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Abstract 

Background Adipose tissue-derived stem cell (ADSC) transplantation has been shown to be effective for the man-
agement of severe liver disorders. Preactivation of ADSCs enhanced their therapeutic efficacy. However, these effects 
have not yet been examined in relation to cholestatic liver injury.

Methods In the present study, a cholestatic liver injury model was established by bile duct ligation (BDL) in male 
C57BL/6 mice. Human ADSCs (hADSCs) with or without tumor necrosis factor-alpha (TNF-α) and interleukin-1beta 
(IL-1β) pretreatment were administrated into the mice via tail vein injections. The efficacy of hADSCs on BDL-induced 
liver injury was assessed by histological staining, real-time quantitative PCR (RT-qPCR), Western blot, and enzyme-
linked immune sorbent assay (ELISA). In vitro, the effects of hADSC conditioned medium on the activation of hepatic 
stellate cells (HSCs) were investigated. Small interfering RNA (siRNA) was used to knock down cyclooxygenase-2 (COX-
2) in hADSCs.

Results TNF-α/IL-1β preconditioning could downregulate immunogenic gene expression and enhance the engraft-
ment efficiency of hADSCs. Compared to control hADSCs (C-hADSCs), TNF-α/IL-1β-pretreated hADSCs (P-hADSCs) 
significantly alleviated BDL-induced liver injury, as demonstrated by reduced hepatic cell death, attenuated infiltration 
of Ly6G + neutrophils, and decreased expression of pro-inflammatory cytokines TNF-α, IL-1β, C-X-C motif chemokine 
ligand 1 (CXCL1), and C-X-C motif chemokine ligand 2 (CXCL2). Moreover, P-hADSCs significantly delayed the devel-
opment of BDL-induced liver fibrosis. In vitro, conditioned medium from P-hADSCs significantly inhibited HSC activa-
tion compared to that from C-hADSCs. Mechanistically, TNF-α/IL-1β upregulated COX-2 expression and increased 
prostaglandin E2 (PGE2) secretion. The blockage of COX-2 by siRNA transfection reversed the benefits of P-hADSCs for 
PGE2 production, HSC activation, and liver fibrosis progression.

Conclusion In conclusion, our results suggest that TNF-α/IL-1β pretreatment enhances the efficacy of hADSCs in 
mice with cholestatic liver injury, partially through the COX-2/PGE2 pathway.
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Background
Cholestasis defines a frequent clinical condition mainly 
associated with the retention and accumulation of bile 
acids together with other toxic components in the hepa-
tobiliary system [1, 2]. It is initiated by the extrahepatic 
obstruction of biliary tracts or intrahepatic impairment 
of bile excretion that eventually leads to parenchyma 
damage in the liver [3, 4]. Persistent cholestasis affects 
liver physiology and induces hepatocyte death, gradually 
evolving from severe inflammation [5] and substantial 
fibrosis [6] to malignant disease, triggering liver cirrho-
sis or carcinoma consequent to hepatic dysfunction [7, 
8]. Although the mechanisms that drive the progres-
sion of such a disease have been widely studied [9–11], 
the treatments available for liver fibrosis in response to 
cholestatic injury are less developed. Overall, these high-
light the need to explore new therapeutic approaches to 
reversing or delaying the aggravation of cholestatic liver 
disease to avoid remaining trapped in the dilemma of 
liver transplantation.

Adipose tissue-derived stem cells (ADSCs) with multi-
differentiation potential have been considered promis-
ing candidates for cell therapy [12, 13]. By virtue of their 
immunomodulatory capacities, endogenous tissue repair 
potential, and other unique properties, ADSCs have 
been extensively utilized for the treatment of diverse dis-
eases [14–17]. Previous studies have shown that ADSC 
transplantation could constitute an alternative thera-
peutic approach to combating or ameliorating hepatic 
disease owing to their positive effects on the modula-
tion of inflammation and the alleviation of fibrosis for-
mation [18–20]. Unfortunately, the survival crisis that 
mesenchymal stem cells (MSCs) inevitably suffer upon 
being transplanted into the host remains a major obsta-
cle to translational success [21, 22]. The restrictions of 
allotransplantation and the inflammatory microenviron-
ments of damaged sites give MSCs an inadequate sur-
vival rate in engraftment, further contributing to their 
insufficient efficacy [23].

Recently, various methods have been designed to 
modify transplanted MSCs to protect either their migra-
tion or proliferation abilities and enhance their curative 
effects [24–26]. It has been proven that pretreatment of 
MSCs with inflammatory cytokines at low concentrations 
orchestrates a feasible means of preadapting to many 
disease states, thus facilitating their immunoregulatory 
capacity [27–29]. Among the proinflammatory factors, 
tumor necrosis factor-alpha (TNF-α) is thought to exert 
a powerful synergistic effect in combination with inter-
feron-gamma by mediating the anti-inflammatory func-
tions and reducing the immunogenicity of MSCs [30, 31]. 
It is also worth mentioning that, in a murine model of 
intestinal ischemia and reperfusion, the administration of 

ADSCs treated with interleukin-1beta (IL-1β) decreased 
cellular apoptosis and promoted wound healing, which 
was reflected by improved paracrine function and the 
inhibited activation of inflammatory response path-
ways [32]. However, whether inflammatory cytokine 
pre-education could improve the therapeutic potential 
underlying the anti-inflammatory or anti-fibrotic effects 
of hADSCs on cholestasis-induced liver injury remains 
unclear.

