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Abstract 

Background:  Predictive regression models can be created with many different modelling approaches. Choices need 
to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, 
as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model repro‑
ducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling 
and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the 
process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, 
would be valuable if it tests several simple and complex regression models and validation schemes, produce unified 
reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be 
implemented as a free programming package, in order to be continuously adapted and redistributed by others.

Results:  We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers 
the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-
validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, 
Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The 
new framework is an automated fully validated procedure which produces standardized reports to quickly oversee 
the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology 
was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reus‑
ing and extending on the caret package.

Conclusion:  The universality of the new methodology is demonstrated using five standard data sets from differ‑
ent scientific fields. Its efficiency in cheminformatics and QSAR modelling is shown with three use cases: proteomics 
data for surface-modified gold nanoparticles, nano-metal oxides descriptor data, and molecular descriptors for acute 
aquatic toxicity data. The results show that for all data sets RRegrs reports models with equal or better performance 
for both training and test sets than those reported in the original publications. Its good performance as well as its 
adaptability in terms of parameter optimization could make RRegrs a popular framework to assist the initial explora‑
tion of predictive models, and with that, the design of more comprehensive in silico screening applications.

Keywords:  Multiple regression, QSAR, R package, Caret-based tool

© 2015 Tsiliki et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

*Correspondence:  gtsiliki@central.ntua.gr 
†Georgia Tsiliki and Cristian R. Munteanu contributed equally to this work
1 School of Chemical Engineering, National Technical University of Athens, 
9 Heroon Polytechneiou Street, Zografou Campus, 15780 Athens, Greece
Full list of author information is available at the end of the article

https://www.github.com/enanomapper/RRegrs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-015-0094-2&domain=pdf


Page 2 of 16Tsiliki et al. J Cheminform  (2015) 7:46 

Background
Many open-source statistical, data-mining, and machine 
learning software projects give access to a wide range 
of data processing and modelling algorithms often pro-
viding graphical user interfaces. Among them are Weka 
(Waikato Environment for Knowledge Analysis) [1], 
RapidMiner [2], Keel (Knowledge Extraction based on 
Evolutionary Learning) [3], Orange [4], Scikit-learn [5], 
C1C2 [6] and KNIME (Konstanz Information Miner) 
[7], effectively, providing full predictive modelling 
frameworks.

Additionally, web-based platforms such as OpenTox [8] 
and Online Chemical Modelling Environment (OCHEM) 
[9] focus on the development of quantitative structure-
activity relationship (QSAR) models, i.e. regression or 
classification models that are used for the in silica assess-
ment of physicochemical properties and biological activi-
ties of chemical compounds such as toxicity, biological 
potency and side effects [10–12]. Such platforms typically 
consist of two major subsystems: the database of experi-
mental measurements and the modelling framework. 
They allow users to create their own QSAR models, pre-
dict results for new chemicals, and share them. Open-
Tox in particular is a platform-independent collection of 
components which communicate through web services, 
so that the user can combine data, models and valida-
tion results from multiple sources in a dependable and 
time-effective way. Several other tools offer virtual evalu-
ation of chemical properties and toxicity using imple-
mented QSAR models; for instance, Vega [13], EPI Suite 
[14], Toxicity Estimation Software Tool (TEST) [15], 
QSAR4u [16], BuildQSAR [17], OECD QSAR Toolbox 
[18], AZOrange [19] or Bioclipse-R [20]. However, these 
tools are limited to supported data sets, QSAR models or 
specific regressions methods.

On the other hand, the R statistical language environ-
ment [21] offers many solutions for regression modelling 
and also some packages providing simultaneous access to 
multiple methods. For example, the glmulti package con-
ducts automated model selection and model-averaging 
based on the Akaike Information Criterion (AIC) or the 
Bayesian Information Criterion (BIC) [22], the kernlab 
package applies Kernel-based machine learning methods 
for classification, regression, clustering, novelty detec-
tion, quantile regression and dimensionality reduction, 
and the e1071 package includes functions for latent class 
analysis, short time Fourier transform, fuzzy clustering, 
and support vector machines. Other R packages are spe-
cializing on particular set of algorithms, for instance the 
R package tree focuses on producing classification and 
regression trees.

Of particular interest is the R package for predictive 
modelling called caret (Classification and Regression 

Training) which gathers and simplifies numerous R algo-
rithms for the development of a wide variety of predic-
tive models by calling and integrating more than 25 other 
packages [23]. Unique features of caret include data split-
ting, pre-processing, characterizing performance and 
variable importance, and parallel processing tools.

Although this package is providing useful methods for 
the syntactical unification of regression and classification 
prediction modelling approaches, the various models 
have different inputs and the outcomes different formats, 
typically depending on their parameters. This makes it 
hard to run all the available methods for multiple data 
sets, compare all the outputs, and produce a standardized 
results summary.

Furthermore, the complexity of the workflows compli-
cates the reproduction of the same regression results and 
it may affect decisions on issues, such as how to split the 
original data set, how often to split the data set, which 
cross-validation method is to be use, which data filtering 
to apply before regression (correlated features removal, 
“not available” (NA) values elimination, etc.), which 
data scaling is applied (normalization, standardization, 
etc.), which regression methods to test, which regres-
sion parameters and seeds to use, how to summarize and 
compare the results for several regression models, and 
which criteria to use in order to choose the best regres-
sion model.

