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Abstract 

Background: It has been suggested that fetal sex may be able to modify maternal metabolism and physiology dur-
ing pregnancy. Recently pregnant women carrying a male fetus were reported to be more insulin sensitive than those 
carrying females, although related evidence is inconsistent.

Methods: In this study we administered a 75 g oral glucose tolerance test at around week 28 of pregnancy in 813 
pregnant women from a contemporary birth cohort (the Cambridge Baby Growth Study), derived surrogate indices 
of insulin secretion and sensitivity, and related them to the fetal sex.

Results: Carrying a male fetus was associated with lower fasting glucose (difference in mean concentrations 
≈ 0.1 mmol/L; β′ = 0.063; p = 0.02) and insulin (≈ 1.1 pmol/L; β′ = 0.075; p = 0.01) concentrations but not with post-
load glucose or insulin concentrations. Male fetal sex was also associated with lower HOMA IR (≈ 1.08 units; β′ = 0.071; 
p = 0.02) and higher QUICKI (≈ 1.06 units; β′ = 0.080; p = 0.007) values suggesting increased basal insulin sensitivity. 
There were no differences in indices of insulin secretion, except for the insulin disposition index which was higher in 
women carrying a male fetus (≈ 1.15 units; β′ = 0.090; p = 0.007). Birth weights were higher in male offspring.

Conclusions: Women carrying a male fetus were relatively more insulin sensitive in the fasting state and secreted 
more insulin relative to this degree of insulin sensitivity. These results are consistent with the idea that the fetal sex 
may be able to modify the maternal glucose-insulin axis.

Highlights 

• Pregnant women carrying a male fetus were more insulin sensitive than those carrying a female at around week 
28 of pregnancy in a contemporary birth cohort.

• They also appeared to secrete more insulin relative to their degree of insulin sensitivity.
• The differences in glucose and insulin concentrations were evident in the basal state but disappeared after the 

consumption of a glucose load.
• Fetal sex appears to be able to influence maternal glucose and insulin concentrations in pregnancy.
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Background
Pregnancy represents an almost unique phase of human 
life where circulatory systems associated with two dif-
ferent individuals are able to directly interact with each 
other; the only other scenario when this can occur is in 
conjoined twins. In pregnancy the interaction between 
circulatory systems primarily involves the mother’s 
metabolism supplying the fetus with oxygen and nutri-
ents via the placenta once it has developed, and then the 
safe removal of toxins and waste products from the fetal 
circulatory system. While the fetus is totally dependent 
upon the maternal metabolism for these actions, there is 
evidence that the fetus can modify the maternal metabo-
lism and physiology [1].

One way that the fetus appears to be able to modify 
the maternal metabolism and physiology is via imprinted 
genes, which are expressed in the fetus in a parent-of-
origin specific manner (one copy of the gene not being 
expressed, which one depending upon the gene and tis-
sue in question, and the stage of development). Many 
of these genes are only expressed in utero [2] and they 
appear to be able to regulate placental endocrine func-
tion [3]. Thus, we have found associations between poly-
morphic variation in parental-specific fetal imprinted 
gene alleles and maternal glucose [4, 5], lipid species 
[6] and circulating DLK1 protein [7] concentrations in 
pregnancy. Similar results regarding glucose concentra-
tions were also found using a knockout mouse model [8]. 
We have also found associations between various fetal 
imprinted gene alleles at polymorphic loci and mater-
nal blood pressure in pregnancy [9]. We suggested that 
the mechanism underpinning the associations between 
parental-specific fetal imprinted gene alleles and changes 
in maternal metabolism and physiology may be via the 
alteration of placental hormone concentrations secreted 
into the maternal circulation [1], especially since much of 
the placenta is fetal in origin [10].

