions for 
this example, we have CCs = 1 meaning a perfect match between the 
set of leaves of C and one of the leaves of one branch (subtree) of Di 
i.e. L(C) = s3, implying that CCrs is also 1

Fig. 3  From the aforementioned relationship between set-cluster 
contrast CCs and relaxed set-cluster contrast CCrs, it can be seen 
that they differ when the elements of C do not coincide exactly 
with those of any subtree in Di. In this example all cluster contrasts 
yield a zero value (red, blue, and green), except for CCrs (purple). Both 
elements of C are part of the elements of the largest subtree in Di. In 
fact, both elements of C belong to the largest subtree in N, CCrs(C ,Di) 
being equal to 2/3 (purple)
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methods is the same. However, the situation change 
when referring to the relaxed version of the contrasts. 
The relaxed graph cluster contrast uses more elements 
for the contrast than the relaxed set cluster contrast. The 
relaxed graph requires splitting every subtree (from the 
cluster and the dendrogram) into subsequent subtrees 
for further proceed while the relaxed set does any further 
splitting. Thus, for example in Fig.  1 the relaxed graph 
uses 5 subtrees (gathered in P(g1), P(g2) and P(C)) while 
the relaxed set uses 3 subsets. In Fig. 2, the former uses 
9 subtrees and the later 4. For dendrograms with many 
elements such difference is notorious, for the growth of 
subtrees is faster than that of subsets. This implies that 
relaxed graph contrast results, for larger sets, yield lower 
values than relaxed set contrast results. But this is not 
a problem, for results must be compared in the context 
of each contrast, i.e. either graph or set. Any conclusion 
can be drawn from the finding that as relaxed graph the 
contrast of a cluster in a dendrogram is 0.03 while as a 
relaxed set the contrast is 0.3.

In practical chemoinformatics applications, set con-
trasts are of interest for researchers looking for a par-
ticular set (cluster) of diverse substances in a compound 
library that has been previously classified using HCA or 
for those interested in assessing the validity of a reduced 
alphabet of amino acids in HCA classification results or 
for researchers looking for the best partition of a HCA 
result. For studies where the levels of similarity are 
important, therefore the hierarchical structure of the 
dendrograms, the graph contrasts turn important. Cases 
of these are for example situations where it is known that 
hundreds of substances are potential candidates for bio-
logical screening for antibreast cancer, in this case the 
graph contrast would look for the different graph struc-
tures for those substances, which would indicate which 
substances can be sent first for screening, namely those 
which appear in different subtrees of the cluster.

Examples studied
The different cluster contrasts were applied to two cases: 
a toy example and a set of molecular descriptors, each 
one selected to address particular questions. The cluster 
frequencies were calculated as shown in Eq. 6.

Toy example: the frequency of well‑separated clusters
This example was designed to show how cluster fre-
quency behaves for a data structure having clusters far 
apart but having some ties. In this example the set of 
leaves is X = {a, b, c, d, e, f , g , h, i}, whose elements are 
characterized by two properties, as shown in Table  1 
(Fig. 4).

All four methods for calculating the frequency of C 
work by contrasting it with all possible dendrograms. 

In this example, all possible dendrograms were built up 
step-by-step and conclusions drawn regarding cluster 
frequencies.

• • Cluster frequency through graph-cluster con-
trast We explored X using the Euclidean metric 
and the average link method. Initially three clus-
ters were observed: A = {a, b, c}, B = {g , i, h}, and 
C = {d, e, f } . If the averages of these clusters were x̄,  
ȳ and z̄, respectively, then it holds the following 
ordering of distances d(x̄, ȳ) < d(ȳ, z̄) < d(x̄, z̄) , 
which implies that the calculation of dendro-
grams considering ties will always lead to the form 
((A,  B),  C). Regarding the internal structure of A, 
B and C, there was only a possible cluster in A, 
namely ((a,  b),  c), for d(a, b) < d(a, c) = d(b, c), i.e. 
1 < 1.1 = 1.1. Hence, the frequency of (a,  b) was 1, 
as well as ((a, b), c) (Fig. 4). In B, the HCA had two 
possibilities for starting; it could begin with either 
(g,  i) or (h,  i); therefore the frequencies of these two 
clusters were 0.5. If the HCA started with (g,  i), the 
only remaining clustering possibility being ((g,  i), h); 
this cluster resulted as many times as (g,  i) occured, 
therefore, the frequency of ((g,  i),  h) was 0.5. If the 
HCA algorithm starts with (h, i), the only remaining 
clustering possibility was ((h,  i),  g), as noted before, 
the frequency was 0.5. For C, the elements in it were 
all equidistant, meeting the requirements of the tie 
case. Here the HCA algorithm had three possibilities 
for starting the clustering: (d, e), (e, f) and (f, d), with 
frequency 0.33. If the algorithm started with (d, e), it 
would necessarily group ((d, e),  f), implying that the 
frequency of this cluster was 0.33, for each time (d, e) 
showed up, ((d,  e),  f) appeared too. The other pos-
sibilities behaved likewise regarding their frequen-
cies. The next step regarding the HCA algorithm was 
grouping A with B. However, B had two possible den-