To address these limitations, the current manuscript 
describes a standardized framework that automates 
the development of a reliable and well-validated QSAR 
model, or set of models. The so-called RRegrs tool (R 
Regressions) is based on the R caret package and is focus-
ing on regression modelling. RRegrs workflow offers a 
fully validated procedure capturing any variability or 
inconsistency in the data. A single RRegrs function call 
is needed to run the entire workflow and obtain the pro-
duced validated QSAR model(s) in a reproducible format 
in contrast to the standard, inefficient and time-consum-
ing QSAR modelling workflow, where the modeller tries 
many different algorithms and even needs to further 
search the parameter space of each algorithm. This is a 
considerable advantage for users with perhaps limited 
statistical knowledge or limited R experience. Also repro-
ducibility is a comparative advantage since often the same 
procedure needs to be applied for different data sets. 
RRegrs implements an easy way to explore the models’ 
search space of linear and non-linear models with special 
parameters specifications and cross validation schemes. 
Furthermore, model outputs are easily accessible and 
readable, organized by methods, centralized and aver-
aged by multiple reproducible data set splits. Summary 
files are also produced helping the user to easily access 
all methodologies results, which can then be prioritized 
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based on various statistics. The current implementation 
of the RRegrs package contains ten different regression 
algorithms and supports parallel processing, if prompted. 
RRegrs function calls can be integrated into complex 
desktop and web tools for QSAR. RRegrs package is 
available as an open repository at https://www.github.
com/enanomapper/RRegrs. The current release is avail-
able from ZENODO with the doi:10.5281/zenodo.21946.

Results and discussion
RRegrs is an R package for computer-aided model selec-
tion, designed and implemented as a collection of regres-
sion tools available from the caret package. RRegrs uses 
the R package testthat for testing [24]. It does not apply 
full unit testing, but several RRegrs parameter combina-
tions are tested, which are run during the build process. 
RRegrs can be used to find the best regression model for 
any numerical data set using some or all of ten linear and 
non-linear regression models: Multiple Linear regression 
(LM), Generalized Linear Model with Stepwise Feature 
Selection (GLM) [25], Partial Least Squares Regression 
(PLS) [26], Lasso regression (LASSO) [27], Elastic Net 
regression (ENET) [28], Support vector machine using 
radial functions (SVRM) [29], Neural Networks regres-
sion (NN) [30], Random Forest (RF) [31], Random For-
est Recursive Feature Elimination (RF-RFE) [32] and 
Support Vector Machines Recursive Feature Elimination 
(SVM-RFE) [33]. Using the above methods, we explore 
the model space and compare outputs to decide on the 
optimal model, given the data. We are setting the regres-
sion method parameters with grid functions which have 
been carefully chosen to optimize different models, and 
particularly this is done for PLS, SVRM, SVM-RFE, NN, 
RF, RF-RFE, ENET. Specifically for SVRM, SVM-RFE the 
user could also specify custom parameters.

The main scope of the presented tool is to be able to 
run a large number of regression methods from the caret 
package using only one function call, to use standard-
ized cross-validation (CV) scheme for all the methods, to 
obtain standardized outputs, to generate result summary 
tables and comparison plots for the regression methods 
and to store for each method detailed statistics and fitting 
plots. RRegrs integrates results of individual models and 
decides on the best model given the data set and the user 
specified parameters, unlike caret. Therefore, RRegrs per-
mits users, irrespective of their programming or statistics 
experience, to predict any type of numerical output using 
multiple regression methods. In addition, advanced users 
could integrate RRegrs in other applications or software 
packages. For example, in cheminformatics RRegrs can 
be used to generate predictive models using molecular 
descriptors calculated with the rcdk package, using func-
tions offered by the Chemistry Development Kit [34].

RRegrs function wraps up all the above mentioned 
procedures within just one call. The following steps 
are included (see Fig.  1): load parameters and data set, 
remove the NA values, remove near zero variance fea-
tures, scale the data set, remove correlated features, 
split data set into training and test sets, run the selected 
regression methods using the selected cross-validation 
method(s), summarize the statistics for all methods and 
splittings, average for each method and cross-valida-
tion type for all splittings, apply the best model of each 
method and split on the test sets, apply Y-randomization 
on the best model, and assess the Applicability Domain. 
For each model, a CV scheme is introduced with two 
options: 10-fold repeated CV and Leave-One-Out (LOO) 
CV. The more time-consuming regression methods (RF, 
SVM-RFE, RF-RFE) are using only repeated cross-vali-
dation (other validation methods could be very slow for 
these complex functions), whereas for computationally 
demanding methods RRegrs offers parallel processing 
for a defined number of CPU cores. Detailed output files 
for all regression methods are produced, plots for indi-
vidual model statistics, as well as summary statistics and 
comparison plots between methods, resulting in a signifi-
cant number of CSV, PDF, PNG outputs files. Addition-
ally, several summary files are created. A CSV output file 
is created with all the basic statistics (17 values) for each 
method, data splitting and CV type. Based on the above, 
averaged statistics are calculated for each regression 
method and across all data splits, which are the values 
needed to decide on the final best model performance. 
The best model is further validated with Y-randomization 
runs (100 by default).