Another way that the fetus might be able to modify 
maternal metabolism and physiology (again possibly via 
alterations in placental endocrine function [11]) relates 
to the sex of the fetus. As examples of this, systematic 
reviews and meta-analyses of individual studies, as well 
as certain individual studies, have shown that mothers 
carrying male fetuses are more likely to develop gesta-
tional diabetes (GDM) than those carrying female fetuses 
[12–14]. However, in one recent study, independent of 
GDM risk, markers of insulin resistance were lower in 
pregnant women carrying male fetuses [15]. An earlier 
study failed to find a fetal sex effect on maternal insulin 
sensitivity [16], instead finding mothers carrying male 
fetuses having higher circulating glucose concentra-
tions but lower pancreatic β-cell function. Another study 
found that mothers carrying male fetuses were actually 

more insulin resistant than those carrying females, when 
tested early in pregnancy [17]. A recent review of how 
placental endocrine function varies according to fetal sex 
called for more studies of fetal sex-mediated differences 
in the regulation of glucose metabolism in pregnancy in 
relatively homogeneous populations to try and clarify 
discrepancies in the literature in this area [18]. We there-
fore sought clarification of this matter using a largely 
ethnically homogeneous contemporary birth cohort, the 
Cambridge Baby Growth Study (CBGS).

Methods
Cambridge baby growth study
Between the years 2001 and 2009 early pregnancy ultra-
sound clinics held at the Rosie Maternity Hospital, Cam-
bridge, U.K. (a single centre) were used to recruit 2229 
pregnant women (and subsequently their babies and 
partners) to the observational CBGS [19]. All the women 
were over 16 years of age and were able to give consent 
for themselves and their baby. The CBGS was run pro-
spectively and longitudinally. A total of 1658 of the 
women still wanted to be part of this study at the birth 
of their baby (571 women withdrew prior to this). A vast 
majority (95.3%) of the babies were ethnically White. 
Other babies were Black (African or Caribbean) (1.3%), 
Asian (1.7%) or mixed race (1.7%).

Oral glucose tolerance tests
Oral glucose tolerance tests (OGTTs) were performed in 
1071 of the CBGS participants at a median (interquartile 
range) of 28.4 (28.1–28.7) weeks of gestation [4]. The 75 g 
glucose load was administered orally after an overnight 
fast and collection of venous blood samples for the meas-
urement of circulating glucose and insulin concentra-
tions. Further blood samples were collected for additional 
glucose measurements one hour after the administration 
of the glucose. Capillary glucose measurements were 
made using an Abbott Freestyle Mini (Abbott Diagnos-
tics, Maidenhead, U.K.) 0, 30, 60, 90 and 120 min. after 
the administration of glucose [4] and the 120-min. glu-
cose concentrations were used in this analysis. From 
March 2007 onwards a second set of venous samples 
was collected two hours after the glucose load. GDM in 
this study was classified from these venous (OGTT fast-
ing and 60 min.) and capillary (OGTT 120 min.) glucose 
concentrations using International Association of Diabe-
tes and Pregnancy Study Group criteria [20]. Biomarkers 
of fasting insulin resistance (HOMA IR, QUICKI, recip-
rocal fasting insulin concentration), pancreatic β-cell 
function (HOMA B) and insulin secretion (insulin incre-
ment, insulinogenic index and insulin disposition index) 
were calculated.
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Offspring size at birth
Birth weight was recorded from the hospital notes. 
Other measurements in newborns, such as the length, 
head circumference and various skinfolds thicknesses, 
were made as soon as possible after birth [at a median 
(interquartile range) age of 2 (1–16) days of age] by 
trained paediatric research nurses. Each measurement 
was performed in triplicate and the mean of these 
measurements used for statistical analyses. Body length 
was measured using a SECA 416 Infantometer (Ham-
burg, Germany). Skinfolds thicknesses at the subscapu-
lar, flank, triceps and quadriceps regions of the left side 
of the body were measured using Holtain calipers and 
head circumferences were measured using a tape meas-
ure (both Chasmors Ltd., London, U.K.) [21]. Intra- and 
inter-observer technical errors of measurement were 
0.4–2.8% and 2.0–3.2%, respectively, for the skinfold 
thicknesses.

Laboratory measurements
OGTT plasma insulin concentrations were measured 
using a Dako enzyme-linked immunosorbent assay 
(Dako UK Ltd., Ely, Cambs, UK). Intra-assay impreci-
sion (%CV) values were 4.3% at 82  pmol/L, 3.0% at 
402  pmol/L and 5.7% at 907  pmol/. Equivalent inter-
assay imprecision values were 4.3, 5.1 and 5.4%, respec-
tively. Venous blood glucose measurements were made 
using a routine glucose oxidase-based method (Yellow 
Springs International Inc., Yellow Springs, OH, USA).

