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Abstract 

Age-associated bone diseases such as osteoporosis (OP) are common in the elderly due to skeletal ageing. The 
process of skeletal ageing can be accelerated by reduced proliferation and osteogenesis of bone marrow mesenchy-
mal stem cells (BM-MSCs). Senescence of BM-MSCs is a main driver of age-associated bone diseases, and the fate of 
BM-MSCs is tightly regulated by histone modifications, such as methylation and acetylation. Dysregulation of histone 
modifications in BM-MSCs may activate the genes related to the pathogenesis of skeletal ageing and age-associated 
bone diseases. Here we summarize the histone methylation and acetylation marks and their regulatory enzymes that 
affect BM-MSC self-renewal, differentiation and senescence. This review not only describes the critical roles of histone 
marks in modulating BM-MSC functions, but also underlines the potential of epigenetic enzymes as targets for treat-
ing age-associated bone diseases. In the future, more effective therapeutic approaches based on these epigenetic 
targets will be developed and will benefit elderly individuals with bone diseases, such as OP.
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Introduction
Bone is in a constant dynamic process called bone 
remodeling, and is involved in a coupling balance 
between osteoclastic bone resorption and osteoblastic 
bone formation [1]. Age-associated bone diseases such 
as osteoporosis (OP) are common in the elderly due to 
the uncoupling of bone formation and bone resorption 
[2]. As OP progresses, the bone tissue degenerates and 
the bone mass decreases, leading to increased suscepti-
bility to fragility fractures [3].Various pathogenic factors, 
such as ageing [4], alcohol consumption [5], smoking 
[5], anorexia nervosa [6], concurrent diseases [7, 8], and 
especially estrogen/androgen deficiency [9], may acceler-
ate the progression of OP. However, estrogen-centric OP 
pathogenesis has been challenged recently and gradually 
shifted to ageing-centric OP pathogenesis [10].
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Multipotent bone marrow mesenchymal stem cells 
(BM-MSCs), a class of non-hematopoietic stem cells with 
the ability to self-renew and differentiate, are the source 
of pre-osteoblasts essential for bone formation and bone 
remodeling [11]. Skeletal ageing is a progressive process 
that involves the inevitable exhaustion and senescence of 
BM-MSCs and a subsequent decline in bone homeosta-
sis, accompanied by an elevated propensity for increased 
bone marrow adipose tissue (BMAT) and decreased 
bone mass [2, 12]. During the ageing process, the self-
renewal potential of BM-MSCs is impaired, which 
manifests in the downregulation of stemness-associated 
genes such as Oct4, Sox2 and Nanog, and the upregula-
tion of senescence-associated genes such as Cdkn1a 
(also known as p21, Cip1, and Waf1), Cdkn2a (encoding 
p16Ink4a and p19Arf in mice and p14Arf in humans) and 
Cdkn2b (encoding p14Ink4b and p15Ink4b) [13–15]. Senes-
cence of BM-MSCs, including the dysregulation of BM-
MSC lineage commitment in the senescent bone marrow 
microenvironment, is critical to the occurrence of OP 
[16, 17]. Senescent BM-MSCs accumulate in the bone 
marrow with ageing, characterized by reduced prolifera-
tion, enhanced adipogenesis and decreased osteogenesis, 
and may lead to bone marrow adiposity, bone loss and 
increased risk of major fractures [2, 4].

Histone modifications are important regulators of the 
lineage commitment and senescent process of BM-MSCs 
and control the process of skeletal ageing [15, 18–25]. 
Here, we summarize the latest findings that histone 
methylation and acetylation regulate the senescence, self-
renewal and differentiation of BM-MSCs during bone 
ageing, and highlight the potential of regulatory enzymes 
as therapeutic targets for age-associated diseases, such as 
OP.

Histone modifications
The impaired function of senescent stem cells is often 
accompanied by changes in epigenetic modifications, 
such as DNA methylation, histone alteration, chroma-
tin remodeling,  m6A modulation and ncRNA-mediated 
regulation of gene expression [26, 27]. Histone modifica-
tions and their corresponding regulatory enzymes cause 
chromatin remodeling without altering the primary 
DNA sequence, serving as critical modulators in lineage 
commitment and the senescent process of BM-MSCs 
[20, 28–30]. Methylation, acetylation, phosphorylation, 
ubiquitination and sumoylation are well-known covalent 
histone modifications that take place on active residues 
in histones that are crucial for chromatin architecture, 
nucleosome stability and gene transcription [31, 32]. 
These histone modifications not only alter the histone-
DNA binding affinity, but also influence chromatin com-
paction and accessibility, which results in changes in the 

folding or exposure state of target gene promoters and 
affects gene expression [32–34].