For each regression method, caret package utilities are 
employed. For example, RRegrs uses the trainControl 
and train functions to set the training conditions (10 rep-
etitions; RMSE used as metrics to choose the model) and 
train the model, respectively. For each method, RRegrs 
is generating the same list of 17 statistics values: regres-
sion name, split number, cross-validation type, number 
of model features, names of model features, training 
adjusted R-squared (adj.R2), training root mean squared 
error (RMSECV/LOO), training R2

CV/LOO
, training stand-

ardized RMSE, test adjusted R2, test RMSE (RMSEtest), 
test R2 (R2

test), test correlation, and corresponding val-
ues for both sets. If the user requests detailed output 
(the default flag is set to True), several files are gener-
ated such as a CSV file with statistics about each regres-
sion model listing the following information: regression 
method, splitting number, cross-validation type, training 
set summary, test set summary, fitting summary, list of 
predictors, training/test predictors, a full list of statistics 
as defined above, feature importance, residuals of the fit-
ted model, assessment of applicability domain/leverage 

https://www.github.com/enanomapper/RRegrs
https://www.github.com/enanomapper/RRegrs
http://dx.doi.org/10.5281/zenodo.21946
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Fig. 1  RRegrs methodology flowchart. Outline of the steps performed by the RRegrs function
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analysis such as mean of hat values, hat values with warn-
ings, leverage threshold, list of points with leverage 
greater than threshold, Cook’s distances, Cook’s distance 
cutoff, points influence. Particularly, for each data split-
ting and CV method, the following plots are produced: 
observed versus predicted values for training/test sets, 
feature importance, fitted versus residuals for the fit-
ted model, leverage statistics for fitted model, Cook’s 
distance for fitted model, and six standard fitting plots 
including Cook’s distance cutoff.

Moreover, RRegrs offers an exhaustive validation 
framework by introducing multiple random data split-
tings. For each algorithm and data split, the model is 
produced based on training and validation sets. We are 
reporting both CV and external validation statistics, 
however, the test set is used to select the final best model, 
i.e. the best performing amongst the optimal models 
produced by different algorithms (both linear and non-
linear). Decision is made on the averaged statistics across 
data splits to remove any bias towards the structure of 
the test set. The best regression model is selected based 
on the following criterion: from the best averaged R2

test 
(+/−0.05), the model with minimum RMSEtest is the final 
one. Alternatively, the test adjusted R2 can be used to 
select the best model. For the best model, an additional 
CSV file is generated providing detailed statistics as well 
as PDF plots for important statistics.

As mentioned above, parallel processing is employed 
during training steps by enabling caret’s parallel design, 
and it is activated by either using caret’s TrainControl 
“allowParallel” option, or in the case of RFE methods 
also within the model selection (iterating with a paral-
lel foreach through the cross validation model selection 
for each feature size) using RFEControl “allowParal-
lel” option. Libraries doMC (Linux/Mac) and doSNOW 
(Windows) provide foreach parallel adaptor.

The uses of RRegrs reported here are aimed at finding 
QSAR models for cheminformatics and nanotoxicology 

for the eNanoMapper European FP7 project. RRegrs was 
first tested with five standard data sets from UC Irvine 
Machine Learning Repository [35], followed by a demon-
stration the efficiency of RRegrs in cheminformatics and 
bioinformatics areas, using three publicly available data 
sets, as presented in the following sections.

RRegrs models for standard data sets
To benchmark RRegrs we first used five standard regres-
sion data sets from the UC Irvine machine learning 
repository [35]: the housing [36], computer hardware, 
wine quality [37], automobile [38], and Parkinsons telem-
onitoring [39] data sets. Based on these data sets we 
demonstrate the RRegrs methodology capabilities in dif-
ferent scientific fields. The number of cases and features 
of these data sets are described in the Methods section.

The housing data set is the most used standard data set 
for complex regression methods: combination of regres-
sion estimators as genetic algorithm-based selective 
neural network ensemble [40], distributed multivariate 
regression using wavelet-based collective data mining 
[41], application of the Bayesian evidence framework to 
support vector regression (SVR) [42], Principal Com-
ponents approach that combines regression estimates 
[43], regression on feature projections (RFP) method 
[44], subset-based least squares subspace regression in 
reproducing Kernel Hilbert space (RKHS) [45], Smola 
and Scholkopf ’s sequential minimal optimization (SMO) 
algorithm for SVM regression [46], etc.