Calculations
The index of multiple deprivation was derived and 
imputed from the postcode of the participants’ home 
addresses as described [22]. HOMA IR and B were cal-
culated using the fasting glucose and insulin concentra-
tions and the online HOMA calculator [23]. QUICKI 
was also calculated using the fasting glucose and insulin 
concentrations, and the following equation (using insu-
lin and glucose concentrations expressed in SI units): 1/
(((log (insulin/6)) + (log (glucose*18))) [24]. The insulin 
increment was calculated as the OGTT fasting insu-
lin concentration subtracted from the OGTT 60-min. 
insulin concentration. The insulinogenic index was cal-
culated as the insulin increment divided by the rise in 
glucose concentrations over the first hour of the OGTT. 
The insulin disposition index was calculated as the 
insulinogenic index divided by the fasting insulin con-
centration. Dividing the maternal (pre-pregnancy) or 
baby weights by their height squared was used to calcu-
late the body mass indexes (BMI).

Statistical analysis
This analysis was restricted to those women who under-
went OGTTs and for whom data relating to the gesta-
tional age of the baby when the OGTT was performed, 
pre-pregnancy BMI and maternal age were available 
(n = 813). Continuous variables were analysed in sta-
tistical models using linear and/or quadratic regression 
models, adjusted for confounders where appropriate. 
Where the dependent variable residuals were skewed, 
the models were analysed with prior (generally loga-
rithmic) transformation of the data so that the residu-
als were normally distributed. Categorical variables 
were analysed using the χ2-test or Fisher’s exact test (as 
appropriate) or logistic regression. The risk ratio (RR) 
was calculated using Stata’s binreg function. p < 0.05 
was considered statistically significant throughout. The 
statistical analyses were performed using either R (ver-
sion 4.0.3; The R Foundation for Statistical Computing, 
Vienna, Austria) or Stata (version 13.1; Stata Corp., 
from Timberlake Consultants Ltd., Richmond, Surrey, 
U.K.). Data are mean (95% confidence interval) unless 
stated otherwise.

Results
Clinical characteristics of study participants
Those women who were included in this study largely 
shared similar clinical characteristics to those CBGS par-
ticipants who were excluded from this study (Table  1), 
with the exception that there were more women who 
had not had a previous pregnancy, a lower proportion 
of these women smoked and they tended to put on more 
weight during pregnancy and gave birth around one day 
later. In those women who were included in this analy-
sis, clinical characteristics were similar between those 
carrying a male fetus and those carrying a female fetus 
(Table 2).

Assessment of the glucose‑insulin axis during pregnancy 
by fetal sex
OGTT fasting glucose concentrations were lower in 
women carrying male babies than in those carrying 
females (Fig.  1). There were no differences in circulat-
ing 60- or 120-min. glucose concentrations between 
those carrying male and female fetuses (Fig.  2). Sur-
rogate markers of insulin resistance (higher HOMA IR, 
lower QUICKI, higher fasting insulin concentrations) 
were lower in women carrying male fetuses than in those 
carrying females (Fig.  1). Some of the surrogate mark-
ers of insulin secretion (insulin increment, insulinogenic 
index) showed no association with the fetal sex (Table 3). 
Neither was there a difference in the surrogate marker 
of pancreatic β-cell function (HOMA B). However, the 
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Table 1 Clinical characteristics of the CBGS women included in this study and those excluded from it

Data are mean (95% confidence interval) or number of participants

Characteristic Included Excluded p‑value

Age (years) 33.5
(33.2, 33.8)
(n = 813)

33.6
(33.2, 34.0)
(n = 522)

0.6

Height (cm) 166.0
(165.5, 166.5)
(n = 767)

165.7
(165.1, 166.4)
(n = 484)

0.5

Pre-pregnancy weight (kg) 66.4
(65.4, 67.4)
(n = 753)

66.1
(64.8, 67.3)
(n = 464)

0.7

Pre-pregnancy BMI (kg/m2) 24.2
(23.9, 24.5)
(n = 813)

24.1
(23.8, 24.5)
(n = 624)

0.8

Weight gain in pregnancy (kg) 9.0
(8.4, 9.5)
(n = 554)

6.9
(6.2, 7.7)
(n = 320)

1.2 ×  10–5

Parity (n 0/1/2/3/4/5) 405/289/89/22/4/3 312/351/126/39/4/3 2.5 ×  10–5

Index of multiple deprivation 8.9
(8.6, 9.3)
(n = 545)

9.0
(8.5, 9.4)
(n = 268)