In the present study, intravenous administration of pre-
treated hADSCs with the inflammatory cytokines TNF-α 
and IL-1β was used to investigate their efficacy and oper-
ative mechanism in the treatment of cholestatic liver dis-
ease. Our results demonstrated that pretreatment with 
TNF-α and IL-1β enhances the efficacy of hADSCs for 
BDL-induced liver injury predominantly by augmenting 
immunomodulatory activity via the cyclooxygenase-2/
prostaglandin E2 (COX-2/PGE2) signaling pathway.

Materials and methods
Cell culture
hADSCs and LX-2 cells were cultured as in our previ-
ous descriptions [33, 34]. Briefly, hADSCs were cultured 
with hADSCs growth medium (HyCyte, Suzhou, China) 
in a humidified atmosphere with 5%  CO2 at 37 °C. hAD-
SCs from passages 4–6 were treated with or without 
TNF-α and IL-1β (10 ng/ml, PeproTech, Rocky Hill, NJ, 
USA) for 24, 48, and 72 h for the following experiment. 
Cultured hADSCs were characterized by flow cytom-
etry (Cytoflex S, Beckman Coulter, Brea, CA, USA) using 
hADSC-specific markers. Adipogenic and osteogenic 
differentiation were constructed using hADSCs Adi-
pogenic and Osteogenic Differentiation Kits (HyCyte) 
according to the manufacturer’s instructions. Immortal-
ized LX-2 cells were maintained in Dulbecco’s modified 
Eagle’s medium (DMEM)-high glucose (HyClone, Cytiva, 
Marlborough, MA, USA) supplemented with 10% fetal 
bovine serum (FBS) (ExCell Bio, Shanghai, China) and 
1% penicillin–streptomycin (Servicebio, Wuhan, China). 
Regarding the indirect co-culture system, conditioned 
media from hADSCs (C-hADSCs-CM) and P-hADSCs 
(P-hADSCs-CM) were collected as previously described 
[35], and the cultured medium of LX-2 cells was replaced 
with C-hADSCs-CM or P-hADSCs-CM in the presence 
of recombinant human transforming growth factor-beta1 
(rhTGF-β) (2  ng/ml, PeproTech). The cells and culture 
supernatant were collected and stored at −  80  °C until 
the experiments were conducted.

Transfection of hADSCs with small interfering RNA (siRNA)
hADSCs were transfected by COX-2 siRNA (sc-29279, 
Santa Cruz Biotechnology, CA, USA) combined with 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), as 
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specified in the manufacturer’s protocol. Fresh complete 
medium was replaced 6 h after transfection, and the cells 
were incubated for a further 48 h to make the silencing 
most effective.

Animal model and treatments
Eight-week-old male C57BL/6 mice (20–22  g) were 
purchased from Beijing Vital River Laboratory Animal 
Technology Co., Ltd. (Beijing, China). All animal stud-
ies were performed in accordance with the regulations 
of the ARRIVE guidelines and approved by the Ethics 
Committee at the Medical College of Qingdao University 
(No.: QDU-AEC-2021165). A mouse model of choles-
tasis was induced by bile duct ligation (BDL) according 
to the method used in our previous study [34]. Briefly, 
after 5–6  h of fasting, the mice were anesthetized with 
2% isoflurane (RWD Life Science, Shenzhen, China). By 
cutting the abdomen lengthwise, the common bile ducts 
were bluntly separated and doubly ligated with 3–0 silk 
sutures. Immediately after the operation, the mice (n = 5 
per group) were randomly injected via the tail vein with 
hADSCs (C-hADSCs, 5 ×  105 cells/200  μl PBS), P-hAD-
SCs (5 ×  105 cells/200 μl PBS), hADSCs transfected with 
si-NC (si-NC, 5 ×  105 cells/200  μl PBS), or hADSCs 
transfected with si-COX2 (si-COX2, 5 ×  105 cells/200 μl 
PBS). The PBS-transplanted group, as a vehicle control, 
was infused with equal doses of PBS. Mice in several 
groups were humanely euthanized with an overdose of 
pentobarbital sodium (150  mg/Kg, i.p.) 1, 2, and 7 days 
after transplantation. Blood serum was used for anti-
body detection by Enzyme-Linked Immune Sorbent 
Assay (ELISA). Liver tissues were collected and stored 
at − 80  °C for histology, immunohistochemistry, protein, 
and RNA analysis.

