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Abstract 

The formation and accumulation of advanced glycation end products (AGEs) have been associated with aging and 
the development, or worsening, of many degenerative diseases, such as atherosclerosis, chronic kidney disease, and 
diabetes. AGEs can accumulate in a variety of cells and tissues, and organs in the body, which in turn induces oxida-
tive stress and inflammatory responses and adversely affects human health. In addition, under abnormal pathological 
conditions, AGEs create conditions that are not conducive to stem cell differentiation. Moreover, an accumulation of 
AGEs can affect the differentiation of stem cells. This, in turn, leads to impaired tissue repair and further aggravation of 
diabetic complications. Therefore, this systematic review clearly outlines the effects of AGEs on cell differentiation of 
various types of primary isolated stem cells and summarizes the possible regulatory mechanisms and interventions. 
Our study is expected to reveal the mechanism of tissue damage caused by the diabetic microenvironment from a 
cellular and molecular point of view and provide new ideas for treating complications caused by diabetes.
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Introduction
With the development of regenerative medicine, stem 
cell transplant-based replacement therapy has become 
an important treatment approach [1]. Stem cells are a 
cell population with self-renewal capacity and multilin-
eage differentiation potential that can differentiate into 

different types of cells under specific conditions [2]. For 
example, bone marrow stem cells (BMSCs) can differ-
entiate into osteoblasts, adipocytes, chondrocytes, etc., 
after different stimuli [3–5]. Periodontal ligament stem 
cells (PDLSCs) migrate and differentiate into osteoblasts 
to repair alveolar bone defects after periodontal tissue 
injury for repair [6]. Neural stem cells (NSCs) can be iso-
lated from rodents’ embryonic tissues and human brain 
tissues and can differentiate into various cell lineages, 
including neurons, astrocytes, and oligodendrocytes. 
At present, exogenous NSCs transplantation has been 
applied to treat neurological diseases, including vascu-
lar dementia [7], traumatic brain injury [8], spinal cord 
injury [9], and stroke [10]. Adipose tissue-derived stem 
cells (ADSCs) are widely sourced and have the effects 
of restoring tissue cells and promoting cell regeneration 
[11]. Tendon stem cells (TSDCs), found in the Achil-
les tendon or tendon, have multilineage differentiation 
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potential and can reverse tendinopathy and promote 
osteotendinous junction healing [12]. Although stem 
cell transplantation has a good tissue repair ability for 
injured tissues, local harmful microenvironments such 
as oxidative stress and inflammatory stimuli result in low 
stem cell survival. Among them, AGEs can be deposited 
in various parts and organs of the body under abnormal 
pathological conditions such as diabetes and aging and 
form a microenvironment that is not conducive to stem 
cell differentiation in the body. At the same time, the 
deposition of AGEs leads to corresponding tissue damage 
and dysfunction of repair function, causing serious dam-
age to body tissues and organs.

AGEs are polymers produced by non-enzymatic reac-
tions between proteins, lipids, nucleic acids, and glucose, 
formed in three steps: (1) Schiff base is produced by non-
enzymatic saccharification of the aldehyde group of early 
reducing sugars with proteins; (2) Schiff base forms more 
stable Amadori products through structural rearrange-
ment; (3) Amadori products undergo further structural 
changes after dehydration and degradation, finally form-
ing AGEs. AGEs are structurally diverse compounds 
divided into endogenous AGEs produced in  vivo and 
exogenous AGEs ingested in  vitro [13]. The way colla-
gen forms AGEs can also be divided into intermolecular 
cross-linking modification and side chain modification. 
Partially cross-linked structures give rise to autofluores-
cence signatures, whereas side-chain modification forms 
AGEs that typically do not have autofluorescence signa-
tures. In addition to in vivo synthesis, numerous studies 
have highlighted that exogenous AGEs, especially dietary 
AGEs intake, can significantly affect the levels of AGEs in 
the body [14]. In addition to dietary sources, AGEs can 
also be found in cigarettes. Roasted tobacco leaves have 
been suggested as a source of substances that promote 
increased AGEs in vivo. Although exogenous and endog-
enous AGEs are thought to have different sources, recent 
observations suggest that they may act synergistically to 
cause AGEs to produce greater harm [15].