Methylation and acetylation are the most widely stud-
ied histone modifications (Fig.  1A, B). Histone meth-
ylation typically occurs on lysine (K) (including mono-, 
di- and trimethylation) and arginine (R) (monomethyla-
tion, and symmetric or asymmetric dimethylation) resi-
dues mediated by histone methyltransferases (HMTs) 
and can be removed by demethylases (HDMs) [35, 36]. 
In general, methylation at H3K4, H3K36, H3K79 and 
H3R17 promotes transcriptional activation, whereas 
methylation at H3K9, H3K27 and H4K20 tends to repress 
transcription [37, 38]. For instance, an increased level of 
H3K27me3 often indicates a tighter and repressive state 
of nucleosomes linked to gene silencing [39]. Similarly, 
lysine acetylation is a dynamic modification that can be 
added by lysine acetyltransferases (KATs) and removed 
by lysine deacetylases (KDACs) [40]. KAT-mediated 
lysine acetylation causes loose chromatin and transcrip-
tional activation. Deacetylation by KDACs causes chro-
matin condensation leading to gene silencing [41, 42]. 
These diverse histone modifications constitute a network 
that regulates the fate of BM-MSCs (Fig. 1C) [43–45].

Regulation and functions of histone modifications 
in BM‑MSCs
Lysine methylation
Lysine methylation is a well-understood epigenetic 
mechanism in BM-MSC fate regulation mediated by 
histone lysine methyltransferases (KMTs) and demethyl-
ases (KDMs) (Fig. 2 and Table 1) [43]. The KMTs, includ-
ing DOT1L and SET domain-containing proteins, are 
responsible for methylation at K4, K9, K27, K36 and K79 
of H3, as well as K20 of H4. In contrast, apart from LSD1, 
all known KDMs have a conserved JmjC domain. There-
fore, KDMs are also termed JmjC domain-containing 
histone demethylases (JHDMs) [36]. KMTs and KDMs 
reversibly and dynamically regulate methylation at lysine 
residues of histones, thus modulating the transcription of 
target genes.

H3K27 methylation
Methylation at H3K27 acts as an important epigenetic 
switch dictating BM-MSC lineage determination (Fig.  2 
and Table  1). Elevated H3K27me3 on pro-osteogenic 
gene promoters inhibits osteogenesis of BM-MSCs, while 
H3K27me2 on anti-osteogenic gene promoters impedes 
adipogenesis of BM-MSCs. EZH2 (also termed KMT6A) 
catalyzes the methylation of H3K27 on target gene pro-
moters [39]. EZH2 acts as a negative regulator of osteo-
genesis by increasing H3K27me3 on the promoters of 
osteoblastic genes like RUNX2, TCF7 and BGLAP in vitro 
[46, 47]. EZH2 is significantly elevated in osteoporotic 
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BM-MSCs and directly upregulates H3K27me3 levels on 
the promoters of Wnt1, Wnt6, Wnt10a and Wnt10b to 
impede Wnt gene transcription [28, 48]. The inhibition of 
Wnt/β-catenin signaling shifts MSC lineage commitment 
to adipocyte during OP [28]. Ezh2 deletion upregulates 
Bmp2, Runx2 and Wnt expression, and accelerates bone 
remodeling [49, 50]. The methylation state of H3K27 is 
dynamically regulated by the EZH2 and KDM6 clus-
ter. The KDM6 cluster contains three members, includ-
ing KDM6A (also termed UTX), KDM6B (also called 
JMJD3) and inactive UTY [51]. KDM6A and KDM6B 
are positive regulators of osteogenesis by removing the 
methyl groups of H3K27 on osteogenic genes. For exam-
ple, KDM6A demethylates H3K27me3 on osteogenic 
genes (e.g., Runx2 and Bglap) and activates the expres-
sion of these genes in human and mouse BM-MSCs [47, 
52, 53]. KDM6B demethylates H3K27me3 to promote 
the expression of Bmp2, Bmp4, Runx2 and Hoxc6-1 
and induce osteogenic commitment of BM-MSCs, thus 
elevating bone mass in OVX and aged mice [54, 55]. 
Similar results have also been demonstrated in human 
dental MSCs [56]. KDM7A (also called KIAA1718 or 
JHDM1D) has demethylase activity for H3K27me1/me2 