Flow cytometric analysis (FACS)
After pretreatment with TNF-α and IL-1β or the absence 
thereof, the hADSCs were harvested by digestion with 
0.05% trypsin/1  mM ethylenediaminetetraacetic acid 
(EDTA) (Specialty Media, Millipore, Billerica, MA, 
USA) and washed with PBS twice. The cell pellets were 
resuspended in PBS and incubated with anti-CD29-PE, 
anti-CD44-FITC, anti-CD34-FITC, anti-CD45-FITC, 
anti-CD80-PE, anti-CD86-PE, anti-HLA-ABC-FITC, and 
anti-HLA-DR-PE (all from BioLegend, San Diego, CA, 
USA) for about 30 min in the dark. The cytometry data 
were processed and analyzed using FlowJo software.

In vivo bioluminescence imaging
hADSCs at passage 4 were transfected with an adeno-
viral vector containing a firefly luciferase reporter gene 
(Ad-Luc) (Shanghai Genechem Co., Ltd., Shanghai, 
China) to analyze the in vivo homing and survival rates. 

Transfected cells were injected via the tail vein at a con-
centration of 5 ×  105 cells per mouse directly after BDL 
surgery. Mice under anesthesia were injected intraperito-
neally with D-luciferin and sodium salt (Yeasen, Shang-
hai, China) and imaged using an IVIS Lumina XRMS 
III in vivo imaging system (PerkinElmer, Waltham, MA, 
USA) at the indicated time points.

ELISA and serum cytokine analysis
Serum was collected and cytokine levels were meas-
ured using an ELISA kit to determine the expression 
of alanine aminotransferase (ALT) (Servicebio), aspar-
tate aminotransferase (AST) (Servicebio), PGE2 (Mlbio, 
Shanghai, China), TNF-α (Boster Biological Technol-
ogy, Pleasanton, CA, USA), and IL-1β (Mlbio) accord-
ing to the manufacturer’s instructions. After incubation, 
absorbance was finally read at 450 nm on a SpectraMax 
Absorbance Reader (Molecular Devices, Sunnyvale, CA, 
USA).

Histopathological and immunohistochemical staining 
(IHC)
Liver samples from the left lateral lobes were fixed with 
4% paraformaldehyde and embedded in paraffin. Sections 
stained with hematoxylin and eosin (H&E) and Sirius 
Red (Servicebio) were used to observe the pathological 
changes in liver tissues after deparaffinization and dehy-
dration. Immunohistochemical staining was carried out 
by incubating the sections with cleaved-caspase 3 (C-cas-
pase 3) (1:200, CST) and alpha-smooth muscle actin 
(α-SMA) (1:200, Abcam) antibody before visualization 
by color development with 3,3-diaminobenzidine (DAB) 
(Servicebio).

Immunofluorescence staining (IF) and TUNEL assay
Mouse liver tissues were embedded in an optimal cutting 
temperature (OCT) compound (Servicebio) to make fro-
zen sections. Serial sections of the tissues of 8 μm thick-
ness were cut and used for the fluorescence observations. 
Double immunofluorescent staining was performed to 
evaluate immune cell infiltration with Ly6G antibody 
(Servicebio) and F4/80 antibody (Servicebio). The apop-
tosis of hepatocytes was detected using a terminal deoxy-
nucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay from a commercial kit (Yeasen), following the 
manufacturer’s instructions. The nuclei were stained with 
4’,6-diamidino-2-phenylindole (DAPI) (Beyotime, Shang-
hai, China), and the positive cells were visualized using a 
fluorescence microscope.

Western blot analysis
Protein samples were separated using sodium dodecyl 
sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) 
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and electroblotted onto the nitrocellulose membranes 
(Millipore, Billerica, MA, USA). The membranes were 
then blocked with 5% fat-free milk powder dissolved in 
Tris-buffered saline/Tween 20 (TBST, 150  mM NaCl, 
50 mM Tris–HCl, pH 7.5, 20% Tween 20) at room tem-
perature for one hour and incubated with primary anti-
bodies against COX-2 (1:1000, Abcam), α-SMA (1:1000, 
Abcam), β-actin (1:1000, ABclonal)  or  glyceraldehyde 
3-phosphate dehydrogenase (GAPDH, 1:3000, KangChen 
Bio-tech) at 4  °C overnight. After three washes with 
TBST, the membranes were incubated with horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit immu-
noglobulin G (IgG) antibody (1:4000, ABclonal) for one 
hour at room temperature. The membranes were washed 
again in TBST. Finally, the protein bands were imaged 
using an automatic chemiluminescence image analysis 
system (Tanon, Shanghai, China), and the expression 
levels of all target proteins were normalized to β-actin or 
GAPDH with ImageJ software (U.S. National Institutes of 
Health, Bethesda, MD, USA).

Real‑time quantitative PCR (RT‑qPCR)
Total RNA was extracted with the FastPure Cell/Tissue 
Total RNA Isolation Kit (Vazyme, Nanjing, China), and 
complementary DNA was synthesized with a Prime-
Script First Strand cDNA synthesis kit (TaKaRa, Dalian, 
China) according to the manufacturer’s protocol. Sam-
ples were run with Synergy Brands (SYBR) Premix Ex Taq 
(Vazyme) on Bio-Rad CFX96 Real-Time Systems (Bio-
Rad, Hercules, CA), and the housekeeping gene GAPDH 
served as an internal control. The results were calculated 
using the 2-ΔΔCT method. All sequences of primers 
used for the PCR analysis are summarized in Table1.