Tables  1 and 2 present two statistic values for these 
standard data sets: R2

test and RMSEtest values, averaged 
by 10 different data set splits, using 10-fold repeated CV 
and 10 Y-randomization. The results show that advanced 
methods such as RF-RFE and RF give the highest R2 val-
ues. In the case of the Housing data set, PLS provides a 
very low R2

test of 0.266 compared with the RF-RFE/RF 
that shows 0.875/0.874 (R2

test for LM is 0.707). Because 
of its slightly lower RMSEtest value compared to RF-RFE 

Table 1  Test averaged R2 values for five standard data sets

RRegrs method Housing Computer hardware Red wine quality Automobile Parkinson 
telemonitoring

LM 0.707 0.822 0.355 0.824 0.154

GLM 0.709 0.825 0.353 0.824 0.153

PLS 0.266 0.740 0.066 0.757 0.091

LASSO 0.704 0.828 0.354 0.831 0.154

ENET 0.705 0.826 0.354 0.830 0.154

SVRM 0.845 0.765 0.396 0.853 0.637

NN 0.688 0.824 0.352 0.829 0.142

RF 0.874 0.907 0.500 0.915 0.972

RF-RFE 0.875 0.903 0.501 0.914 0.900

SVM-RFE 0.717 0.742 0.383 0.714 0.479



Page 6 of 16Tsiliki et al. J Cheminform  (2015) 7:46 

(less than 0.001), RRegrs suggests RF as the best model. 
Figure 2 shows the differences for R2

test and RMSECV on 
the training set (data split 1) and Fig. 3 presents the com-
parison for resampling on the training set (data split 1). 
In order to observe the quality of the regression models, 
Fig.  4 presents the observed versus predicted values in 
the test set for the best models for five data sets (10-fold 
repeated CV). The applicability domain section of RRe-
grs plotted the leverage for the Housing best fitted model 
(RF) as in Fig. 5.

The best model for the Computer Hardware data set 
was obtained with the RF method (R2

test of 0.907) and the 

worst one using PLS (R2
test of 0.740). The LM method has 

R
2
test of 0.822. Models for the Red Wine data set do not 

produce good values for R2
test (>0.501) due to the non-

continuous values of the output variable. When RRegrs is 
applied to the Automobile data set, R2

test values vary from 
about 0.915 for RF/RF-RFE to 0.714 for SVM-RFE (R2

test 
for LM is 0.824).

If the RRegrs call uses all available CPU cores for the 
complex methods, one dataset split, one Y-randomi-
zations, and all the regression methods, the following 
execution times (in seconds) are obtained for the Bos-
ton standard dataset (see Table 3). The computer was an 

Table 2  Test averaged RMSE values for five standard data sets

RRegrs method Housing Computer hardware Red wine quality Automobile Parkinson 
telemonitoring

LM 0.007 0.001 0.002 0.076 0.034

GLM 0.007 0.001 0.002 0.076 0.034

PLS 0.011 0.001 0.003 0.094 0.035

LASSO 0.007 0.001 0.002 0.074 0.034

ENET 0.007 0.001 0.002 0.075 0.034

SVRM 0.005 0.001 0.002 0.067 0.022

NN 0.007 0.001 0.002 0.075 0.034

RF 0.005 0.001 0.002 0.052 0.006

RF-RFE 0.005 0.001 0.002 0.052 0.013

SVM-RFE 0.008 0.002 0.002 0.113 0.027

Fig. 2  Models’ differences on the Housing training set (data split 1). We show the average performance value (dot) with two-sided confidence 
limits as computed by Student t test with Bonferroni multiplicity correction. Results are shown for RMSE and R2 statistics and all pairwise model 
comparisons
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Windows 8.1 64bit with i7-4790 CPU (3.60 GHz, 4 cores, 
8 logical cores), 16G RAM. The total execution time was 
5.43 min (325.64 s).

Use case 1: RRegrs application on protein corona data
Recent studies have shown that the presence of serum 
proteins in  vitro cell culture systems form a protein 
adsorption layer (a.k.a. the ‘protein corona’) on the sur-
face of nanoparticles (NPs). This corona is reported to 
affect the nanoparticle-cell interactions as well as change 
the cell response [47, 48], and defines the NP’s ‘biologi-
cal identity’ [49]. It thus encodes information about the 
interface formed between the NP core and the cell sur-
face within a physiological environment.

This section presents results for proteomics data 
recently published that characterizes the serum protein 
corona ‘fingerprint’ formed around a library of 105 dis-
tinct surface-modified gold NPs [49]. The authors used 
LC–MS/MS to identify 129 serum proteins which were 

considered suitable for relative quantification. The rela-
tive abundances for each of these proteins on the corona 
of a nanoparticle formulation defines the serum protein 
‘fingerprint’ for that formulation. The authors presented 
a multivariate regression model that uses the protein 
corona fingerprint to predict cell association for the gold 
NPs and found a model predicted cell association with a 
R
2
LOO

 of 0.81. Specifically, they applied a PLS regression 
model along with an internal iterative filtering procedure 
using the Variable Importance to the Projection (VIP) 
score and jackknife resampling.