and H3K9me1/me2 [57], and can enhance adipogenesis 
and weaken osteogenesis by demethylating H3K9me2 
and H3K27me2 on the promoters of Sfrp1 and C/ebpα 
in mouse primary BM-MSCs and ST2 cells [58]. Alpha-
ketoglutarate (α-KG), an essential endogenous metabo-
lite in the tricarboxylic acid (TCA) cycle, is reported to 
extend lifespan and compress morbidity in ageing mice 
[59, 60]. Alpha-KG treatment reduces H3K27me3 at the 
Bmp2, Bmp4 and Nanog promoters, thus restoring the 
proliferation, migration and osteogenesis abilities of aged 
BM-MSCs [20]. Collectively, H3K27me3 on pro-osteo-
genic gene promoters is mainly regulated by EZH2, the 
KDM6 cluster and α-KG, whereas H3K27me2 on anti-
osteogenic genes is partially affected by KDM7A (Fig. 3).

As a regulatory center for lineage determination of BM-
MSCs, H3K27 methylation plays an important role in 
regulating cellular senescence (Fig. 4 and Table 1). EZH2 
upregulates the repressive mark H3K27me3 at the pro-
moters of cell cycle inhibitor genes (e.g., p14Arf, p16Ink4a 
and p21Cip1), and loss of EZH2 results in transcriptional 
activation of these genes to promote senescence of BM-
MSCs [14, 15, 61]. However, EZH2 enhances H3K27me3 
in the promotor of Foxo1 to inactivate the antioxidative 

Fig. 1 The landscape of histone modifications in the regulation of BM-MSCs. A The schematic diagram of histone lysine methylation. B The 
schematic diagram of histone lysine acetylation. C Histone modifications in BM-MSC during skeletal ageing
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defensive system, thus promoting oxidative damage 
and BM-MSC ageing [19]. Thus, EZH2 shows bifunc-
tional roles in regulating BM-MSC senescence. Notably, 
BMI1 can prevent senescence and adipogenesis of BM-
MSCs by increasing H3K27me3 and H2A ubiquitination 
(H2Aub) of p14Arf, p16Ink4a and Pax3 [62]. Therefore, 
EZH2 and BMI1 jointly regulate the ageing process of 
BM-MSCs.

H3K9 methylation
H3K9 methylation on the promoters of adipogenic 
Pparγ2 and C/ebpα, as well as anti-osteogenic Sfrp inhib-
its the transcription of these genes, which consequently 
impedes adipogenesis and promotes osteogenesis of 
BM-MSCs (Fig.  2 and Table  1). KDMs are key compo-
nents of potent epigenetic switches that control BM-
MSC fates into adipogenic lineages. LSD1 (also termed 
KDM1A) regulates gene transcription by demethylating 
H3K9me1/me2 and H3K4me1/me2 [63]. By demethylat-
ing H3K9me2, LSD1 induces Pparγ2 gene expression and 
promotes adipogenic differentiation of BM-MSCs [64]. 
The KDM4 cluster is widely expressed in human tissues 
and can demethylate H3K9me2/me3 and H3K36me2/
me3 [43]. KDM4A (also known as JMJD2A, JHDM3A 

and JMJD2) activates C/ebpα and Sfrp4 transcription by 
demethylating H3K9me3, thus promoting adipocyte for-
mation and inhibiting bone formation in mouse primary 
BM-MSCs and ST2 cells [65]. As mentioned above, the 
removal of H3K9me2 and H3K27me2 by KDM7A also 
shows similar functions [58]. Taken together, LSD1, 
KDM4A and KDM7A play a negative role in bone for-
mation through demethylating H3K9me2/me3 at the 
promoters of adipogenic genes (e.g., Pparγ2 and C/ebpα) 
and anti-osteogenic genes (e.g., Sfrp).

H3K9 methylation can repress the expression of 
pro-osteogenic genes (e.g., Bmp2, Runx2, Osx, Bglap, 
Dlx5, Ccnd1, Hif1α, Mef2a and Nanog), thereby inhib-
iting osteogenic differentiation of BM-MSCs (Fig.  2 
and Table  1). The demethylases KDM4A and KDM4B 
(also termed JMJD2B and JHDM3B) show crucial and 
positive functions in the osteogenic differentiation of 
BM-MSCs. KDM4A promotes osteoblast differentia-
tion of rat primary BM-MSCs by removing the silenc-
ing epigenetic mark H3K9me3 on osteoblastic genes 
(Runx2, Osx and Bglap) [66]. Similarly, KDM4B signifi-
cantly upregulates pro-osteogenic gene expression (e.g., 
Runx2, Dlx5, Ccnd1, Hif1α and Mef2a) by demethyl-
ating repressive H3K9me3 on the promoters of these 

Fig. 2 KMTs and KDMs regulate the osteogenic and adipogenic differentiation of BM-MSCs by histone methylation
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genes [18, 54]. Treatment of aged BM-MSCs with α-KG 
downregulates H3K9me3 occupancy at the Bmp2 and 
Nanog promoters, ultimately promoting proliferation 
and osteogenesis of aged BM-MSCs [20]. Therefore, 
KDM4A, KDM4B and α-KG have positive functions 
in alleviating skeletal ageing by removing the repres-
sive H3K9me3 on osteoblastic genes to strengthen 
osteogenesis.