Table 1  Properties P1 and P2 for elements in X

The property value 6+
√
12 is used to warranty the equidistance among 

elements d, e, and f

Elements P1 P2

a 1 1

b 2 1

c 1.5 2

d 10 6

e 14 6

f 12 6+
√
12

g 0 9

h 2 11

i 1 10
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drograms, namely D1(B) and D2(B) (Fig. 4), therefore 
the frequency of D1(B) and D2(B) was 0.5. The final 
HCA step is to group C with (A, B). Given one of the 
two possibilities for (A, B), there were three possible 
forms of merging with C, for there were three pos-
sible dendrograms for C. The frequency of having the 
merging with C, given one of the two dendrograms 
for (A, B) was 0.5× 0.33 = 0.165. Figure 4 shows all 
possible clusters in X with their respective frequen-
cies, which are shown beside each cluster’s upper-
most node. Note that the cluster (a, d, g), for exam-
ple, has a frequency of 0, for it cannot be found as 
a graph through the selected HCA algorithm. Like-
wise, all other clusters not shown in Fig. 4 have 0 fre-
quency when using the HCA algorithm selected and 
the graph-cluster contrast.

• • Cluster frequency through relaxed-graph-cluster con-
trast Here frequency was calculated by considering 
the number of common subtrees between the cluster 
and all possible dendrograms. Proposition 0.3 shows 
that if CCrg = 1 or 0, then CCg = 1 or 0, respectively. 
Proposition  0.3 stated that clusters having CCg = 1 
also have CCrg = 1. Proposition 0.4 shows that these 
findings implied that CCg ≤ CCrg. Figure 4 shows the 
equality case for Proposition 0.4.

• • Thence, for the example of well-separated clusters, 
the frequencies of the clusters depicted in Fig.  4 
through the CCrg are shown in blue, where the ine-
quality is shown with values in red and blue.

• • Cluster frequency through set-cluster contrast Here 
the graph structure of the cluster and the dendro-
grams was ignored and, instead, regarded as sets. 
Due to the isolated nature of A, B and C, we see that 
each one’s membership of a zone was invariant. This 
implied that the CCs of any node having a degree 
equal to 3 defining a dendrogram with three or more 
leaves (and of course, the root node) was equal to 1. 
For Proposition 0.7 the frequency of any cluster hav-
ing two elements was the same regarding all four fre-
quency functions.

• • Cluster frequency through relaxed-set-cluster contrast 
Proposition 0.6 states that if the frequency calculated 
through CCs is 1, the frequency based on CCrs is also 
1.

Frequency of clusters of molecular descriptors characterizing 
hepatotoxic substances
Molecular descriptors are widely used in modeling sub-
stances’ properties and a wealth of descriptors have been 
developed [31]. A common challenge when modeling a 

Fig. 4  Toy example illustrating how cluster frequency behaves for a data structure having clusters far apart (A, B and C) but having some ties. In this 
example the set of leaves is X = {a, b, c, d, e, f , g, h, i}, whose elements are characterised by two properties: P1 and P2. Frequencies of well-separated 
clusters A, B and C through graph and relaxed-graph-cluster contrasts are depicted (in this example cluster contrast results are equal for graph and 
relaxed-graph-cluster contrasts)
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particular endpoint is the selection of relevant descrip-
tors and it has been found that the quality of quantitative 
structure-activity relationships (QSAR) models depends 
to a great extent on the type of descriptors used [32].