AGEs were first thought to be easily formed in tissues 
with a slow metabolism, and their increased content is 
closely related to aging. AGEs have a role in the develop-
ment of diseases such as kidney [16], retina [17], cardio-
vascular disease [18], and osteoporosis [19]. Also, AGEs 
have a stronger toxic effect on pancreatic β-cells than 
high glucose and a longer duration of action. AGEs are 
involved in diabetes, and diabetes-related complications 
mainly occur through the following aspects: (1) AGEs and 
protein cross-linking change the biological characteris-
tics of proteins [20], which causes changes in physiologi-
cal and biochemical properties and leads to functional 
damage to the body, such as vascular thickening, reduced 
elasticity, and vascular endothelial dysfunction. (2) AGEs 

interact with their receptor of advanced glycation end 
products (RAGE) to activate a series of complex signal 
transduction pathways and induce many intracellular 
signal transduction pathways to produce reactive oxy-
gen species and reactive nitrogen species, which further 
lead to different pathological responses [21]. (3) AGEs 
promote pancreatic β-cell apoptosis by inducing the pro-
duction of reactive oxygen species and increasing the 
expression of RAGE, while they can significantly reduce 
apoptosis by reducing the production of reactive oxygen 
species and inhibiting RAGE [22]. Overall, AGEs accu-
mulate rapidly during hyperglycemia and oxidative stress 
and are important factors involved in the development of 
diabetes and the continuous deterioration of its compli-
cations [23]. Yet, the effect of AGEs on primary stem cell 
differentiation is still controversial, and effective strate-
gies to reverse the adverse effects of AGEs on stem cell 
differentiation are currently lacking.

This systematic review summarizes the effects of AGEs 
on the cell differentiation potential of different types of 
primary isolated stem cells and elaborates and summa-
rizes the relevant mechanisms and interventions of AGEs 
on the differentiation potential of stem cells. These data 
may improve the theoretical basis for revealing the haz-
ards of AGEs and promoting the application of stem cell 
therapy.

Data and methods
Source of data
PubMed and Web of Science electronic databases were 
searched for relevant articles published from inception 
of the database to November 6, 2022. Articles on the 
effects of AGEs on primary stem cell differentiation were 
identified by identifying PICO elements (P = population: 
primary stem/progenitor cells, I = intervention: AGEs, 
C = comparison: control, O = results: differentiation). In 
addition, the authors used MeSH to find English-written 
and published articles on advanced glycation end prod-
ucts and stem cells using the same keywords as used in 
recent literature [1].

Literature screening criteria
Exclusion criteria were: (1) the studied cells were not 
stem cells or progenitor cells; (2) the study involved only 
diabetes or high glucose, not AGEs; (3) a review study, 
case report, book, announcement, meeting, etc.; (4) the 
study results were not related to stem cell differentiation; 
(5) the study was not a cell experiment performed at the 
level of stem cells; (6) non-English literature.

Data extraction and literature quality evaluation
Selected articles were screened and assessed by two 
reviewers (KSX and LZ) according to exclusion criteria 



Page 3 of 16Xu et al. Stem Cell Research & Therapy           (2023) 14:74 	

and were excluded when both reviewers considered 
the article to be ineligible. Finally, data were grouped 
according to stem cell type: bone marrow stem cells 
(Table  1), periodontal ligament stem cells (Table  2), 

adipose tissue-derived stem cells (Table  3), neural 
stem cells (Table 4), tendon stem cells (Table 5), CD34 
progenitor cells (Table  6), and endothelial progenitor 
cells (Table 7).