H3K9 demethylases KDM3A (also called JMJD1A 
and JHDM2A) and KDM4C (also known as GASC1, 
JMJD2C and JHDM3C) are negatively correlated with 
BM-MSC senescence [36, 43]. H3K9 methylation along 
with heterochromatin loss drives human MSC ageing 
[67]. KDM3A and KDM4C remove the methyl groups 
of H3K9me2/me3 on the promoters of NCAPD2 and 
NCAPG2 to activate them, which restrains the accumu-
lation of damaged DNA through inducing heterochro-
matin reorganization, suggesting the protective roles of 
demethylated H3K9 in BM-MSC senescence and bone 
ageing (Fig. 4 and Table 1) [68].

Collectively, methylated H3K9 on pro-osteogenic 
genes is strongly dependent on the levels of KDM3A, 
the KDM4 cluster and α-KG, whereas H3K9me2/me3 
on anti-osteogenic genes is affected by LSD1, KDM4A 
and KDM7A.

H3K4 methylation
Elevated H3K4 methylation can promote osteogenesis 
(Fig. 2 and Table 1). ASH1L, a member of the Trx fam-
ily, activates the expression of multiple genes via its H3K4 
and H3K36 methyltransferase activity of the SET domain 
[36]. ASH1L and H3K4me3 bind to the transcription 
start site (TSS) of Hoxa10, Osx, Runx2, Sox9 and Creb. 
Out of them, SOX9 is an important transcription factor 
that promotes cartilage formation, and CREB may act 
as a repressive gene of PPARγ [69, 70]. ASH1L interfer-
ence downregulates H3K4me3 at the TSS of these genes, 
which inhibits osteogenesis and chondrogenesis and pro-
motes adipogenesis [70]. Another SET domain-contain-
ing protein SETD7 (also termed KMT7, SET7, SET9 and 
SET7/9) is also a methyltransferase of H3K4 [71]. The 
trace element boron promotes bone regeneration in vivo 
and stimulates the osteogenic differentiation of human 
BM-MSCs in  vitro by increasing SETD7 and successive 
H3K4me3, which may further activate the Wnt/β-catenin 
pathway [72]. Collectively, ASH1L and SETD7 are two 
methylases associated with the promotion of bone for-
mation by methylating H3K4.

Notably, the LSD1 and KDM5 cluster are demethylases 
that inhibit osteogenic differentiation by removing the 
methyl groups of H3K4me2/me3 on osteoblastic gene 

Fig. 3 KATs and KDACs regulate the osteogenic and adipogenic differentiation of BM-MSCs by histone acetylation
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promoters. LSD1 inhibition rescues the osteogenic differ-
entiation ability of BM-MSCs in OVX mice by enhanc-
ing H3K4me2 on the promoters of osteogenic genes 
(e.g., Runx2 and Bglap) [73]. In addition, LSD1 defi-
ciency results in H3K4me2 enrichment on Wnt7b and 
Bmp2 promoters and enhances bone formation in Prx1-
Cre;Lsd1fl/fl mice [74]. KDM5A (also termed JARID1A 
and RBP2) and KDM5B (also called JARID1B and 
PLU1) can catalyze the removal of mono-, di-, and tri-
methyl marks on H3K4 to regulate gene expression [36]. 
KDM5A and KDM5B repress osteogenesis by downregu-
lating H3K4me3 on the promoter of Runx2 gene [75, 76]. 
Taken together, the results suggest that the demethylases 
LSD1 and KDM5 cluster inhibit osteogenesis by demeth-
ylating H3K4me2/me3 on the promoters of osteogenic 
genes, including Runx2, Bglap, Wnt7b and Bmp2.