One of the procedures for such selection is clustering 
descriptors and the further selection of representative 
ones within each cluster. An application of the cluster 
frequency here devised helps in this procedure avoid-
ing ambiguities by ties by looking for those clusters with 
high frequencies and selecting just in those clusters rep-
resentative descriptors by traditional methods like the 
nearest to the centroid of the cluster. These results would 
contrast with those based on HCA results overlooking 
ties, which bring a possible classification of many, there-
fore representative descriptors of not so valid classes 
of descriptors. As unfortunately, there is no standard 
descriptor classification as each classification is context-
dependent, i.e. a classification of descriptors calculated 
regarding hydrocarbons yields different results than one 
with regard to drugs; we devise a classification of molec-
ular descriptors for a particular target of substances. We 
took substances gathered in the liver toxicity knowledge 
base (LTKB) containing drugs having the potential to 
cause drug-induced liver injury (DILI). LTKB is the most 
authoritative database gathering structural information 
regarding drugs, as well as DILI annotations for each 
drug. DILI annotations take into account the causality 
of hepatotoxicity, the incidence of the liver injury over 
population and the severity of the damage caused. LTKB 
assigns one of the following DILI labels to each of the 287 
curated drugs: Most-, Less-, and No-DILI-concern.

By discarding drugs which are salts or mixtures and 
further curation steps [32], the data set was reduced to 
273 molecules; 1666 molecular descriptors were calcu-
lated using the Internet freeware software E-Dragon, 
which were then treated with HCA using Euclidean met-
ric and group average linkage, obtaining a 1666× 1666 
distance matrix upon which cluster frequencies were 
analyzed.

There were several descriptors having the same val-
ues for all molecules (the distance between any pair is 
zero), and so forming an equivalent class from which one 
descriptor was chosen; this led to a 1530× 1530 distance 
matrix having a very high likelihood of ties [21], in turn, 
leading to a combinatorial explosion of dendrograms.

Instead of exploring all dendrograms resulting from 
ties, we analyzed random samples of the distance matrix 
accounting for 5, 10, 15, and 20 % of it. Each sample was 
taken 100 times (experiments). Figure  5 shows the fre-
quency distribution for the amount of different dendro-
grams per experiment per sample. The distribution of 5 % 
results shows that most experiments (about 95 %) yielded 
1–10 different dendrograms, but there were extreme 

cases, not so frequent (1  %) where the experiments 
yielded a thousand dendrograms.

These results contrasted with those for the largest 
sample (20  %), i.e. 306 descriptors, where the number 
of different dendrograms were not concentrated on a 
particular amount of experiments but they were more 
homogeneously distributed. In fact, 21 and 16 experi-
ments yielded 10 and one hundred thousand dendro-
grams, respectively.

These results showed that the expected number of 
different dendrograms increases with sample size, as 
pointed out by MacCuish [21] and that the ties problem 
is not only a problem of large data sets, since 5 % of the 
samples (having only 77 descriptors) had a high likeli-
hood (95 %) of yielding 10 different dendrograms. In fact, 
one experiment from the 5 % samples produced 132 dif-
ferent dendrograms; we show two of them to illustrate 
how different they may be (Fig.  6). These results are a 
matter of concern, for small sets yield different classifica-
tion results and the problem becomes far much worse for 
large sets, like those of chemo- and bioinformatic stud-
ies, where hundreds of thousands of different results are 
likely. This makes HCA results, based on a single dendro-
gram, very unreliable.

Another matter we are interested when exploring ties 
in a set of molecular descriptors is the cluster size of 
those subtrees involved in ties, where size is understood 
as the number of elements (leaves) belonging to the clus-
ter. Figure 7 shows the size of clusters belonging to ties. 
As tie relationship is at least ternary (one element being 
equidistant from the other two), most ties involve clus-
ters having single elements (782,676, i.e. 90 % of all clus-
ters involved in ties), followed by clusters having two 
elements (9  % of all clusters involved in ties). Since the 
probability of ties increases with the number of elements, 
the probability of finding a tie decreases throughout the 
iterations regarding successive cluster couplings. This 
result highligted the fact that most ties occur at small 
cluster sizes, where more elements are present in the 
coupling.