1.0

Smoked during pregnancy (yes/no) 28/785 58/784 2.0 ×  10–3

Anaemia during pregnancy (n yes/no) 28/713 12/488 0.2

Length of pregnancy (weeks) 39.9
(39.7, 40.0)
(n = 813)

39.7
(39.6, 39.8)
(n = 844)

0.02

Table 2 Clinical characteristics of the study participants according to the fetal sex

Data are mean (95% confidence interval) or number of participants

Characteristic Male fetus Female fetus p‑value

Age (years) 33.5
(33.1, 33.9)
(n = 422)

33.4
(33.0, 33.9)
(n = 391)

0.9

Height (cm) 165.6
(165.0, 166.3)
(n = 402)

166.4
(165.7, 167.2)
(n = 365)

0.1

Pre-pregnancy weight (kg) 66.4
(65.1, 67.7)
(n = 395)

66.4
(65.1, 67.8)
(n = 358)

1.0

Pre-pregnancy BMI (kg/m2) 24.2
(23.8, 24.6)
(n = 422)

24.2
(23.7, 24.6)
(n = 391)

0.9

Weight gain in pregnancy (kg) 9.2
(8.4, 10.0)
(n = 292)

8.8
(7.9, 9.6)
(n = 262)

0.5

Parity (n 0/1/2/3/4/5) 204/159/45/9/1/3 201/130/44/13/3/0 0.3

Index of multiple deprivation 9.1
(8.6, 9.6)
(n = 277)

8.8
(8.3, 9.3)
(n = 268)

0.8

Smoked during pregnancy (yes/no) 15/407 13/378 0.9

Anaemia during pregnancy (n yes/no) 14/369 14/344 0.9

Length of pregnancy (weeks) 39.9
(39.7, 40.0)
(n = 422)

39.9
(39.7, 40.0)
(n = 391)

0.7
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insulin disposition index was higher in those women car-
rying males. There was no association between the fetal 
sex and the risk of GDM [RR (male to female) 1.4 (0.9–
2.0); n = 813; p = 0.2].

Offspring birth characteristics by fetal sex
As expected, male offspring were heavier, longer and 
had bigger head circumferences at birth (Table 4). Visual 
inspection of the data suggested that there were both 
linear and quadratic elements in both male and female 
offspring to the relationship between maternal fasting 
glucose concentrations and offspring birth weights. In 
interactive models (adjusted for maternal BMI, age, ges-
tational age at OGTT and at birth, parity and multi-fetal 
pregnancies) the linear relationship was evident in both 
male (β′ = 2.013; p = 9.4 ×  10–4) and female (β′ = 1.614; 
p = 6.8 ×  10–4) offspring. Similarly, the quadratic relation-
ship was also evident in both male (β′ = -0.763; p = 0.02) 
and female (β′ = − 0.517; p = 4.7 ×  10–3) offspring. There 
was no difference in offspring BMI or ponderal index by 
sex of the offspring. However, skinfold thicknesses of the 
flank, quadriceps and subscapular regions were lower in 
boys than in girls. There were no differences in triceps 
skinfold thicknesses by sex.

Discussion
In this study we have found pregnant women carrying 
male fetuses had lower fasting circulating glucose and 
insulin concentrations than those carrying females at 
around week 28 of pregnancy. Surrogate indices also sug-
gest that those carrying male fetuses were more insulin 
sensitive, which is consistent with some [15, 25] but not 
all [16, 17] published studies. We also found that women 

Fig. 1 Fasting a glucose and b insulin concentrations, c HOMA 
IR values and d QUICKI values by fetal sex (all adjusted for 
pre-pregnancy BMI, maternal age, gestational age of the fetus and 
multi-fetal pregnancy). Data are mean ± 95% confidence interval. 
*p < 0.05, **p < 0.01

Fig. 2 Circulating glucose concentrations (adjusted for 
pre-pregnancy BMI, maternal age, gestational age of fetus 
and multi-fetal pregnancy) in 75 g OGTTs by fetal sex. Data are 
mean ± SEM. *p < 0.05



Page 6 of 9Petry et al. Biology of Sex Differences           (2022) 13:20 

carrying male fetuses had higher insulin disposition indi-
ces, suggesting higher insulin secretion for their degree 
of insulin sensitivity. We hypothesise that higher insulin 
sensitivity and lower glucose concentrations may reduce 
growth stimulation in male fetuses, given the observed 
relationship between maternal fasting glucose concen-
trations and offspring birth weights. This could enhance 

survival, with male fetuses being more prone to high 
birth weights [26] and such babies being at increased risk 
of neonatal death [27].