Here we present results on the initial set of 129 ×  84 
proteins to gold NPs data (21 neutral NPs were excluded 
from analysis as in Walkey et al. [49]), and also on a set 
of 76 × 84 proteins to gold NPs data. These 76 proteins 
are selected in [49] with VIP ≥ 0.6 threshold. RRegrs was 
applied with 10 random splits of the data (75 % train and 
25  % test) along with 10 Y-randomization runs for the 
best model. Table  4 shows the best model selected by 

Fig. 3  Models’ comparison of resampling results for Housing training set (data split 1). Univariate visualization of the resampling distributions of 
RMSE and R2 statistics, for the various RRegrs models



Page 8 of 16Tsiliki et al. J Cheminform  (2015) 7:46 

RRegrs, its number of features, the adj.R2 and the R2 and 
RMSE values for the train and test sets, averaged over 10 
random splits of the data. Table 5 shows the best model 
found in all data splits, i.e. we compare all methodologies 
and data splits to find the best R2

test. Data are normalized 
and filtered using the RRegrs near zero variance and cor-
relation filters, for that reason the 129 proteins are fil-
tered to be 99 and the 76 proteins data set are reduced to 
60 features.

For the data set with 129 proteins, the best model is an 
SVRM model with R2

test = 0.631. CV results on the train-
ing set can be seen in Fig. 6, where we can observe that 
the LM and GLM models are not suitable for the pro-
tein corona data, whereas the remaining methodologies 
perform similarly. It can be observed in Table 5 that the 
highest value reported was R2

test =  0.844 for individual 
split nine of the data set.

When we study the set with 76 proteins, we find 
that the best model is an SVRM model with averaged 
R
2
test =  0.728, whereas the best individual split value is 

R
2
test  =  0.89. CV results on the training set are shown 

in Fig.  7. The corresponding RRegrs results for the PLS 

model are R2
test  =  0.7 (averaged over 10 data splits), 

whereas the highest values are reported for individual 
split five R2

test = 0.885 (for repeated CV) and R2
test = 0.873 

(for LOO). Although the last number cannot be directly 
compared to R2

LOO
  =  0.81 reported by the authors, it 

gives an indication of how our PLS implementation per-
forms for the specific data set.

Use case 2: RRegrs application on metal oxides data set
The authors of [50] combined experimental and theo-
retical measurements to develop a nano-QSAR model 
that describes the toxicity of eighteen nano-metal 
oxides (MeOx) to the human keratinocyte (HaCaT) cell 
line, which is a common in  vitro model for keratino-
cyte response during toxic dermal exposure. The study 
was aimed at exposing and explaining the differences 
in modes of toxic action of metal oxide nanoparticles 
between the eukaryotic system and the prokaryotic sys-
tem (E. coli).

They calculated 32 parameters that quantita-
tively describe the variability of the nanoparticles’ 
structure, called nano-descriptors, which included 

Fig. 4  Test Yobs—Ypred for the five standard data sets best models (10-fold cross-validation). Plots for the observed versus the predicted values 
and the best model found for each of the five data sets
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quantum-mechanical descriptors derived from quantum-
chemical calculations, and image descriptors derived 
from transmission electron microscopy (TEM) images. 
Some of the descriptors included are: particle size and 
size distribution, agglomeration state, particle shape, 

crystal structure, chemical composition, surface area, 
surface chemistry, surface charge, electronic proper-
ties (reactivity, conductivity, interaction energies, etc.), 
and porosity. Additionally, the LC50 was calculated from 
experimental data for all MeOx NPs. This is the concen-
tration that caused a 50 % reduction of the cells after 24 h 
exposure, whereas the  −log(LC50) values were used in 
modelling, as the dependent variable t be predicted.

The authors applied a Genetic Algorithm (GA) to inde-
pendently select the most efficient combination of the 
molecular descriptors which were then analyzed using 
multiple linear regression. They found that two descrip-
tors were sufficient to predict NPs toxicity with high 
statistical significance, namely �H

f
c descriptor, which 

is the enthalpy of formation of metal oxide nanocluster 
representing a fragment of the surface and, χc descrip-
tor, which is the Mulliken’s electronegativity of the clus-
ter. The reported values are: R2 =  0.93 (RMSE =  0.12), 
R
2
LOO

  =  0.86 (RMSELOO  =  0.16), R
2
test  =  0.83 

(RMSEtest = 0.13). Note that R2, here and in other cases, 
refers to the coefficient of determination for fitting the 
model to the training data.

Fig. 5  Leverage for Housing best fitted model. Histogram showing the Hat values for the RF fitted model. The red dashed line indicates the leverage 
threshold value (3m

n
, where m are the number of model parameters and n the number of observations)

Table 3  RRegrs execution time (in seconds) for  one split 
of Boston House dataset

Method Repeated CV LOOCV

LM 11.97 1.78

GLM 2.14 5.48

PLS 0.99 1.40

Lasso 1.32 –

ENET 12.70 45.30

SVM radial 4.62 13.77

NN 12.53 49.97

RF 88.89 –

RF-RFE 3.89 –

SVM-RFE 46.36 –
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Ten random splits of the data were performed (75  % 
train and 25  % test) along with ten Y-randomization 
runs for the best model. Tables  4 and 5 show RRegrs 
results for the initial set of 32 parameters to the eight-
een MeOx’s, averaged or non-averaged values across 

the ten data splits, respectively. Because of the restricted 
number of samples and descriptors RRegrs was applied 
without filtering options, whereas data were normal-
ized, as in [50]. The best model was selected between 
those that perform feature selection, i.e. GLM, LASSO, 