The distribution of cluster sizes formed would be 
expected to be concentrated around clusters of size 
two, since single elements are around 90 % of the total 
number of clusters involved in ties, compared to those 
of size two which account only for 6 %. Therefore, single 
elements would most probably be coupled with them 
than with other sizes. Ties involving clusters of size two 
and one follow in frequency, and are followed by those 
of size two coupled with size two. Such trend in the 
probability of finding a given size involved in ties is not 
general, because it is possible to design a distribution 
of points where ties are only found in large sized clus-
ters and no ties in the small ones, particularly on single 
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elements (equidistant centroids at upper stages in the 
clustering process, far from the leaves). Nevertheless, 
these cases may be atypical regarding real data sets, and 
thus a matter of less concern, being a good approach for 
calculating the number of ties using single elements in 
real studies (equidistant points in the initial distance 
matrix).

Although large clusters are not usually involved in ties, 
they might be affected by the presence of ties of small 
clusters in a non-trivial manner; this led to exploring how 
frequency is related to cluster size. For each experiment 
involving each sample (5, 10, 15, 20 %), which in the end 
is a distance matrix, all its dendrograms were determined 
and stored in a file. As mentioned before, some files have 
a single dendrogram (there are no ties) while others 
have tens of thousands, which led to 1 and almost neg-
ligible frequencies, respectively. The question then arose 
regarding the distribution of such frequencies, which we 
explored by splitting the resulting number of dendro-
grams into intervals of order of magnitude as shown in 
Fig. 8.

Figure 8 shows that there were many small sized clus-
ters, e.g there were more size two clusters than size 300, 
and many of them had frequencies lower than those of 
the other clusters (except for graph-cluster contrast, 
where there were low frequencies for all cluster sizes); 
the lower frequencies were for small sized ones. The dot 
in the upper left-hand corner in each methodology plot 
shows that there was a great amount of permanent size 
two clusters.

It was observed that frequencies calculated through 
set and graph cluster contrasts spread clusters and their 
frequencies along particular frequency values, which is 
depicted as series of dots along horizontal lines (Fig. 8). 
By contrast, frequencies coming from relaxed cluster 
contrasts were concentrated in frequent small sized clus-
ters (more than 0.5 of frequency) and in very frequent 
clusters having very different sizes.

Graph-cluster contrast produced frequencies greater 
than 0.5 just for very small clusters, as there were many 
ties in the lower levels of the dendrograms (near the 
leaves). As expected from Proposition  0.4, Fig.  8 shows 
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that graph-cluster contrast yielded lower frequencies 
than relaxed-graph-cluster contrast. There were many 
clusters of sizes between 2 and 150, having frequency 
1, indicating that such clusters (along with their graph 
structures) were present in all dendrograms stored in the 
file.

This indicated that there were clusters gathering 
50–150 descriptors that were always grouped together, at 
least for the molecules from the LTKB database studied 
here, showing that they were more similar to each other 
regarding the other descriptors. This may have indicated 
a large class of descriptors similarly characterizing mol-
ecules from the LTKB database. Other results regarding 
the classification of descriptors, applied to other data-
bases, have given similar results [7].

Regarding the distribution of orders of magnitude, it 
was observed that clusters in the red zone (showing up in 
less than 10 dendrograms) had frequencies greater than 
those in the green zone (appearing in between 10 and 
100 dendrograms), the green more than those from the 
blue zone (showing up in between 100 and 1000 dendro-
grams) and the blue having more than those in the violet 
zone (appearing in more that 1000). These results can be 
explained using Fig. 4: if there were at least two different 
dendrograms from ties, e.g. the two dendrograms of the 

first grouping step in Fig. 4, then there would be at least 
one non-common cluster between them ({g , h, i}) leading 
to a frequency of 0.5. Now, if there were three dendro-
grams, as in the upper right-hand corner of Fig. 4, differ-
ing in a single cluster ({d, e, f }), such a cluster would have 
a lower frequency (0.333) than that in the previous case. 
It can be thus concluded that the higher the number of 
dendrograms coming from ties, the lower the frequency 
of the non-common clusters.