Statistical analysis
The results were presented as means ± standard devia-
tion, and all statistical analyses were calculated using 
Prism 8.0 software (GraphPad, San Diego, CA, USA). 
Data were compared by the application of an unpaired 
Student’s t test and one-way analysis of variance 
(ANOVA). Differences with P values smaller than 0.05 
were considered statistically significant.

Results
Effects of TNF‑α/IL‑1β pretreatment on the biological 
characteristics of hADSCs
hADSCs at passage 4 were characterized by a spindle-
like and fusiform shape, exhibiting conspicuous refrac-
tion when being held in a vigorous state. After being 
pretreated with TNF-α and IL-1β for 24 h, the morphol-
ogy of the hADSCs showed no significant differences 
between the two groups (Fig.  1a). In addition, Oil Red 
O staining and Alizarin Red staining were used to assess 

the pluripotency of the hADSCs. As shown in Fig. 1b, the 
staining results suggested that the osteogenic differen-
tiation potential of the hADSCs was not affected, while 
the capacity for adipogenic differentiation was mildly 
impaired when primed by TNF-α/IL-1β. Furthermore, 
the flow cytometry analyses identified that TNF-α/IL-1β 
pretreatment had no influence on surface markers CD34, 
CD45, CD29, and CD44 of the hADSCs (Fig. 1c). Inter-
estingly, the proliferative ability of the P-hADSCs was 
significantly enhanced compared to that of untreated 
hADSCs (Fig. 1d, e).

TNF‑α/IL‑1β preconditioning enhanced the survival 
of hADSCs after transplantation
To study the distribution patterns and survival conditions 
of transplanted cells in  vivo, we performed biolumines-
cent IVIS (in vivo imaging system) imaging on C57BL/6 
mice for observation. The preconditioned hADSCs or 
treatment-free controls were transfected with a lentivirus 
carrying the luciferase gene and injected into the mice via 
the tail vein. The intensity of the luciferase signal revealed 
that the systemically administrated cells could hone in 
on and aggregate in the lung but not the liver. Notably, 
at 24  h and 48  h post-administration, the durations of 
the luciferase signals in the mice treated with P-hADSCs 
showed significant increases compared with those of the 
control group (Fig.  2a, b), indicating that the survival 
times of P-hADSCs in the mice were significantly pro-
longed in comparison with those of C-hADSCs.

To further explore whether TNF-α/IL-1β pretreatment 
influences the immunogenicity of hADSCs, the expres-
sion of immunogenic markers (human leukocyte antigen 
(HLA)-ABC, HLA-DR) and costimulatory molecules 
(CD80, CD86) was analyzed. As shown in Fig. 2c, FACS 
analysis revealed a significant decrease in HLA-ABC and 
HLA-DR positive cells, with CD80 and CD86 following 
the same tendency (Fig. 2c). In addition, compared to the 
untreated group, P-hADSCs exhibited significantly lower 
HLA-DR and CD86 mRNA expression (Fig. 2d).

TNF‑α/IL‑1β‑primed hADSCs alleviated liver injury 
and inflammatory response in BDL Mice
To investigate the efficacy of P-hADSCs on cholestatic 
liver injury, the mice were subjected to BDL followed 
by C-hADSCs (5 ×  105 cells per mouse) or P-hADSCs 
(5 ×  105 cells per mouse) administration through the tail 
vein immediately after operation. At 48  h after surgery, 
the mice in the PBS group showed increased hepatocyte 
damage compared to the sham group, as evidenced by 
an increased parenchymal necrosis area (Fig.  3a, b) and 
elevated serum AST and ALT levels. Infusion of hADSCs 
significantly reduced hepatic damage compared with the 
mice that received PBS. Mice in the P-hADSCs group 
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Table 1 Gene-specific primers used in the RT-qPCR