Table 1  Summary of included studies using BMSCs isolated from the bone marrow

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

BMSCs: Bone marrow stem cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study 
name

Year Isolation 
SC

AGEs application Effect on outcome Regulation 
mechanism

Intervention 
factors

Concentration Duration Osteogenesis Chondrogenesis Adipogenesis

Kim et al.
[24]

2013 Rat bone 
marrow

300 μg/ml 1d ↓ – – Ang1/Tie2 
pathway

COMP-Ang1

Guo et al.
[25]

2021 Rat bone 
marrow

50, 100, 200 μg/
mL

1, 2, 3d ↓ – ↑ Sirt3 rAAV-Sirt3/
CCCP

Stolzing 
et al.[26]

2010 Rat bone 
marrow

10, 50, 200, 
300, 500, 700, 
100 mol/μl

14d ↓ – – – –

Kume et al.
[27]

2005 Human 
bone mar-
row

10, 100 μg/mL 21d ↓ ↓ ↓ – –

Notsu et al.
[28]

2014 Human 
bone mar-
row

200 μg/ml 7, 14, 21d ↓ – – TGF-β SD208

Larsen et al.
[29]

2012 Human 
bone mar-
row

0.75 mM, 1 mM 3d ↓ – – – –

Wang et al.
[30]

2021 Rat bone 
marrow

200 μg/ml 7d, 14d ↓ – – – Adre-
nomedullin 2

Waqas et al.
[31]

2022 Human 
bone mar-
row

400, 600, 800, 
1000 μM

1d, 4d, 11d, 
20d

↓ – – RAGE –

Okazaki 
et al.[32]

2012 Mouse 
bone mar-
row

10, 50
100, 
200 μg/ml

3d, 7d, 14d, 
21d

↓ – – Osterix 
expression

–

Table 2  Summary of studies that included PDLSCs

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

PDLSCs: Periodontal ligament stem cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs 
application

Effect on 
outcome

Effect on outcome Regulation 
mechanism

Intervention 
factors

Concentration Duration Osteogenesis Adipogenesis

Liu et al.[33] 2015 Human peri-
odontal ligament

1, 10, 100, 
200 ng/mL

3, 7d ↓ ↓ Wnt/β‑catenin 
pathway

DKK1

Wang et al.[34] 2019 Human peri-
odontal ligament

200 μg/ml 14, 28d ↓ – PKCβ2 phospho-
rylation

GLP-1

Zhang et al.[35] 2019 Human peri-
odontal ligament

200 µg/ml 5, 7, 14, 21d ↓ – Wnt/β‑catenin 
pathway

Berberine

Guo et al.[36] 2019 Human peri-
odontal ligament

50, 100, 200 μg/
mL

14d ↓ – – –

Wang et al.[37] 2022 Human peri-
odontal ligament

25, 50
100, 150, 
200 μg/ml

24 h, 48 h, 72 h ↓ – RAGE Periostin
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Table 3  Summary of studies that included ADSCs

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

ADSCs: Adipose tissue-derived stem cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs application Effect on outcome Regulation 
mechanism

Intervention 
factors

Concentration Duration Osteogenesis Endothelial 
cells

Adipogenesis

Zhang et al.
[38]

2018 Rats Fat 40, 80, 120, 
160 μg/mL

1, 4, 7d ↓ – – Wnt/β-catenin 
pathway

FPS-ZM1

Li et al.[39] 2020 Mouse Fat 20, 40, 80, 
160 μg/mL

1, 2, 4d ↓ – – Wnt/β-catenin 
pathway

–

Guo et al.[40] 2017 Human Fat 100 mg/L 4, 8, 16d – ↓ – – –

Xiao et al.[41] 2020 Human Fat 10 mg/mL 3, 7, 14d ↓ – ↑ miR-1248/
CITED2/HIF-1α
pathway

MiRNA-1248

Li et al.[42] 2022 Rats Fat 20, 40, 80 μg/mL 24, 48, 96 h ↓ – – SIRT3 Irisin

Table 4  Summary of studies that included NSCs

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

NSCs:Neural stem cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs application Effect on outcome Regulation 
mechanism

Intervention 
factors

Concentration Duration Neuronal 
differentiation

Astrocytic 
differentiation

Wang et al.[43] 2009 Rat-brain tissue 
samples

200, 400 mg/L 3, 7d ↓ – – –

Bao et al.[44] 2020 Mouse-brain tissue 
samples

100 μg/mL 7d ↓ – HDAC3 –

Guo et al.[45] 2013 Rat-brain tissue 
samples

400 μg/mL 7d ↓ ↑ Notch-Hes1 pathway –

Table 5  Summary of studies that included TDSCs

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

TDSCs: Tendon stem cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs application Effect on outcome Regulation mechanism Intervention factors