The relaxed graph cluster-contrast function, unlike 
graph-cluster one, produces frequencies greater than 0.5 
for large clusters. This was because the likelihood of large 
clusters sharing subgraphs is higher than for small clusters, 
leading to more overlapping between subgraphs, therefore 
increasing cluster frequency as relaxed graph. Again, as in 
graph-cluster contrast frequency, the red zone has greater 
frequencies than those for the other zones.

For the set-cluster contrast, with a few exceptions, large 
clusters (more than 100 elements) had high frequencies 
(greater than 0.75); this was also the case, without excep-
tion, for contrast as relaxed set. Indeed, large clusters had 
frequencies greater than 0.9 for contrast as relaxed set. 
Unlike graph and relaxed-graph contrasts, often set and 
relaxed-set contrast frequencies attained a value of 1, the 
latter case being the most striking one.
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Fig. 6  Comparing two dendrograms (D1 and D2) from 5 % samples for the HCA of molecular descriptors shows two conserved zones at right and 
left-hand sides, indicating no change in the classification as resulting from ties. The cluster in the center of both dendrograms is divided into four 
subclusters shown with different colours, which change when comparing the two dendrograms. For example, in the blue cluster, descriptors NTRIA-
ZOLES and NN-N appear together in D1 and are separated in D2; likewise, it is seen that MOR22V, NARCOOR and NRCO in the red cluster of D1 are 
together and spread in different clusters in D2
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Using the contrast functions as cluster stability measures
Cluster stability is a well-known concept in data analysis, 
which is intuitively related to the permanence of a cluster 
throughout a series of perturbed results of analyses. This 
concept is widely used in k-means analysis, for example, 
to select the number of clusters being the one produc-
ing the most stable clusters. Stability is measured using 
a contrast function, such as the Jaccard index, Hamming 
distance, Rand index or minimal matching distance [33]. 
Stability is usually calculated by running the algorithm 
several times, varying some parameters or adding noise 
to the input data, and then contrasting the perturbed 
replicas.

Our contrast functions do not depend on the distances 
among elements; in fact, the distance matrix for starting 
the HCA algorithm may be multiplied by any arbitrary 
positive factor and the number of ties will remain.

The proposed contrast functions only depend on the 
elements’ membership of the clusters and their graph 
structure; this allowed arbitrarily obtained dendrograms 
to be contrasted only requiring that they share the same 
set of leaves. An analyst can thus perturb the algorithm 

or the input data to assess any interesting cluster’s stabil-
ity. This feature enables designing experiments which test 
all the sub-patterns in a given dendrogram, using any of 
the four measures discussed.

Experimental
A tailormade application for tie detection was devel-
oped in Common Lisp (CL) [34], running on Steel 
Bank Common Lisp (SBCL 1.055) under Linux (Ubuntu 
14.04), using the simple average clustering method. 
Such application yields (in Newick format [35]) all den-
drograms coming from tie detection, generating one file 
per each input distance matrix. Our utility takes those 
files as input (the set {Di}) along with a file containing 
clusters (which are sets of graphs), whose frequency 
is to be calculated through the CCj contrast functions. 
The output is a tab separated file containing the input 
clusters and their frequencies. This utility offers a few 
options in the command line for controlling the initial 
parameters for calculations and can be easily incorpo-
rated into batch scripts under any Unix-like OS. These 
dendrograms led to calculating cluster frequencies. 
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Our utility took its input from a file containing clus-
ters which could have been sets or graphs (sub-den-
drograms) and from a file having these dendrograms to 
calculate cluster frequency from the first file. This utility 
offered a few options in the command line for control-
ling the initial parameters for calculations and could be 
easily incorporated into batch scripts under any Unix 
like OS. The output was a tab separated file containing 
the input clusters and their frequencies. A few small 
scripts were written in GAWK 4.0.1 [36], to collect and 

process the frequency results. These tools are available 
on request from the authors.