Despite the differences in fasting concentrations, 
we observed no associations between the fetal sex and 
OGTT post-load glucose and insulin concentrations, 
so there was no evidence of altered non-basal insulin 

Table 3 Selected OGTT assessment of the glucose-insulin axis, including surrogate indices of insulin secretion

Where significant associations have positive standardised β′s, values from women carrying male fetuses are higher than those from women carrying females. Where 
significant associations have negative standardised β′s, values from women carrying female fetuses are higher than those from women carrying males

*Adjusted for pre-pregnancy BMI, maternal age, gestational age of fetus, multi-fetal pregnancy and GDM

Variable n Unadjusted Adjusted*

β′ p β′ p

HOMA B 813 − 0.035
(− 0.103, 0.034)

0.3 − 0.033
(− 0.095, 0.030)

0.3

OGTT 60-min. insulin concentration 805 0.036
(− 0.032, 0.104)

0.3 0.022
(− 0.040, 0.083)

0.5

OGTT 60-min. glucose concentration 806 0.014
(− 0.042, 0.071)

0.6 − 0.008
(− 0.057, 0.040)

0.7

OGTT 120-min. capillary glucose concentration 610 − 0.037
(− 0.118, 0.043)

0.4 − 0.052
(− 0.125, 0.020)

0.2

0–60-min. insulin increment 805 0.038
(− 0.029, 0.106)

0.3 0.026
(− 0.037, 0.088)

0.4

0–60-min. insulinogenic index 768 0.031
(− 0.037, 0.099)

0.4 0.040
(− 0.027, 0.108)

0.2

0–60-min. insulin disposition index 768 0.066
(− 0.005, 0.136)

0.07 0.090
(0.025, 0.156)

0.007

Table 4 Offspring birth characteristics according to fetal sex

Males larger than females shown as positive associations, and females larger than males shown as negative associations

*Adjusted for pre-pregnancy BMI, gestational age of fetus, multi-fetal pregnancy and maternal parity

**Values additionally adjusted (in the pre-adjusted models) for age at time of measurement

Variable N Unadjusted Adjusted*

β′ p β′ p

Weight 810 0.112
(0.046, 0.178)

9.0 ×  10–4 0.120
(0.065, 0.174)

2.1 ×  10–5

Length** 786 0.164
(0.098, 0.231)

1.4 ×  10–6 0.161
(0.113, 0.210)

1.5 ×  10–10

Head Circumference** 786 0.191
(0.124, 0.257)

2.8 ×  10–8 0.187
(0.137, 0.237)

4.5 ×  10–13

Body mass index** 784 0.008
(− 0.061, 0.077)

0.8 0.016
(− 0.038, 0.071)

0.6

Ponderal index** 784 − 0.058
(− 0.127, 0.012)

0.1 − 0.048
(− 0.101, 0.005)

0.07

Flank skinfolds thickness** 787 − 0.094
(− 0.163, − 0.026)

6.8 ×  10–3 − 0.097
(− 0.160, − 0.035)

2.4 ×  10–3

Quadriceps skinfolds thickness** 786 − 0.105
(− 0.171, − 0.039)

2.0 ×  10–3 − 0.107
(− 0.163, − 0.052)

1.5 ×  10–4

Subscapular skinfolds thickness** 788 − 0.085
(− 0.151, − 0.018)

0.01 − 0.089
(− 0.149, − 0.028)

4.2 ×  10–3

Triceps skinfolds thickness** 785 − 0.028
(− 0.096, 0.039)

0.4 − 0.032
(− 0.095, 0.031)