Gene Accession number Primer sequences

m-GAPDH NM_001289726.1 Forward: GCC ACC CAG AAG ACT GTG GAT 

Reverse: GGA AGG CCA TGC CAG TGA 

rh-GAPDH NM_002046.7 Forward: CAT GTT CGT CAT GGG TGT GAA 

Reverse: GGC ATG GAC TGT GGT CAT GAG 

rh-HLA-DR NM_019111.5 Forward: GGA TGA GCC TCT TCT CAA GCA 

Reverse: CTT TTG CGC AAT CCC TTG AT

rh-CD80 NM_005191.4 Forward: CTT CAA CTG GAA TAC AAC CAA GCA 

Reverse: TCA TTC CTC CTT CTC TCT CTG CAT 

rh-CD86 NM_175862.5 Forward: TGA ACT GTC AGT GCT TGC TAA CTT C

Reverse: TGA ATT CTT GGT TCT TAG CAA AAC A

m-TNF-α NM_013693.3 Forward: ACA AGG CTG CCC CGA CTA C

Reverse: TGG GCT CAT ACC AGG GTT TG

m-IL-1β NM_008361.4 Forward: CTT TCC CGT GGA CCT TCC A

Reverse: CTC GGA GCC TGT AGT GCA GTT 

m-IL-17 NM_010552.3 Forward: GAC TCT CCA CCG CAA TGA AGAC 

Reverse: CTC TTC AGG ACC AGG ATC TCTTG 

m-CXCL-1 NM_008176.3 Forward: CGC TTC TCT GTG CAG CGC TGC TGC T

Reverse: AAG CCT CGC GAC CAT TCT TGA GTC 

m-CXCL-2 NM_009140.2 Forward: CCT GGT TCA GAA AAT CAT CCA 

Reverse: CTT CCG TTG AGG GAC AGC 

m-TGF-β NM_011577.2 Forward: CAA CAA TTC CTG GCG TTA CCTT 

Reverse: CAA GAG CAG TGA GCG CTG AA

m-COL1A1 NM_007742.4 Forward: TGA CTG GAA GAG CGG AGA GTACT 

Reverse: TTC GGG CTG ATG TAC CAG TTC 

m-α-SMA NM_007392.3 Forward: TGC CGA GCG TGA GAT TGT C

Reverse: CGT TCG TTT CCA ATG GTG ATC 

rh-α-SMA NM_001141945.2 Forward: GGT GAC GAA GCA CAG AGC AA

Reverse: CAG GGT GGG ATG CTC TTC AG

rh-COL1A1 NM_000088.4 Forward: CTG GAT GCC ATC AAA GTC TTCTG 

Reverse: CGC CAT ACT CGA ACT GGA ATC 

rh-COX-2 NM_000963.4 Forward: AGC AGG CAG ATG AAA TAC CAG TCT 

Reverse: ATA CAG CTC CAC AGC ATC GATGT 

rh-Annexin A1 NM_000700.3 Forward: TGA CCG ATC TGA GGA CTT TGG 

Reverse: ACT CTG CGA AGT TGT GGA TAGCT 

rh-HGF NM_000601.5 Forward: AGC ATG TCA AGT GGA GTG AAA AAA 

Reverse: ACT CCA GGG CTG ACA TTT GATG 

rh-TSG-6 NM_007115.4 Forward: TGC TAC AAC CCA CAC GCA AA

Reverse: ACT CAG GTG AAT ACG CTG ACCAT 

rh-IDO NM_002164.6 Forward: TGC AAG AAC GGG ACA CTT TG

Reverse: TGC CTT TCC AGC CAG ACA A

rh-IL-1ra NM_173842.3 Forward: ATT GAG CCT CAT GCT CTG TTCTT 

Reverse: GAA GGC GAA GCG CTT GTC 

Fig. 1 Characterization, phenotype identification, and proliferation of C-hADSCs and P-hADSCs. a Representative images of C-hADSCs (left) 
and P-hADSCs (right) morphology. b Representative images of Oil Red O staining and Alizarin Red staining of C-hADSCs and P-hADSCs after 
adipo-inductive and osteo-inductive incubation, respectively. c Expressions of surface markers (CD45, CD44, CD29, and CD34) were examined by 
flow cytometry of C-hADSCs and P-hADSCs. d, e Representative images and quantitative analysis of cell proliferation. Scale bars = 50 µm. Data were 
presented as the mean ± SD. *P < 0.05, **P < 0.01

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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showed significantly reduced hepatic necrosis, as well as 
lower AST and ALT levels, compared with mice in the 
C-hADSCs group (Fig.  3c, d). Moreover, BDL resulted 
in hepatocyte apoptosis and elevated C-caspase 3 acti-
vation. hADSC transplantation promoted liver function 
against BDL injury. P-hADSC administration led to a sig-
nificant decrease in hepatic apoptosis compared with the 
mice given C-hADSCs 48 h after surgery (Fig. 3e–g).

Immune cell infiltration and inflammation response 
play an important role during the progression of 
liver fibrosis. Immunofluorescent staining revealed 

significantly less infiltration of Ly6G+ neutrophils, but 
not F4/80+ macrophages, in mice transplanted with 
P-hADSCs than in mice transplanted with C-hADSCs 
(Fig.  4a–c). Moreover, we further tested the proin-
flammatory cytokines TNF-α, IL-1β, and IL-17 and 
the chemokines CXCL1 and CXCL2 of the BDL mice 
that underwent different treatments. Infusion of hAD-
SCs significantly reduced liver gene expression in 
TNF-α, IL-1β, CXCL1, and CXCL2, as well as serum 
TNF-α and IL-1β levels. The BDL mice that received 
P-hADSC infusion also had lower expression of TNF-α 