Conclusions
Even with a fixed HCA methodology, the number of 
ties in proximity might be very high and depends on 
the number of elements to classify [21]. The problem of 
likelihood of clusters throughout a set of dendrograms 
resulting from HCA, taking into account the vast amount 
of ties, has been addressed in this paper by proposing 
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four contrast functions, summarized as follows: if one 
wants to assess cluster frequency in dendrograms result-
ing from ties, one needs to count the number of times the 
cluster shows up in these dendrograms. This can be done 
in several ways, ranging from very stringent approaches 
to very relaxed ones; from the most to the least stringent 
approach, one counts the hierarchy of elements (graph-
cluster contrast), parts of the hierarchy (relaxed-graph-
cluster contrast), only the elements devoid of hierarchy 
(set-cluster contrast) and parts of the elements (relaxed-
set-cluster contrast).

Beside illustrative material (Figs. 1–4), we applied these 
functions to two data sets, the toy example (a small and 
illustrative case of nine elements) and a chemo-infor-
matics case (classifying 1666 molecular descriptors). It 
was found that the likelihood of finding a large amount 
of different dendrograms was increased along with the 
number of elements; the toy example yielded six den-
drograms (Fig.  4) and the descriptors 115,836 ones. In 
fact, small data sets (such as 300 elements) may produce 
between one and one-hundred-thousand dendrograms. 
This pattern regarding the expected number of dendro-
grams forces the analyst to determine the frequency of 
such clusters given the problem of ties in proximity. How-
ever, HCA users normally do not do it, thereby making 
it almost impossible to derive reliable conclusions from 
a single run of HCA. Essentially, the methods proposed 
are ways of contrasting sets and graph structures, opening 
the way forward for applications where the set of dendro-
grams may be the outcome of situations beyond ties, such 
as variations on grouping methodologies or on similarity 
functions or even by adding noise to the input data. In 
such situations our methods allow for a statistical account 
of cluster stability. Tie relationship underlies every clas-
sificatory distance-based algorithm (it is an equidistance 
relation) and is very likely to occur. Our contrast func-
tions may easily be generalized to find statistically-sound 
classes based upon the frequency of their occurrence.

Our results thus showed that classifying molecular 
descriptors may have been far from unique, taking into 
account ties in proximity; therefore, the reliability of 
models based on the classification of descriptors needs 
to be ascertained as there is a good change of bias. HCA 
is widely used in chemo- and bioinformatics; the imme-
diate conclusion from this study is thus that if a HCA 
methodology is used then the conclusions may be very 
weak, due to the presence of ties. QSAR models in drug 
design, for instance, strongly depend on the selection of 
variables, these often being selected using HCA; hence, 
the usual HCA-based approach for predicting molecu-
lar properties through QSAR analysis thus may be based 
on statistically unsound clusters or simply leaving aside 
more interesting ones.

Methods
This section contains a graph theoretical framework for 
cluster contrasts. Tie and no-tie cases are introduced 
after Definition  0.1 along with some results on contrast 
functions CCj and frequency functions fj. Some general 
results, whose validity goes beyond tie and no-tie cases 
are presented. These results are straightforward, but nec-
essary for the validity and optimization of the algorithms 
and scripts used in this paper. From references [16, 37, 
38, 39, 40] we have:

Definition 0.1  A dendrogram D on a set X is an acy-
clic and connected graph having the following kinds of 
vertices:

1.	 of degree 1 called leaves (elements of X),
2.	 a single vertex of degree 2, called root node, and
3.	 vertices of degree 3, called nodes.

Remark  (On the number of clusters within a dendro-
gram) In reference [41] Restrepo et al. proved that for a 
set X with cardinality X, the number of clusters in any of 
its dendrograms is 2|X | − 1. By removing single clusters 
the number of remaining clusters is |X | − 1.

Tie case
Here all elements in the set X are equidistant, i.e. the 
function δ : X × X −→ R used to calculate the dissimilar-
ity between its elements may be defined as:

where c is a real number greater or equal to zero. As can 
be verified, δ meets the requirements of a metric; there-
fore (X , δ) is an equidistant metric space, which we use 
as a representation of the tie case.

In Proposition 0.1 we come up with an expression for 
the frequency of a cluster C regarding the set X as an 
equidistant metric space (tie case), where the frequency 
is calculated using the graph-cluster contrast. Here 
L(C) ⊆ X is the set of elements (leaves) of C. Before that, 
cluster is defined as a particular kind of sub-graph within 
a dendrogram according to:

Definition 0.2  Let D be a dendrogram on X. A sub-
graph C of D is a subtree (or subdendrogram) if C itself 
is a dendrogram on L(C).