Table 4  RRegrs averaged statistics reported for the three use cases, under the 10-fold repeated CVscheme

Averaged values are reported across the ten different data splits

Use case Best model Features no. adj.R2
R
2

CV
R
2
test

RMSECV RMSEtest

UC1: protein corona

 129 proteins SVRM 99 1.02 0.687 0.631 0.558 0.612

 76 proteins SVRM 60 0.582 0.777 0.728 0.477 0.538

 UC2: metal oxides ENET 8.8 1 0.933 0.746 0.639 0.639

 UC3: toxicity data SVRM 8 0.7 0.556 0.537 0.68 0.67

Table 5  RRegrs best model statistics reported for the three use cases. Both LOO and CV values are considered

Use case Best model Data split Features no. Validation type adj.R2
R
2

CV/LOO
R
2
test

RMSECV/LOO RMSEtest

UC1: protein corona

 129 proteins SVRM 5 99 LOO, CV 1.03 0.644/0.61 0.844 0.618/0.643 0.357

 76 proteins SVRM 5 60 LOO, CV 0.407 0.767/0.741 0.89 0.525/0.527 0.296

UC2: metal oxides ENET 8 8 LOO 0.808 0.7 0.998 0.588 0.246

UC3: toxicity data SVRM 2 8 LOO 0.685 0.506 0.657 0.705 0.609

Fig. 6  Models’ differences for protein corona training set (data split 5). Differences for R2 and RMSE values among the applied models are presented. 
The average performance with two-sided confidence limits are plotted as derived by the Student t-test with Bonferroni multiplicity correction. We 
can observe that LM and GLM models are not fitting the data very well (large RMSE values)
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SVM-RFE, RF-RFE, ENET. As can be seen from the 
tables, the best performance model and the best aver-
aged model is ENET in this case, keeping on average 
8.8 variables from the data including the two important 
variables (∆Hc, χc) selected in the original publication. 
The ENET averaged statistics for 10 splits of the data are 
R
2
test = 0.746, R2

CV
 = 0.933, which are very similar to the 

values reported by the authors. The best individual split 
value is equal to R2

test = 0.998 for ENET model with eight 
variables including the final two suggested by the authors 
(LOO at the eighth split of the data). The boxplots in 
Fig.  8 show the resampling values of RMSECV and R2

CV
 

values in the training set for split eight, where only meth-
odologies with the same resampling scheme are included 
in the graph. Figure 8 also includes the fit of the selected 
model ENET for the same data split.

Use case 3: RRegrs application on aquatic toxicity data set
The authors of [51] developed a QSAR model based on 
546 organic molecules, to predict acute aquatic toxic-
ity towards Daphnia magna, which is the organism pre-
ferred for short-term aquatic toxicity testing according to 
REACH [52]. Ad hoc-designed workflows were used for 
data curation and filtering, as well as for the extraction of 
LC50 data, which in this case is defined to be the concen-
tration that causes death in 50 % of test Daphnia magna 
over a test duration of 48 h. For modelling purposes the 

−log(LC50) values were considered as the dependent var-
iable to be predicted. Other experimental data on aquatic 
toxicity were retrieved from three databases and avail-
able scientific publications, as well as one-dimensional 
(1-D) and2-D molecular descriptors implemented with 
DRAGON software [51], resulting in a total of 2, 187 
molecular descriptors.

A modified k-Nearest Neighbour (kNN) strategy cou-
pled with GA algorithms was used to select the relevant 
molecular descriptors. The final data set comprised of 
546 organic molecules and a set of 201 descriptors. The 
GA-kNN strategy was implemented with a threshold 
on the average Mahalanobis distance from the k near-
est neighbours, so that only molecules satisfying the 
threshold criterion were predicted. Particularly, pre-
dictions for molecules with an average distance greater 
than 1.26 from their three neighbours, were considered 
to be outside of the applicability domain. The train-
ing molecules exceeding the threshold did not contrib-
ute to the model’s statistics, but were not removed from 
the data set. The final model showed good performance 
when the average distance threshold was applied, namely 
R
2
CV

 = R2
test =  0.78 (5-fold CV), R2 =  0.72. The model 

selected eight molecular descriptors that encoded infor-
mation about lipophilicity, the formation of H-bonds, 
polar surface area, polarisability, nucleophilicity and 
electrophilicity. When no distance threshold is applied, 

Fig. 7  Models’ differences for protein corona optimal training set (data split 5). Differences for R2 and RMSE values among the applied models are 
presented for the trimmed corona data set (76 proteins). The average performance with two-sided confidence limits are plotted as derived by the 
Student t-test with Bonferroni multiplicity correction
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the corresponding values are: R2  =  0.60, R2
CV

  =  0.61, 
R
2
test = 0.43.
Tables 4 and 5 show the results for the final set of eight 

descriptors for 546 organic molecules: the averaged val-
ues across data splits and the best model statistics for all 
data splits are presented. RRegrs is applied using nor-
malization and filtering options. Ten random splits of 
the data were performed (75 % train and 25 % test) along 
with ten Y-randomization runs for the best model. As can 
be seen from the tables the best performance model and 
the best averaged model is SVRM in this case, keeping all 
8 descriptors in the data. The SVRM averaged statistics 
for ten splits of the data are R2