Fig. 2 TNF-α/IL-1β preconditioning enhanced the survival of hADSCs after transplantation. a Biodistribution of C-hADSCs and P-hADSCs labeled 
by luciferase was injected intravenously after surgery. Representative IVIS images of mice injected with C-hADSCs (up) and P-hADSCs (down). b 
Quantification of the fluorescence intensity (n = 3 per group). c The positive ratio of HLA-ABC, HLA-DR, CD80, and CD86 was detected by flow 
cytometry (n = 3 per group). d RT-PCR analysis of HLA-DR, CD80, and CD86 (n = 3 per group). Scale bars = 50 µm. Data were presented as the 
mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 3 TNF-α/IL-1β-primed hADSCs alleviated liver injury in BDL mice. a Representative image of H&E staining of liver tissue in each group. b 
Quantification of hepatic necrosis area (n = 5 per group). c, d Detection of serum ALT and AST level (n = 5 per group). e Representative image of 
cell apoptosis was examined by TUNEL assays (upper) and immunostaining of C-caspase 3 (lower). f Quantification of TUNEL positive cells (n = 5 
per group). g Quantification of C-caspase 3 positive area (n = 5 per group). Scale bars = 50 µm. Data were presented as the mean ± SD. *P < 0.05, 
**P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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and IL-1β than the mice in the C-hADSC group 
(Fig. 4d–j).

TNF‑α/IL‑1β‑primed hADSCs alleviated BDL‑induced liver 
fibrosis and HSC activation
To determine the effects of P-hADSCs on BDL-induced 
hepatic fibrogenesis, the BDL mice were administered 
P-hADSCs, C-hADSCs, or PBS by tail vein injection 
twice at 0 and 4  days, respectively, and killed 7 days 
after surgery (Fig.  5a). Histological examination of 
their liver sections was performed by H&E staining, 
Sirius Red staining, and α-SMA immunohistochemical 
staining. As expected, the BDL mice showed remark-
able fibroplasia in the portal triad, increased collagen 
deposition, and an α-SMA positive area. The infusion 
of C-hADSCs significantly reduced collagen deposi-
tion and α-SMA expression compared with mice that 
received PBS. P-hADSC transplantation led to a sig-
nificantly better improvement in collagen deposition 
and α-SMA expression compared to mice given hAD-
SCs without TNF-α/IL-1β preconditioning (Fig. 5b–d). 
Meanwhile, RT-qPCR was performed to analyze the 
fibrogenic gene TGF-β, collagen type I alpha 1 chain 
(COL1A1), and α-SMA. Treatment with P-hADSCs 
remarkably downregulated the hepatic expression of 
the aforementioned profibrotic markers compared to 
mice treated with C-hADSCs (Fig. 5e–g). These results 
were further supported by α-SMA immunoblotting 
analysis (Fig. 5h, i; Additional file 1: Fig. S1).

Furthermore, the effect of P-hADSCs on the activa-
tion of immortalized human HSCs (LX-2) was inves-
tigated. The LX-2 cells were treated with control 
medium (α-MEM), conditioned medium from C-hAD-
SCs (C-hADSCs-CM), and conditioned medium from 
P-hADSCs (P-hADSCs-CM) together with rhTGF-β 
for 48 h. RT-qPCR analysis revealed that treatment of 
LX-2 cells with P-hADSCs-CM together with rhTGF-β 
resulted in decreased expression of the fibrotic genes 
α-SMA and COL1A1 compared to cells treated with 
C-hADSCs-CM (Fig. 6a, b). These results were further 
confirmed by α-SMA immunofluorescent staining and 
immunoblotting analysis, indicating that P-hADSCs-
CM were able to inhibit LX-2 cell activation when 
the cells were cultured upon treatment with rhTGF-β 
(Fig. 6c–e; Additional file 1: Fig. S2).

TNF‑α/IL‑1β pretreatment increased COX‑2 expression 
and PGE2 secretion
Previous studies have reported that several immu-
nomodulatory mediators, including COX-2, Annexin A1, 
hepatocyte growth factor (HGF), tumor necrosis factor-
stimulated gene-6 (TSG-6), indoleamine 2,3-dioxygenase 
(IDO), and IL-1 receptor antagonist (IL-1Ra), contribute to 
the immunosuppressive function of MSCs [36]. To investi-
gate the mechanism of TNF-α/IL-1β pretreatment in aug-
menting the immunomodulatory abilities of hADSCs, the 
above immune modulatory genes were analyzed. RT-qPCR 
results showed that expression levels of COX-2 and TSG-
6, but not other genes, were upregulated when hADM-
SCs were treated with TNF-α/IL-1β for 24 h, with COX-2 
expression increasing 50.95 ± 2.06-fold (Fig.  7a). In addi-
tion, the expression of COX-2 in hADSCs was measured 
after TNF-α/IL-1β pretreatment for different durations (0, 
24, 48, and 72 h). Compared with the 0-h hADSCs, the 24-, 
48-, and 72-h TNF-α/IL-1β-pretreated hADSCs showed 
significantly higher concentrations of COX-2 (Fig.  7b, c; 
Additional file  1: Fig. S3). Furthermore, the TNF-α/IL-1β 
pretreatment dramatically increased the PGE2 levels in 
the culture supernatant as well as the graft recipient serum 
compared with the hADSCs cultured without TNF-α /
IL-1β (0-h hADSCs) (Fig. 7d–f).