Remark  (On the definition of subtree) An alternative 
definition of subtree can be found in Restrepo et.al. [16, 
37, 38, 39, 40].

δ(x, y) =

{

c if x �= y
0 if x = y
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Proposition 0.1  Let (X , δ) be an equidistant metric 
space and C ,C ′ be clusters such that L(C), L(C ′) ⊆ X. It 
follows that:

1.	 fg (C) = F(k)/F(n)

2.	 |L(C)| ≥ 2 implies CCg (C ,Di) < 1

3.	 If |L(C)| = |L(C ′)|, then fg (C) = fg (C
′),where 

k = n− |L(C)| + 1, n and |L(C)| are the number of 
elements in X and C, respectively, and F(n) is as in 
Eq. 1.

Proof  1. Let F be the set of dendrograms on X con-
sidering ties in proximity. As (X , δ) is an equidis-
tant metric space, then Di ∈ F  iff L(Di) = X , that is 
any dendrogram Di with X as set of leaves belongs 
to F. From Eq. 1, we know that there are F(n) dif-
ferent dendrograms {Di}i≤F(n) on the set X of n 
elements, i.e. F = {Di}i≤F(n). In addition, from the 
definition of cluster frequency function fg (Eq. 6), 
we have: 

where CCg (C ,Di) = 1 iff C is a subtree of Di and 0 
otherwise, which means that 

∑F(n)
i=1

CCg (C ,Di) is 
equal to the number of dendrograms from F hav-
ing C as a subtree (see Fig. 9) which is equal to the 
number of dendrograms that can be built on the set 
(X \ L(C)) ∪ { ĉ} where ĉ ∈ L(C), i.e. regarding the 
cluster C as a leaf not belonging to X \ L(C) (see 
Fig.  10) As |X \ L(C) ∪ {ĉ}| = n− |L(C)| + 1, we 
have that 

 by substituting in Eq. 7 with k = n− |L(C)| + 1, we 
have (1).

2.	 |L(C)| ≥ 2 implies k = n− |L(C)| + 1 < n, which 
means that 

(7)fg (C) =
1

F(n)

F(n)
∑

i=1

CCg (C ,Di),

F(n)
∑

i=1

CCg (C ,Di) = F(n− |L(C)| + 1),

CCg (C ,Di) =
F(k)

F(n)
< 1

3.	 It is straightforward since 
n− |L(C)| + 1 = n− |L(C ′)| + 1� �

No‑tie case
This occurs when the distance matrix has a unique 
minimum and, moreover, when each distance matrix 
keeps having a unique minimum in each HCA step. In 
such a case, there is only one realizable dendrogram; 
therefore the frequency of its occurrence as an out-
come from the HCA algorithm is 1. The immediate 
consequence is that the frequency of the cluster in the 
realizable dendrogram is 1 and the frequency of any 
other cluster is 0.

Results beyond tie and no‑tie cases

Proposition 0.2  CCrg (C ,Dk) > 0 iff there is a common 
graph between C, and Dk whose cardinality is two.

Proof  As we do not consider trivial subtrees, then 
|C|, |Dk | ≥ 2. Moreover, Eq. 3 leads to CCrg (C ,Dk) > 0 iff 
|P(C) ∩ P(gj)| > 0 for some j ∈ J , iff there is a common 
subgraph between C and gj with two or more elements, 
as those having one element are disregarded. Therefore, 
C and gj share a subtree with two elements.�  �

Proposition 0.3   

Proof   

• • If CCrg (C ,Dk) = 1, by Eq. 3, 

 which is equivalent to |P(C) ∩ P(gj)| = |P(C) ∪ P(gj)| 
for some j ∈ J , iff P(C) = P(gj) for some j ∈ J . For 
Eq. 2, it follows that CCg (C ,Di) = 1.

• • CCrg (C ,Dk) = 0 iff, by Eq. 3, 

 iff |P(C) ∩ P(gj)| = 0 for all j ∈ J . This is true iff 
P(C) ∩ P(gj) = ∅ for all j ∈ J , which implies, accord-
ing to Eq. 2, that CCg (C ,Di) = 0� �

Proposition 0.4  CCg (C) ≤ CCrg (C).