CV
 =  0.556 (10-fold CV), 

R
2
test  =  0.537, which are close to the ones reported by 

the authors when the distance threshold is not applied. 
The adjusted R2 = 0.7, exceeding the 0.6 value reported 
without the distance threshold application, and still 
approaching the 0.78 value when the distance threshold 
was applied. The best individual split value is reported 
to be R2

test = 0.657 for SVRM model with eight variables 
(LOO at the second split of the data). Figure  9 shows 
the differences between the various models in terms of 
R
2
CV

 and RMSECV values in the training set of the sec-
ond data split, i.e. the train data where the highest R2

test 
was observed. We can observe that the PLS model dif-
fers from all others, having the worst performance, whilst 
LM, GLM, LASSO, and ENET models have very similar 
performances.

Conclusions
This paper introduces RRegrs as a new computer-aided 
model selection framework using a single R function call. 
The aim of RRegrs is to automatically obtain the best 
regression model given the data set, and the set of all ten 
regression models available, after an extensive search of 
the model space. A fully validated procedure is suggested 
where data are split in training and test sets, ten times by 
default, capturing any variability or inconsistency in the 
data. The best model is then found across different data 
splits and cross-validation schemes, based on the aver-
aged data splits statistics. RRegrs produces easily acces-
sible summary files that provide an overview of model 
details and allows methodology comparisons using the 
same statistics, enabling QSAR model selection. These 
direct comparisons are built on top of the caret package, 
and in that respect provide a useful flexibility for all users. 
However, use of this package does not require advanced 
knowledge of R, while, on the other hand, experienced 
R users can easily modify and extend the package with 
additional algorithms of choice. The single function call 
makes it easy to integrate into larger QSAR and in silico 
molecular screening studies. The new tool was tested with 
five standard data sets from several domains and three use 
cases originating from cheminformatics and nanotoxicity, 
showing good performance in all cases. RRegrs is open 
source and available from https://www.github.com/ena-
nomapper/RRegrs (doi:10.5281/zenodo.21946).

Fig. 8  Results on MeOx data set (data split 8). For the three selected methodologies we show the resampling distributions for the RMSE and R2 
statistics. On the right hand-side, we show the observed versus the predicted values for the ENET model in the training set

https://www.github.com/enanomapper/RRegrs
https://www.github.com/enanomapper/RRegrs
http://dx.doi.org/10.5281/zenodo.21946
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Methods
Regression methods in RRegrs
The RRegrs tool is using ten different linear and non-lin-
ear regression models briefly described in this section, to 
explore the model space. The most basic model in this pack-
age is the LM model [33]. Variable selection could improve 
the result of prediction in regression models. For that rea-
son we have included a generalized linear model, denoted 
by GLM, which selects variables that minimize the AIC 
score. LASSO and ENET are also penalizing the number of 
variables via an embedded minimization process [27, 28].

Apart from the standard regression methodologies 
included in RRegrs, other methods that focus on specific 
characteristics of the data are included. PLS uses linear pro-
jections of input and output sets, which is a useful strategy 
when many of the inputs are correlated. PLS coefficient 
optimization algorithm improves previous regression coef-
ficient algorithms because the search path is directed to 
high variance and high correlations paths [26]. The SVMR 
algorithm attempts to find the hyperplane that separates 
the positive and negative samples, practically allowing a 
non-linear solution to a regression problem by transform-
ing the data to a hyperdimensional feature space using the 
kernel functions [53, 54]. SVMR in RRegrs uses the radial 
function or Gaussian function. RRegrs package also allows 
the use of a support vector regression model where the w2 
(the square of SVM hyperplane weight vector) measures 
the importance of each feature [29].

RRegrs includes two additional learning algorithms, 
namely NN and ensemble RF. NN is usually defined as a 
network of a large number of connected neurons (simple 
processors), which produce good results with imprecise and 
complicated data [30]. RF is a bagging method constructing 
decision trees based on the random subspace method [31].

Finally, we have included two of the best performing 
methodologies with extra feature selection characteris-
tics. Particularly, because the SVM and RF methods can 
be time-consuming, we have considered their implemen-
tation with random feature elimination (RFE), a feature 
selection method also introduced in caret where less 
important features are sequentially removed from the 
model until optimal performance is reached [32]. The 
two methods are here labeled as RF-RFE and SVM-RFE. 
Further details for the functions’ main parameters are 
available in the online tutorial of the RRegrs package.