Concentration Duration Osteogenesis Others

Xu et al.[46] 2019 Rat Achilles tendon 100, 200, 400 μg/ml 5d ↑ – – Pioglitazone

Table 6  Summary of included studies using CD34 progenitor cells isolated from blood

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs application Effect on outcome Regulation mechanism Intervention factors

Concentration Duration Vasculogenesis Others

Scheubel et al.[47] 2006 Human Blood 2, 20, 200 mg/ml 3d ↓ – – –
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Study selection
Through database searches of PubMed and Web of Sci-
ence, 244 and 343 articles were found, respectively. A 
total of 212 duplicate articles were removed, resulting in 
375 articles. Based on the exclusion criteria for literature 
screening, 350 articles were excluded after the screening, 
and 25 studies were finally included in this review.

Effect of AGEs on the differentiation of different 
types of primary stem cells
Bone marrow stem cells
Nine articles [24–32] investigated the effects of AGEs on 
differentiation from BMSCs (Table  1) derived from the 
bone marrow of rats [24–26, 30], humans [31, 37–39], or 
mice [32]. The ability of AGEs to inhibit the osteogenic 
differentiation of BMSCs was observed in all nine stud-
ies [24–32]. In addition, one [27] study found that AGEs 
inhibit the chondrogenic differentiation ability of BMSCs, 
while another reported opposing results. Guo et al. [25] 
found that the adipogenic differentiation ability of rat 
bone marrow-derived BMSCs was enhanced after the 
application of AGEs, while Kume et  al. [27] found that 
the adipogenic differentiation ability of human bone mar-
row-derived BMSCs was reduced after the application of 
AGEs. In short, AGEs inhibit both osteogenic and chon-
drogenic differentiation of BMSCs; however, there is still 
controversy regarding their adipogenic differentiation.

Periodontal ligament stem cells
Five articles have investigated the effects of AGEs on the 
differentiation of mesenchymal stem cells from the peri-
odontal ligament (Table  2). All stem cells were derived 
from the human periodontal ligament, and all studies 
[33–37] suggested that AGEs have an inhibitory effect on 
the osteogenic differentiation of PDLSCs. Moreover, Liu 
et  al. showed that AGEs down-regulates the adipogenic 
differentiation potential of PDLSCs [33].

Adipose tissue‑derived stem cells
Five studies reported the effects of AGEs on the differen-
tiation of ADSCs (Table 3). ADSCs were collected from 
subcutaneous fat in the groin of rats [38, 42], mice [39], 

or humans [40, 41]. Four studies [38, 39, 41, 42] reported 
that AGEs suppress the osteogenic potential of ADSCs 
under osteoinductive conditions in a dose-dependent 
manner, significantly reducing ALP activity and decreas-
ing the expression of osteoblast-specific genes. Fur-
thermore, Guo et  al. [40] reported that AGEs led to a 
decrease in the differentiation potential of ADSCs into 
endothelial cells, while Xiao et al. [41] found that AGEs 
promote adipogenesis in ADSCs.

Neural stem cells
NSCs were reported in three articles (Table 4). Cultures 
of proliferating neurospheres were obtained from rat [43, 
45] or mouse [44] brain tissue. Wang et al. [43] and Bao 
et al. [44] found that AGE-BSA inhibits the formation of 
neurospheres and neuronal differentiation in an approxi-
mately concentration-dependent manner. Guo et  al. 
[45] conducted a more in-depth study based on Wang’s 
results and found that AGEs promote astrocyte differ-
entiation while inhibiting neuronal formation. However, 
this study had limitations related to experimental design, 
so it needs to be further validated by including more time 
points and concentration gradients.

Tendon stem cells
One study reported the effect of AGEs on the differen-
tiation of TDSCs (Table 5) derived from rat tendons. Xu 
et  al. [46] applied AGEs to TDSCs for 5  days. ALP and 
alizarin red staining showed that AGEs promote the dif-
ferentiation of TDSCs toward osteogenesis. Yet, so far, no 
data have been reported on the effects of AGEs on osteo-
genic marker genes in tendon stem cells, and the inves-
tigators did not further study the potential mechanism 
of AGE-induced ossification of TDSCs. Accordingly, 
more work is needed in the future to elaborate related 
mechanisms.