Proof  Let J ⊆ {1, 2, . . . n} = I be the set of indices such 
that CCg (C ,Dj) = 1 for all j ∈ J , then by Proposition 0.3, 
we have that CCrg (C ,Dj) = 1 for all j ∈ J , therefore:

(8)CCrg (C ,Dk) =

{

1 iff CCg (C ,Dk) = 1

0 if CCg (C ,Dk) = 0

(9)CCrg (C ,Di) = max
j

|P(C) ∩ P(gj)|

|P(C) ∪ P(gj)|
= 1,

(10)max
j

|P(C) ∩ P(gj)|

|P(C) ∪ P(gj)|
= 0,

... ...

C

... ... ... ... ... ...

|L(C)| leaves

· · ·

Fig. 9  Dendrogram having C as a subtree
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Thus

by Eq. 11

But CCg (C ,Di) = 0 for all i ∈ I \ J , thus:

On the other hand, CCrg (C ,Di) ≥ 0 for all i ∈ I \ J , for 
if C is not in Di it does not imply that any of the C sub-
trees is in Di. Then

which implies

� �

Proposition 0.5  CCs(C) ≤ CCrs(C).

(11)

∑

j∈J

CCg (C ,Dj) =
∑

j∈J

CCrg (C ,Dj)

(12)

CCg (C) =
1

|I |

∑

i∈I

CCg (C ,Di)

=
1

|I |

∑

j∈J

CCg (C ,Dj)+
1

|I |

∑

i∈I\J

CCg (C ,Di)

(13)CCg (C) =
1

|I |

∑

j∈J

CCrg (C ,Dj)+
1

|I |

∑

i∈I\J

CCg (C ,Di)

(14)CCg (C) =
1

|I |

∑

j∈J

CCrg (C ,Dj).

∑

i∈I\J

CCg (C ,Di) ≥ 0

(15)

CCg (C) =
1

|I |

∑

j∈J

CCrg (C ,Dj)

≤
1

|I |

∑

j∈J

CCrg (C ,Dj)+
1

|I |

∑

i∈I\J

CCrg (C ,Di)

= CCrg (C)

Proof  It follows from a similar argument than the used 
in Proposition 0.4.�  �

The following two propositions are important for the 
performance of the algorithms, for relaxed-set cluster 
contrasts require more calculations than set- and graph-
cluster contrast. On the other hand, Proposition  0.7 is 
used to avoid extra calculations on the smallest clusters, 
which, according to our results (Fig. 7) are likely involved 
in ties.

Proposition 0.6  CCs(C ,Dk) = 1 iff CCrs(C ,Dk) = 1.

Proof  CCs(C ,Dk) = 1 iff L(C) = L(gj) for some j ∈ J , 
where gj is a subgraph of Dk. This is equivalent to

which, by definition, is CCrs(C ,Dk) = 1.�  �

Proposition 0.7  Let C be a cluster such that |C| = 2. 
Then:

1.	 If CCj(C ,Dk) = 1 for some j ∈ {g , rg , s, rs}, then 
CCj(C ,Dk) = 1 for all j ∈ {g , rg , s, rs}.

2	 If CCj(C ,Dk) = 0 for some j ∈ {g , rg , s, rs}, then 
CCj(C ,Dk) = 0 for all j ∈ {g , rg , s, rs}.

Proof  From Proposition 0.2, CCg (C ,Dk) = 1 
iff CCrg (C ,Dk) = 1 and, from Proposition  0.6, 
CCs(C ,Dk) = 1 iff CCrs(C ,Dk) = 1.

Let us prove that CCs(C ,Dk) = 1 iff CCg (C ,Dk) = 1

: CCs(C ,Dk) = 1 is equivalent to L(C) = L(gj) for 
some j ∈ J  iff C = gj for some j ∈ J  (since |C| = 2), iff 
CCg (C ,Dk) = 1.

Moreover, CCrg (C ,Dk) = 1 iff CCg (C ,Dk) = 1 iff 
CCs(C ,Dk) = 1 iff CCrs(C ,Dk) = 1, which implies that 
CCrg (C ,Dk) = 1 iff CCrs(C ,Dk) = 1

� �
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