H3K36 methylation
Methylation of H3K36 on Sox9, Lbp, Runx2, and Bglap 
genes promotes chondrogenesis, inhibits adipogenesis, 
and accelerates osteogenesis (Fig. 2 and Table 1). NSD1 
(also termed SETD2, SET2 and KMT3A) and NSD2 
(also called MMSET) are well-known H3K36 methyl-
transferases [36, 77]. Deletion of Nsd1 decreases Sox9 
expression by reducing H3K36me1/me2 levels, leading 
to chondrogenic differentiation impairment [78]. The 
transcription initiation and elongation of the Lbp gene is 
maintained by NSD1-induced H3K36me3 in BM-MSCs 

[29]. LBP negatively regulates adipocyte differentia-
tion and contributes to a decreased propensity toward 
adipogenesis and an elevation in bone formation [79]. 
NSD2-mediated upregulation of H3K36me2 and down-
regulation of H3K27me3 can increase chromatin acces-
sibility and facilitate osteogenic gene expression (Runx2 
and Bglap), consequently ameliorating age-associated 
bone loss [21]. NO66 has been identified as a JmjC-
containing oxygenase, with demethylase activity for 
methylated H3K4 and H3K36 [36], and can inhibit endo-
chondral and intramembranous bone formation during 
skeletal development [80, 81]. Therefore, NSD1, NSD2 
and NO66 regulate the fate of BM-MSCs by modulating 
H3K36 methylation.

Lysine acetylation
Reversible protein lysine acetylation is mediated by 
KATs and KDACs (Fig.  1B) [42]. Mammalian KATs 
are classified into type A KATs localized in the nucleus 
and type B KATs present in the cytoplasm. Nuclear 
histone acetylation events regulated by Type A KATs 
are usually involved in transcriptional activation [41, 
42]. Type A KATs are divided into five families, includ-
ing GNATs, p300/CBP, MYST (MOZ, YBF2, SAS2 and 
TIP60), basal transcription factors, and nuclear recep-
tor coactivator (NCoA) subfamilies. In contrast, the 
number of type B KATs is much smaller. Type B KATs 
acetylate free histones in the cytoplasm and facilitate 

Fig. 4 Histone modifications regulate BM-MSCs senescence
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the transport of cytosolic histones into the nucleus [82]. 
Based on sequence homology and domain organiza-
tion, KDACs are classified into four groups. Classes I, II 
and IV belong to  Zn2+-dependent histone deacetylases 
(HDACs), whereas class III KDACs are characterized as 
 NAD+-dependent sirtuins (SIRTs) including SIRT1 to 
SIRT7 [42, 83].

Histone acetylation is generally associated with the 
opening of the chromatin structure and enhanced tran-
scriptional activity, which are closely linked to bone 
homeostasis (Fig.  3 and Table  2). However, KDACs 
appear to be less selective for histones in regulating 
BM-MSC fates, as the vast majority of KDACs are ‘pan’ 
deacetylases. For example, reduced HDAC1 induces 
hyperacetylation of H3 and H4 on promoters of adipo-
genic genes (e.g., Pparγ2 and C/ebpα) in BM-MSCs of 
GIOP mice [64, 84]. Here we will focus on the effect of 
H3K9ac, H3K14ac, H3K27ac and H3K18ac on the regu-
lation of BM-MSC functions.

H3K9 acetylation
Upregulated acetylation of H3K9 on the promoters of 
osteogenic genes, such as WNT, BMP and RUNX2, has 
crucial roles in the osteogenic commitment of BM-MSCs 
(Fig.  3 and Table  2) [85–87]. Downregulated H3K9ac 

on the Wnt gene in BM-MSCs from OVX mice leads to 
persistent suppression of WNT signaling. Overexpres-
sion of GCN5 (also known as KAT2A) promotes osteo-
genic differentiation of BM-MSCs by increasing H3K9ac 
on the promoters of Wnt genes (Wnt1, Wnt6, Wnt10a, 
and Wnt10b) [85]. GCN5 enhances the proangiogen-
esis of BM-MSCs by increasing H3K9ac levels on the 
Vegf promoter, consequently contributing to bone for-
mation [88]. In addition, GCN5 can inhibit anti-oste-
ogenic NF-κB signaling by degrading the p65 subunit 
of NF-κB [89]. PCAF (also known as KAT2B) promotes 
osteogenic differentiation by catalyzing the acetylation of 
H3K9 on BMP2, BMP4, BMPR1B and RUNX2 promot-
ers [86]. In the salvage pathway, NAMPT acts as one of 
the most critical enzymes controlling  NAD+ biosynthe-
sis from nicotinamide [90]. The transcription of Runx2 
can be enhanced due to a NAMPT-associated increase 
in H3K9ac [87]. Collectively, GCN5, PCAF and NAMPT 
enhance the osteogenic capacity of BM-MSCs mainly 
by upregulating the level of H3K9ac on osteogenic gene 
promoters.