CD34 progenitor cells
Scheubel et al. [47] showed that AGEs decrease the angi-
ogenic potential of CD34 progenitor cells derived from 
human blood (Table 6).

Table 7  Summary of included studies using EPCs isolated from the bone marrow

Summary of isolation procedures and sampling, AGEs concentration, duration of application, effects on stem cell differentiation, mechanisms of regulation and pre-
measures

EPCs: Endothelial progenitor cells; AGEs: Advanced glycation end products; SC: stem cells; ↓: decrease; ↑: increase

Study name Year Isolation SC AGEs application Effect on outcome Regulation 
mechanism

Intervention 
factors

Concentration Duration Osteogenesis Others

Wang et al.[48] 2022 Rat bone marrow 10, 20
40, 80, 
100 μg/ml

5 min, 15 min, 
30 min, 7d

↑ – MAPK pathway –
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Endothelial progenitor cells
One study reported the effect of AGEs on the differen-
tiation of EPCs derived from rat bone marrow (Table 7). 
Wang et al. [48] showed that AGEs might bind to RAGE 
on the membrane of endothelial cells, thereby leading to 
an increase in differentiation toward osteogenesis.

Potential mechanisms of AGEs affecting primary 
stem cell differentiation
Previous studies have explored and explained the poten-
tial reasons AGEs affect primary stem cell differentiation; 
however, few studies on pathways exist. The most investi-
gated and relatively well-established mechanisms mainly 
include AGE/RAGE [24, 37, 38], the Wnt/β-catenin path-
way [33, 35, 38, 39], and the Notch-Hes1 pathway [45].

Mechanisms of AGEs affecting BMSCs differentiation
Kim et al. [24] found that AGEs down-regulate the phos-
phorylation of AKT and p38 through the Ang1/Tie2 
signaling pathway and induce diminished osteogenic dif-
ferentiation ability of BMSCs. Angiopoietin 1 (Ang1) is a 
ligand for the Tie2 receptor [49]. Many studies related to 
diabetes have shown that the Ang1/Tie2 signaling system 
has a key role in vascular growth and maturation [50]. 
Previous studies have also confirmed Ang1 as a factor 
regulating apoptosis in MSCs [51].

Waqas et  al. [31] suggested that the interaction of 
AGEs with RAGE is one reason for the decreased osteo-
genic potential of BMSCs. Okazaki et al. [32] found that 
the mechanism through which AGEs inhibit osteogenic 
differentiation of BMSCs may be related to decreased 
osteocalcin expression and increased RAGE expression. 
Furthermore, Notsu et  al. [28] found that the increase 
in transforming growth factor-beta (TGF-β) by AGEs 
through binding to RAGE may be one of the reasons 
affecting stem cell differentiation ability. TGF-β is a mul-
tifunctional polypeptide with a regulatory role in injured 
tissue repair, embryonic development, bone tissue regen-
eration, and stem cell proliferation and differentiation 
[52]. TGF-β is highly expressed in ribs, spinal cartilage, 
and perichondrium and is abundant in the bone matrix, 
which can bind to β3-specific receptors on cell mem-
branes and affect cell division and proliferation and the 
synthesis of extracellular matrix [53]. Meanwhile, TGF-β 
has an important role in osteogenesis and is one of the 
important regulators [54], and TGF-β can bind to the 
promoters of Runx2 and OCN, which in turn affect the 
expression of osteogenic genes [55, 56].

TGF-β3 is a subtype of TGF-β, and its research in tissue 
wound repair, cartilage healing, scar repair, and fibrous 
tissue formation is relatively mature [57, 58]. In recent 
years, with the continuous upgrading of biological scaf-
fold materials, the effect of TGF-β3 on promoting and 

inducing the proliferation and osteogenic and chondro-
genic differentiation of adult stem cells derived from bio-
logical scaffold materials [59], especially in the early stage 
of osteogenesis [60], has been extensively studied. Deng 
et al. [61] found that TGF-β3 could induce osteogenic dif-
ferentiation of human BMSCs, thereby stimulating bone 
regeneration. Li et  al. [62] demonstrated that TGF-β3 
promotes osteogenic differentiation of PDLSCs by acti-
vating MAPK channels. In summary, TGF-β is a key fac-
tor in regulating osteogenesis, which has an important 
role in stem cell differentiation.