COX‑2 silence reversed the efficacy of TNF‑α/IL‑1β‑primed 
hADSCs on BDL‑induced fibrosis
To verify that TNF-α/IL-1β pretreatment improves the 
efficacy of hADSCs in cholestatic liver fibrosis through 
the COX-2/PGE2 pathway, COX-2 knockdown was per-
formed using siRNA transfection. The knockdown effi-
ciency of si-COX2 was verified via western blotting 
(Fig.  8a, b; Additional file  1: Fig. S4) and PGE2 secretion 
(Fig. 8c). Moreover, the inhibitory effect of P-ADSCs-CM 
on HSC activation was largely abolished by the knockdown 
of COX-2 (Fig.  8d, e; Additional file  1: Fig. S5). In addi-
tion, P-hADSCs with knocked-down COX-2 significantly 
reversed the anti-fibrotic effects in BDL mice, which was 
consistent with the intuitive results in vitro (Fig. 8f, g).

Discussion
In this study, we provided novel insights regarding the 
enhanced efficacy and mechanism of TNF-α/IL-1β-
pretreated hADSCs on cholestatic liver injury. First, TNF-α/
IL-1β prelicense decreased the immunogenic-associated 

(See figure on next page.)
Fig. 4 TNF-α/IL-1β-primed hADSCs alleviated inflammatory response in BDL mice. a Representative images of fluorescence staining of Ly6G and F4/80 
in each group 48 h after surgery. b, c The quantitative analysis of Ly6G+ cells and F4/80+ cells in fluorescence staining (n = 5 per group). d–h The 
expression levels of mRNA for TNF-α, IL-1β, IL-17, CXCL1 and CXCL2 in liver tissue 48 h post-operation (n = 5 per group). i, j Serum levels of TNF-α and 
IL-1β were measured using ELISA (n = 5 per group). Scale bars = 50 µm. Data were presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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genes and improved the engraftment efficiency of hAD-
SCs. Second, TNF-α/IL-1β pretreatment enhanced the 
efficacy of hADSCs in the improvement in hepatic func-
tion and liver fibrosis in BDL mice and increased the ability 
of hADSCs to inhibit HSC activation. Moreover, our data 
revealed that TNF-α/IL-1β upregulated COX-2 expres-
sion and PGE2 production, while COX-2 silence reversed 
the reinforced ability of TNF-α/IL-1β-pretreated hADSCs 
to attenuate liver fibrosis. These findings provide evidence 
that TNF-α/IL-1β pretreatment can enhance the efficacy 
of hADSCs in cholestatic liver injury via the COX-2/PGE2 
pathway (Fig. 9).

Growing evidence suggests that the insufficient thera-
peutic efficiency of hADSCs could be related to the 
relatively limited survival rate of stem cells post-transplan-
tation [37–40]. Anoikis has been reported as one of the 
main causes of this phenomenon [41]. Another suggestion 
is that widespread apoptosis of transplanted cells occurs in 
the host’s circulation or the recipient’s microenvironment 
during transplantation [23]. Despite their low immuno-
genicity, hADSCs can still be recognized and eliminated by 
the potent immune systems of recipient cells due to allo-
geneic transplantation [42–44]. The Fas ligand (FASL)-FAS 
pathway has been regarded as a highly correlated route of 
inducing immune rejection, thereby mediating the apopto-
sis of transplanted stem cells [45, 46]. In this study, the ratio 
of fluorescence signals in C-hADSCs decreased signifi-
cantly 48 h after transplantation, indicating the loss of cells. 
Meanwhile, the TNF-α/IL-1β pretreatment group exhib-
ited a significantly increased survival rate of transplanted 
hADSCs. Moreover, the signs of improvement could be 
associated with the reduction in surface costimulatory 
molecules. However, further research is needed to identify 
the underlying mechanisms.

Increased concentrations of bile acids are known to be an 
important stimulus of hepatocyte damage during cholesta-
sis, causing chemoattractants to be released from necrotic 
hepatocytes [5, 47]. The consequent immune cascades ini-
tiated to promote the activation and recruitment of neu-
trophils ultimately led to an inflammatory response in the 
liver [48–50]. Studies have demonstrated that elevated lev-
els of hepatocyte-specific proinflammatory cytokines, such 
as IL-1β [51], as well as enhanced expressions of CXCL1 
[51, 52] and CXCL2 [5], are possibly mediated by the 
Farnesoid X Receptor (Fxr)/early growth response 1 (Egr1) 
pathway [53, 54]. Moreover, it has become clear that there 
is a complex mechanism of action among macrophages in 

regulating the fibrosis response. A milieu of continuous 
inflammation mediated the activation of HSCs, and mac-
rophages were recruited to trigger their innate immune 
response. The broken balance between extracellular matrix 
(ECM) degradation and deposition promoted the initiation 
of liver fibrosis [55, 56]. It has been proven that hADSCs 
contribute to preventing or even eliminating further liver 
fibrogenesis by downregulating the expressions of inflam-
matory genes and inhibiting the activation of HSCs [18–20, 
57, 58]. Consistently, our present data reveal that hADSC 
infusion ameliorated the pathological presentation of BDL-
induced liver injury. In addition, we suggest that pretreat-
ment with TNF-α and IL-1β directly enhances the immune 
regulation ability of hADSCs against hepatic inflammation 
and restrains the adverse consequence of cholestatic liver 
injury.