HDACs are deacetylases of H3K9ac, by which HDACs 
inhibit the osteogenic differentiation potential of BM-
MSCs (Fig.  3 and Table  2). For example, HDAC6 accu-
mulation and histone hypoacetylation, including H3K9/

Table 2 Histone acetylation and related modifiers regulate the fate of BM-MSC

Not evaluated: the effects of histone modification enzymes or related modifiers on bone were not verified in vivo

Modifiers Histone modification Targets Effects on fate of BM-MSC 
(in vitro)

Effects on bone (in vivo) References

Acetylases

GCN5 (KAT2A) H3K9ac Vegf, Wnt Promotes angiogenesis and 
osteogenesis

Inhibits bone loss [85, 88]

PCAF (KAT2B) H3K9ac BMP2, BMP4, BMPR1B, RUNX2 Promotes osteogenesis Not evaluated [86]

p300 (KAT3B) H3K9ac
H3K27ac

α-KG Inhibits osteogenesis Not evaluated [98, 99]

p300/CBP H3K27ac Pparγ, p53, p21Cip1 Promotes adipogenesis and 
senescence

Not evaluated [100]

Deacetylases

HDAC1 H3/H4ac Pparγ2, C/ebpα Inhibits adipogenesis Not evaluated [64, 84]

HDAC1 H3ac Jag1 Inhibits osteogenesis Promotes bone loss [109]

HDAC6 H3K9/K14ac
H4K12ac

Runx2 Inhibits osteogenesis Promotes age-related bone 
loss

[91]

HDAC9 H3K9ac Atg7
Becn1
LC3a/b

Promotes adipogenesis while 
inhibiting autophagy and 
osteogenesis

Promotes age-related bone 
loss

[92]

HDAC11 H3K9ac Hsd11b2 Inhibits osteogenesis Not evaluated [93]

SIRT1 H3K14ac Runx2
Sp7
Bglap

Inhibits osteogenesis Not evaluated [94]

SIRT7 H3K18ac OSX Inhibits osteogenesis Not evaluated [101]

Other regulators

NAMPT H3K9ac Runx2 Promotes osteogenesis Not evaluated [87]
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K14ac and H4K12ac, on the Runx2 promoter contrib-
ute to the attenuation of the osteogenic differentia-
tion potential of BM-MSCs in aged mice [91]. HDAC9 
directly represses the transcription of genes related to 
autophagy, such as Atg7, LC3a/b and Becn1, and impairs 
the autophagy of BM-MSCs by deacetylating H3K9ac, 
which causes a shift of cell lineages from osteoblasts to 
adipocytes and leads to skeletal ageing [92]. Prenatal dex-
amethasone exposure recruits HDAC11 into the nucleus 
and reduces the expression of Hsd11b2 by deacetylating 
H3K9ac, which lasts into adulthood and causes corti-
costerone accumulation in bone. This condition persist-
ing into adulthood will inhibit the osteogenic function 
of BM-MSCs [93]. Collectively, HDAC 6, 9, and 11 can 
be able to inhibit BM-MSCs osteogenesis by deacetylat-
ing H3K9ac on the promoters of Runx2, Hsd11b2 and 
autophagy-related genes.

H3K14 acetylation
Increased H3K14ac on the promoters of genes, including 
Runx2, Sp7, Bglap and Igf1, can promote the osteogen-
esis (Fig. 3 and Table 2) [91, 94, 95]. HDAC6 deacetylates 
H3K14ac on the Runx2 promoter and attenuates osteo-
genic differentiation potential of BM-MSCs in aged mice 
[91]. Elevated NAP1L2, a histone chaperone, reduces the 
level of H3K14ac by recruiting SIRT1, thereby prevent-
ing osteogenic gene expression (e.g., Runx2, Sp7 and 
Bglap) and inhibiting osteogenic differentiation of MSCs 
[94]. The enrichment of H3K9ac and H3K14ac at the Igf1 
promoter upregulates the expression of IGF1 in liver and 
IGF1 signaling in bone, which promotes bone develop-
ment and bone mass increase [95, 96]. In addition, the 
increase in H3K9ac and H3K14ac is also correlated with 
a decreased HDAC1 level [96]. Collectively, HDAC1, 
HDAC6 and SIRT1 inhibit osteogenesis by deacetylating 
H3K14ac on pro-osteogenic gene promoters, including 
Runx2, Sp7, Bglap and Igf1.