There are seven members of the mammalian Sirtuins 
family (including Sirt1-7). Sirt3 is located in the mito-
chondria and is a major component of mitochondrial 
deacetylases, which affect most of the key aspects of 
mitochondrial homeostasis [63–67]. Guo et al. [25] found 
that Sirtuin 3-mediated mitotic phagocytosis regulates 
the AGEs-induced osteogenic differentiation potential of 
BMSCs.

Osteogenic differentiation is an energy-consuming 
process in which the biosynthesis and oxidative energy 
supply of mitochondria are greatly increased, and the 
amount of ROS, its metabolic by-products, also corre-
spondingly increases. Therefore, maintaining homeosta-
sis of mitochondrial function and biosynthesis is essential 
for osteogenic differentiation [68]. Unfortunately, the 
decrease in the osteogenic differentiation potential of 
BMSCs induced by AGEs through Sirt3 has not been 
more intensively studied for the downstream targets of 
Sirt3, and the potential signaling pathways also need fur-
ther study exploration.

Mechanisms of AGEs affecting PDLSCs differentiation
AGEs influence the osteogenic differentiation poten-
tial of PDLSCs through the Wnt signaling pathway. Liu 
et al. [33] and Zhang et al. [35] found that AGEs reduce 
the osteogenic differentiation ability of PDLSCs by acti-
vating the canonical Wnt/β-catenin pathway. Wnt/β-
catenin or canonical Wnt is a signaling pathway that has 
an important regulatory role in stem cell self-renewal and 
differentiation. In PDLSCs, Wnt ligands interact with 
Frizzled to activate the Wnt signaling pathway, whereas 
AGEs further activate the Wnt/β-catenin signaling path-
way, which leads to increased expression of phosphoryl-
ated β-catenin. As a result, β-catenin translocates into 
the nucleus, binds to TCF/LEF, and induces decreased 
expression of ALP and RUNX2 (Fig. 1).

Some previous studies have shown that activation of 
the Wnt/β-catenin pathway can promote osteogenic dif-
ferentiation of BMSCs, ADSCs, and PDLSCs [69–72], 
and the neuronal differentiation process of neural stem 
cells is also regulated by the Wnt/β-catenin signal-
ing pathway [73, 74]. Wnt is a family of 19 secreted 
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glycoproteins that mediate developmental processes 
by regulating cell proliferation, differentiation, and 
apoptosis [75]. GSK-3β is inhibited when the canoni-
cal Wnt/β-catenin signaling pathway is activated. Then, 
β-catenin accumulates, translocates to the nucleus, and 
binds to T cell factor/lymphoid enhancer-binding factor 

transcription factors, leading to the transcription of Wnt 
downstream target genes [76]. Wnt proteins transduce 
a variety of signaling cascades, including the canoni-
cal Wnt/β-catenin pathway, the Wnt/ca2+ pathway, and 
the Wnt/polarity pathway [77]. Previous studies have 
confirmed that canonical Wnt/β-catenin signaling has a 

Fig. 1  AGEs attenuate the osteogenic differentiation ability of PDLSCs by activating canonical Wnt/β-catenin signaling (Liu et al., 2015; Zhang 
et al., 2019). In PDLSCs, Wnt ligands interact with Frizzled to activate the Wnt signaling pathway, whereas AGEs further activate the Wnt/β-catenin 
signaling pathway, which leads to increased expression of phosphorylated β-catenin. As a result, β-catenin translocates into the nucleus, binds to 
TCF/LEF, and induces decreased expression of ALP and RUNX2
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huge role in maintaining bone homeostasis and signifi-
cantly increases alkaline phosphatase (ALP) activity [78, 
79]. However, the role of the Wnt signaling pathway on 
osteoblast differentiation remains controversial, and 
more studies have shown that the Wnt signaling pathway 
inhibits osteoblast differentiation [80–82]. Wnt signal-
ing has also been studied in detail in abnormal neuronal 
differentiation of neural stem cells, and inhibition of the 
Wnt signaling pathway has a significant inhibitory role in 
the in vitro differentiation of NSCs (83). The discovery of 
the Wnt signaling pathway may preliminarily reveal the 
effect of AGEs on the abnormal differentiation of primary 
stem cells and provide theoretical and experimental clues 
for rescuing the abnormal differentiation status of AGEs 
on primary stem cells, but its potential molecular mecha-
nism still needs to be further explored.