COX-2, an inflammation-induced isoform of cyclooxyge-
nase, catalyzes the synthesis of prostaglandins and acts as an 
important mediator in MSC-mediated immune regulation 
[36, 59]. Among those prostaglandins, PGE2, a downstream 
lipid mediator generated by COX-2, has been described as 
a key suppressor of an immune response [60–62]. Recent 
studies have reported elevated COX-2/PGE2 expression 
when MSCs are exposed to inflammatory cytokines, such 
as IL-17 [27] and IL-1β [32]. Indeed, the COX-2/PGE2 axis 
has been demonstrated not only to have important access to 
mediating the immunosuppressive properties of MSCs [36, 
63] but also to exert a decent anti-fibrotic effect on fibrosis 
diseases [64–66]. In the present study, our data revealed that 
TNF-α/IL-1β pretreatment dramatically stimulated COX-2 
expression and PGE2 production in hADSCs. Notably, con-
ditioned medium from TNF-α/IL-1β-pretreated hADSCs 
impeded the activation of HSCs, while COX-2 knockdown 
abolished the enhanced anti-fibrotic effects of hADSCs both 
in vivo and in vitro. These data support the hypothesis that 
COX-2/PGE2 signaling plays a critical role in mediating the 
enhanced therapeutic efficacy of TNF-α/IL-1β-pretreated 
hADSCs.

Conclusion
In conclusion, this study suggests that TNF-α/IL-1β pre-
treatment could enhance the therapeutic effects of hAD-
SCs on cholestatic liver injury. Moreover, TNF-α and 
IL-1β might promote hADSCs, partially by attenuating 
inflammatory response and inhibiting HSC activation by 
upregulating COX-2 expression and PGE2 production.

Fig. 5 P-hADSCs alleviated the cholestatic liver fibrosis induced by bile duct ligation. a Schematic view of P-hADSCs therapy in a murine model 
of cholestatic liver fibrosis. b Representative images of H&E staining, Sirius red staining, and α-SMA immunohistochemical staining of liver sections 
from each group. c Quantification of Sirius red positive areas (n = 5 per group). d Quantification of α-SMA positive areas (n = 5 per group). e–g The 
expression levels of mRNA for TGF-β, COL1A1, and α-SMA in liver tissue 7 days post-operation. h, i Western blot and quantification of the protein 
expression for α-SMA in liver tissue. Scale bars = 50 µm. Data were presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 6 Conditioned medium from P-hADSCs (P-hADSCs-CM) inhibited HSC activation in vitro. LX-2 cells were cultured under conditioned medium 
from P-hADSCs (P-hADSCs-CM) or C-hADSCs (C-hADSCs-CM) in the presence of rhTGF-β for 48 h, with α-MEM used as control. a, b The expressions 
of mRNA for α-SMA and COL1A1 in LX-2 cells. c Representative immunofluorescence images of α-SMA staining from LX-2 cells. d, e Western blot 
analysis of α-SMA in LX-2 cells. Scale bars = 50 µm. Data were presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 7 TNF-α/IL-1β pretreatment increased COX-2 expression and PGE2 secretion. a The expressions of mRNA for COX-2, Annexin A1, HGF, TSG-6, 
IDO and IL-1Ra in hADSCs after 24 h of TNF-α/IL-1β treatment. b The expression of COX-2 was determined by western blot analysis after hADSCs 
with 24 h, 48 h, and 72 h exposures of TNF-α/IL-1β. c Quantitative analysis of western blot. d The hADSCs supernatant PGE2 concentration were 
tested using ELISA (n = 3 per group). e, f PGE2 level in serum 24 and 48 h after cell transplantation were tested using ELISA (n = 5 per group). Data 
were presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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Fig. 8 COX-2 silence reversed the efficacy of TNF-α/IL-1β-primed hADSCs on BDL-induced fibrosis. a, b hADSCs were transfected with si-NC 
or COX-2 siRNA and stimulated with TNF-α/IL-1β for 24 h. The knockdown of COX-2 was detected by western blotting. c The supernatant PGE2 
concentration were tested using ELISA (n = 3 per group). d Representative immunofluorescence images and statistical analysis of α-SMA staining 
from LX-2 cells. e Western blot analysis of α-SMA in LX-2 cells. f Representative images of H&E staining and Sirius red staining. g Quantification of 
Sirius red positive areas (n = 5 per group). Scale bars = 50 µm. Data were presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001
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