H3K27 acetylation
Elevated H3K27ac, mediated by CBP (also termed 
KAT3A) and p300 (also known as KAT3B) [97], can 
inhibit osteogenesis by increasing the levels of ACE, 
PPARγ, ageing-related p53 and  p21Cip1 (Figs.  3 and 4, 
Table  2) [98–100]. Dexamethasone or ethanol exposure 
during pregnancy upregulates H3K27ac of Ace and its 
expression by recruiting p300, which further induces 
sustained activation of renin-angiotensin systems (RAS) 
and suppresses osteogenic differentiation of BM-MSCs, 
thereby leading to fetal bone development inhibition and 
osteopenia after birth [98, 99]. P300/CBP activation by 
maternal obesity results in H3K27ac on the promoters 
of the Pparγ, p53 and p21Cip1 genes in mouse embryonic 
calvarial osteo-progenitors and in human umbilical cord 

MSCs, suggesting that obesity during pregnancy may 
impair osteogenesis in adult offspring [100]. Collectively, 
p300/CBP inhibits osteogenesis via H3K27ac on the pro-
moters of anti-osteogenic genes, including Ace, Pparγ, 
p53 and p21Cip1.

H3K18 acetylation
Acetylation of H3K18 on the osteogenic OSX gene 
can promote osteoblast differentiation of BM-MSCs 
(Fig.  3 and Table  2). RBM6 recruits SIRT7 to deacety-
late H3K18ac and inhibit the expression of isoforms 1 
and 2 of the OSX gene [101]. In addition, SIRT7 can also 
repress osteogenesis of human BM-MSCs partially by 
inactivating the Wnt/β-catenin pathway [102]. Therefore, 
SIRT7 appears to be a potential therapeutic target for OP.

Arginine methylation
Protein arginine methyltransferases (PRMTs) are divided 
into 3 subcategories: type I (including PRMT1, 2, 3, 4, 6 
and 8), type II (including PRMT5 and 9) as well as type III 
(only PRMT7) PRMTs [36]. Compared to lysine methyla-
tion in BM-MSCs, the regulation and functions of arginine 
methylation in BM-MSCs are relatively less studied but very 
important. For example, PRMT3 is an arginine methyltrans-
ferase responsible for catalyzing ω-mono- or asymmetric 
dimethylation on arginine. The expression of miR-3648 is 
increased by elevating H4 arginine 3 asymmetric dimeth-
ylation (H4R3me2a), consequently leading to increased 
osteogenic differentiation of BM-MSCs [103]. PRMT4 (also 
termed CARM1) can induce the expression of OCT4, SOX2 
and NANOG by upregulating H3R17me2 on the promoters 
of stemness-associated genes, thereby enhancing the adipo-
genic, osteogenic and myogenic differentiation potentials 
of human BM-MSCs and adipose-derived MSCs [104]. In 
addition, PRMT4 is capable of binding to the DDR2 pro-
moter region and upregulates H3R17me2 in vitro, which can 
enhance DDR2 expression and restrain cellular senescence 
[105]. Collectively, PRMT3 and PRMT4 promote osteogen-
esis by increasing H4R3me2a on miR-3648 and H3R17me2 
on OCT4, SOX2, NANOG and DDR2 gene promoters (Fig. 4 
and Table 1).

Histone modification enzymes are potential 
targets for OP
Impaired proliferation and biased differentiation of BM-
MSCs lead to decreased bone homeostasis, a hallmark 
of skeletal ageing, with a tendency to increase BMAT 
and decrease bone mass [2, 12]. Histone modifications 
are critical for regulating the fate and functions of BM-
MSCs, and a large number of preclinical studies sug-
gested that histone modification enzymes could serve as 
potential targets for enhancing bone formation and treat-
ing OP. Small molecule inhibitors of histone modification 
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enzymes such as EZH2, LSD1, and HDAC have been 
applied to treat hematological cancers in the clinic [106]. 
Accumulating findings suggest that the modulation of 
histone modifications can be used to improve osteogenic 
differentiation of BM-MSCs, increase bone strength, and 
prevent skeletal ageing. For example, EZH2 acts as a neg-
ative regulator of osteogenesis by increasing H3K27me3 
on osteoblastic genes and inhibits the osteogenic lineages 
of BM-MSCs [28, 46–48]. Therefore, EZH2 inhibitors 
have osteoprotective potential and offer an opportunity 
for bone anabolic strategies [107, 108]. Estrogen is an 
important medication for postmenopausal osteoporosis 
(PMOP) and can induce the expression of KDM6B. Con-
sequently, KDM6B further activates key osteogenic genes 
such as BMP2 and HOXC6 by removing H3K27me3, 
thus resulting in MSC osteogenic lineage specification, 
which may be the partial epigenetic mechanism of estro-
gen in the treatment of PMOP in the clinic [56]. Calci-
triol, namely 1,25-dihydroxyvitamin  D3 (1,25(OH)2D3), 
the active form of vitamin D, can be used as an adjuvant 
for the treatment of OP to promote calcium absorption. 
Mechanistically, 1,25(OH)2D3 induces the expression of 
EZH2 to repress the transcription of p16Ink4a by trimeth-
ylating H3K27, which inhibits senescence of BM-MSCs 
and prevents age-related OP [15]. Therefore, EZH2 and 
KDM6B modulate the fate of BM-MSCs by regulating 
H3K27 methylation on target gene promoters and are 
potential therapeutic targets for OP.