Model optimization
Two CV schemes are employed within RRegrs, namely 
10-fold repeated CV and LOO CV. In the case of 
repeated CV, we run ten repeats of 10-fold CV for all 
models except SVM-RFE (3-folds, one repeat) and RF-
RFE (5-folds, one repeat), which are particularly time-
consuming methods. The procedure followed by caret 
and also introduced in RRegrs tool, randomly splits the 
data in K distinct blocks of roughly equal size (K =  10, 
3, 5 depending on the method). Each block of data is 

Fig. 9  Models’ differences for toxicity training set (data split 2). Differences for R2 and RMSE values among the applied models are presented. The aver‑
age performance with two-sided confidence limits are plotted as derived by the Student t-test with Bonferroni multiplicity correction. We can observe 
small differences for LM, LASSO, ENET models, whereas the performance of the best model, SVRM, appears to be close to that of RF and NN models
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left out sequentially, and a model is fit to the remaining 
of the data; this model is used to predict the held out 
block. The process is repeated where for each repetition 
a random proportion of the data are used to train the 
model (default value is 0.75) while the remainder is used 
for testing the models. Average performance across the 
number of repeats are reported: R2

test, RMSEtest,, R2
CV

, 
R
2
LOO

, RM SEC V, RM SELOO. The best model is selected 
based on the averaged R2

test value; if multiple models only 
differ by ≤0.005 from the best R2

testvalue, the model with 
the lowest RMSEtest statistic is selected.

In order to further validate RRegrs test results, Y-rand-
omization is applied to the best model found. For the last 
data split and the best model found, RRegrs performs Y-ran-
domization for the 10-fold repeated CV scheme, and com-
pares R2

test values to the best model corresponding value.

RRegrs tested data sets
RRegrs has been used to find the best regression models 
for eight data sets: three from nano- and cheminformat-
ics (use cases), and five standard data sets from different 
fields. The standard data sets have been downloaded from 
UC Irvine machine learning repository [35]: housing 

Parkinson telemonitoring data set. The use case data sets 
were derived from their original publications; the initial 
number of features and cases are the following: the pro-
tein corona data set [49] has 129 features and 84 cases, 
the metal oxide data set [50] has 32 features and 18 cases 
and the toxicity data set [51] contains 8 features, and 546 
cases.

RRegrs call in R
The main function of RRegrs (also called RRegrs) permits 
the call of the entire RRegrs methodology in a single line. 
All details about functions’ main parameters are given 
in the R package documentation. All these parameters 
have default values. The default values imply a default 
location for the output files, execution of all modelling 
steps (removal of NA, and near zero variance features, 
and of correlated features), normalization of the data set, 
ten splits, ten Y-randomization steps, and running of all 
ten regression methods. The user can alter any step or 
parameter of the RRegrs methodology.

The following examples show simple calls of the 
RRegrs() function using a specific dataset file entitled 
”MyDataSet.csv” that it should be provided by the user:

> l i b r a r y ( RRegrs )
>
> # Run  RRegrs  wi t h  a l l  d e f a u l t  pa r a met er s
> #  d e f a u l t  da t a  s e t   f i l e  ( ” ds . House . c s v ” )  and
> #  wor ki n g  d i r e c t o r y  ( ” D a t a R es u l t s ” )
> #  r un  a l l  r e g r e s s i o n  met hods
> #  10  s p l i t t i n g s ,  100  t i mes Y− r a n do m i za t ion ,
> #  no  p a r a l l e l  s u p p o r t  f o r CPU  c o r e s
> R R egr sR esu l t s = RRegrs ( )
>
> # Run  RRegrs  f o r  a  s p e c i f i c  da t a  s e t   f i l e  wi t h  d e f a u l t  pa r a m et er s
> #  i n c l u d i n g  t h e  d e f a u l t  d i r e c t o r y  ( ” D a t a R es u l t s ” )
> R R egr sR esu l t s = RRegrs ( Dat aF ileNa me= ” MyDat aSet . csv ” )
>
> # Run  RRegrs  f o r  a  s p e c i f i c  da t a  s e t   f i l e  ( ” MyDataSet . c s v ” )  and
> # wor ki n g  f o l d e r  ( ” MyR es u l t sF o ld er ” ) ;  bo t h  s h o u l d  e x i s t
> # t h e  r e s t  o f   RRegrs  pa r a m et er s  ha ve  d e f a u l t  va l u e s
> R R egr sR esu l t s = RRegrs ( Dat aF ileNa me= ” MyDat aSet . csv ” ,
>                                        P a t h Da t a Set=” MyR esu l t sF old er ” )

[36], computer hardware, wine quality [37], automobile 
[38] and Parkinsons telemonitoring [39] data sets. The 
non-numeric columns have been eliminated, whereas 
the first column is the dependent variable (output of the 
model). The number of initial features/cases are the fol-
lowing: 13/506 for Housing data set, 6/209 for Computer 
Hardware data set, 11/1, 599 for Red Wine Quality data 
set, 14/195 for Automobile data set, and 19/5, 875 for 

The output variable RRegrsResults is a complex object 
which contains the object of the fitted models and the 
main statistics for each regression model. Details about 
each function are presented into the tutorial of the RRe-
grs package.

The following example could be used to test the RRe-
grs package using a dataset file from RRegrs GitHub 
URL:
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Availability and requirements
• • Project name: RRegrs
• • Project home page: RRegrs
• • Operating system(s): Platform-independent
• • Programming language: R programming language
• • Other requirements: R 3.1.0 or higher
• • License: NewBSD or MIT
• • Any restrictions to use by non-academics: none other 

than those defined by the license
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