0.3
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sensitivity. The reduced insulin resistance and circulat-
ing glucose concentrations observed in the fasting state 
of pregnant women carrying male fetuses may therefore 
relate more to reduced hepatic glucose output than to 
increased insulin-stimulated glucose uptake into muscle 
or adipose tissue [28] as hepatic glucose output is thought 
to have a greater influence on fasting than post-prandial 
glucose concentrations. One plausible mechanism of this 
involves differences in placental structure or function, 
most of the placenta being fetal in origin [10, 18], lead-
ing to differential secretion of placental hormones and/
or other biologically active molecules into the maternal 
circulation. Of the various placental hormones whose 
maternal circulating concentrations differ according to 
fetal sex [18], one candidate which has been shown to be 
secreted in decreased amounts into the circulation with 
male fetuses [11] is human placental lactogen (hPL). hPL 
stimulates increased circulating non-esterified fatty acid 
levels [29], which in turn can increase hepatic glucose 
output [30] and glucose-stimulated insulin secretion [31]. 
All these lead to hPL inhibiting insulin sensitivity [32]. 
However, it also increases β-cell mass and function [18], 
which is inconsistent with the present results. Testoster-
one, a candidate hormone secreted into the circulation in 
increased amounts in women carrying male fetuses [33] 
(although not universally [34]), is unlikely to mediate the 
observed associations since it has been associated with 
insulin resistance [35, 36]. Another potential candidate 
hormone is oestradiol, whose circulating concentrations 
are lower in women carrying males, at least in early preg-
nancy [37]. These reduced oestradiol concentrations are 
associated with increased insulin sensitivity [18]. Like the 
role of hPL, therefore, the role of oestradiol in affecting 
insulin sensitivity and secretion in pregnancy is only par-
tially consistent with what was observed in the present 
analysis. Non-hormonal candidate molecules that may 
alter insulin sensitivity in pregnancy [38] and show fetal 
sex-related differences [39] include regulatory cytokines, 
although these are less well studied in terms of effects on 
the glucose-insulin axis in pregnancy.

In the present study there was no observable significant 
association between fetal sex and risk of GDM, which is 
inconsistent with meta-analyses of the subject [12, 13]. 
However, the direction and magnitude of the non-signifi-
cant association in the present study was consistent with 
these studies. Also, closer inspection of those original 
studies included in the meta-analyses show that 15 out of 
21 exhibited no significant risk according to fetal sex in 
one publication [12] and 21 out of 28 in another [13].

As expected, in the present study there were differences 
in size at birth by offspring sex. Males had higher birth 
weights, lengths and head circumferences. Females had 
regions of greater adiposity, as suggested by increased 

skinfold thicknesses in the flank, quadriceps and sub-
scapular regions, as observed previously [17, 40]. This 
decreased adiposity in males was regionalised as it was 
not observed with the triceps region. Neither were there 
any differences in overall adiposity in terms of the pon-
deral index and BMI. The decreased adiposity observed 
in the three other skinfolds regions may relate to the 
increased insulin sensitivity in women carrying males, as 
it has previously been observed to relate to the offspring 
fat mass [41].

The strengths of this study include the use of a relatively 
large contemporary birth cohort with detailed measure-
ments relating to the maternal glucose-insulin axis and 
offspring birth characteristics. Its limitations include 
possible biases introduced by only studying a propor-
tion of the full cohort. However, there was no apparent 
(fetal) sex bias in clinical characteristics that showed dif-
ferences between those included and excluded from this 
study. Another limitation is that the cohort itself may not 
be representative of the general population. However, the 
demographics of the cohort are very similar to those of 
pregnancies of the Rosie Maternity Hospital overall [19]. 
A third limitation is the lack of OGTT 30-min. insulin 
concentrations, which are usually used for the calculation 
of indices of insulin secretion. Nevertheless, in previous 
OGTT studies the 60-min. insulins correlate well with 
the 30-min. values [42] suggesting that our calculated 
values should still be useful surrogates.

Conclusions
In conclusion our results from this study are consistent 
with the idea that the fetal sex may be able to influence 
the maternal glucose-insulin axis, with pregnant women 
carrying males having slightly lower glucose concentra-
tions and being more insulin sensitive in the basal state 
than those carrying females. Our results suggest that this 
may only be evident when fasted, although further work 
is needed to clarify this.

Perspectives and significance
Results from the present analysis add to those in the liter-
ature suggesting that in pregnancy the maternal glucose-
insulin axis can be influenced by the fetal sex, albeit our 
associations had modest effect sizes. Unfortunately, these 
actual potential effects of fetal sex appear to vary accord-
ing to the makeup of the populations tested [12–18]. Our 
results come from a relatively homogeneous cohort living 
in a comparatively affluent area of England [19], poten-
tially limiting confounding. Further analyses could use-
fully delineate what mediates the heterogeneity of results 
from different studies and which placental hormones 
and/or bioactive molecules mediate the associations.
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