In addition, mesoporous bioactive glass scaffolds con-
taining boron (B-MBG) can induce SETD7-catalyzed 
H3K4 trimethylation and activate the Wnt/β-catenin 
pathway to promote bone regeneration in OVX rats 
[72]. However, the underlying mechanisms remain to be 
explored. Pargyline, an MAO and LSD1 inhibitor, can 
also rescue the osteogenic differentiation ability of BM-
MSCs in aged or OVX mice by enhancing H3K4me2 
at the promoters of osteogenic genes (e.g., Runx2 and 
Bglap) [73]. Collectively, the methylase SETD7 and dem-
ethylase LSD1 dynamically modulate H3K4 methylation 
and regulate the osteogenic differentiation of BM-MSCs, 
indicating that they may be potential targets for age-
related bone loss.

It is well-known that mechanical forces are indispen-
sable for bone homeostasis and that loss of mechanical 
stimulation can cause disuse OP [1]. Mechanical stimu-
lation induces osteogenic differentiation of BM-MSCs by 
downregulating HDAC1 expression, increasing H3 acety-
lation and activating pro-osteogenic JAG1-Notch signal-
ing, and ultimately contributes to fracture healing [109]. 
MI192, a selective inhibitor of HDAC2 and HDAC3, can 
enhance the osteogenic capacity of human BM-MSCs 
in vitro and in mice by regulating epigenetic reprogram-
ming [110]. Notably, nicotinamide mononucleotide 

(NMN) can also promote osteogenesis via the SIRT1-
associated signaling pathway in aged mice [111]. How-
ever, the underlying mechanisms remain to be explored. 
Collectively, some HDACs and SIRT1 are also potential 
targets for the treatment of bone diseases such as OP by 
bone anabolic strategies.

Conclusion and future perspectives
In summary, we have introduced the histone modifica-
tions and related regulatory enzymes that are implicated 
in fate determination of BM-MSCs during skeletal age-
ing. Accumulating evidence indicates that methylation 
at H3K27, H3K9, H3K4 and H3K36 on the promoters of 
osteogenic, adipogenic or senescence-associated genes 
closely regulates the lineage commitment and the senes-
cent process of BM-MSCs [14, 15, 18–21, 28, 29, 47, 50, 
52, 54, 55, 58, 61, 62, 64–66, 68, 70, 73–75]. In addition, 
acetylation of H3K9, H3K14 and H3K18 on pro-osteo-
genic genes, and H3K27ac on anti-osteogenic genes are 
tightly regulated by KATs, HDACs and SIRTs [85, 86, 88, 
91–93, 98–101]. GCN5 and PCAF, both belong to the 
GNATs subfamily of KATs, promote osteogenic differen-
tiation of BM-MSCs [85, 86], whereas HDAC6, 9, 11, and 
SIRT1 inhibit BM-MSC osteogenesis through remod-
eling histone deacetylation [91–94].

Although tremendous progress has been made, some 
issues still require further exploration. For example, 
causes leading to changes in histone modifications and 
their regulatory enzymes in the early stages of skeletal 
ageing remain elusive [43, 112–114]. Metabolic, nutri-
tional, and inflammatory balances are important to the 
health of BM-MSCs and bone [115–118]. The disruption 
of these balances may affect histone modifications and 
enzymes, which is still less understood [119–121]. More-
over, there is extensive crosstalk among histone modifica-
tions [122]. How these protein modification interactions 
are involved in the maintenance of bone homeosta-
sis remains unknown [114, 123]. Most importantly, as 
potential targets for treating bone diseases, the safety 
and efficacy of targeting histone modification enzymes 
require further clinical research.
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