Wang et al. [34] found that AGEs affect the osteogenic 
potential of PDLSCs through PKCβ2; during this process, 
the expression of RAGE is up-regulated, PKCβ2 activity 
is increased, and the ability of osteogenic differentiation 
is decreased. Osteogenic gene and protein expression 
showed corresponding up- and down-regulation after 
adding PKC inhibitor (LY333531) and activator (PMA), 
respectively. Protein kinase C (PKC) is a serine/threonine 
protein kinase with important physiological functions 
in many intracellular signaling pathways. Hyperactiva-
tion of PKCβ2 isoforms is particularly closely related to 
the occurrence and development of diabetic cardiovas-
cular complications. PKCβ2 has an important role in the 
development of diabetic complications, and membrane 
displacement and phosphorylation are important mark-
ers of PKC activation [84, 85]. Overactivation of PKCβ2 
promotes increased reactive oxygen species (ROS) pro-
duction, which causes tissue damage in the body [86–88]. 
AGEs can act on RAGE and activate PKC, leading to the 
release of superoxide, which has an important role in 
periodontal diseases [89, 90]. However, the underlying 
molecular mechanism through which PKCβ2 phospho-
rylation impacts the differentiation of PHLSCs requires 
further investigation.

Mechanisms of AGEs affecting ADSCs differentiation
Different signaling pathways can regulate the multiline-
age differentiation potential of stem cells. Herein, we 
found two studies [38, 39] reporting on the role of the 
Wnt signaling pathway in stem cell differentiation. Li 
et al. [39] and Zhang et al. [38] found that AGEs decrease 
the osteogenic differentiation ability of ADSCs by acti-
vating the canonical Wnt/β-catenin pathway. It can be 
seen that the Wnt signaling pathway has an important 
role in the process of bone regeneration and osteoblast 
differentiation. In ADSCs, Wnt ligands interact with Friz-
zled and activate the Wnt signaling pathway, while AGEs 

inhibit the Wnt/β-catenin signaling pathway, which leads 
to an increase in phosphorylated β-catenin expression. 
β-catenin translocates into the nucleus and binds to TCF/
LEF, leading to a decrease in LEF expression and induc-
ing a decrease in OPN and RUNX2 expression(Fig. 2).

Previous studies demonstrated the adverse effects of 
AGEs on the osteogenic potential of ADSCs [91]. Xiao 
et al. [41] found increased adipose differentiation poten-
tial and decreased osteogenic differentiation ability of 
ADSCs in response to AGEs; in addition, during this 
process, hypoxia-induced miR-1248 decreased, an effect 
associated with the miR-1248/CITED2/HIF-1α pathway. 
HIF-1α has been reported to inhibit and enhance osteo-
genic, adipogenic, and tenogenic differentiation of ADSC 
[92–94]. HIF-1 is divided into two subunits, HIF-1α and 
HIF-1β, and HIF-1α mainly determines the activity of 
HIF-1. Moreover, HIF-1α under hypoxia has an impor-
tant role in the differentiation potential of ADSCs [95]. 
Yu et al. [96] showed that indirect co-culture of ADSCs 
with tenocytes increased the differentiation of ADSCs 
into tenocytes, and hypoxia further enhanced the ability 
of ADSCs to differentiate into tenoblasts, accompanied 
by an increase in HIF-1α, and the use of HIF-1α inhibi-
tors attenuated the effect of hypoxia on the differentia-
tion of ADSCs. A hypoxic environment adversely affects 
ADSCs, but HIF-1α signaling promotes the differentia-
tion of stem cells into tendons [97]. HIF-1α contributes 
to stem cell adaptation to hypoxic conditions and has an 
important role in cellular response regulatory mecha-
nisms. Thus, the HIF-1α signaling pathway has an impor-
tant role in the differentiation process of ADSCs.

Similar to the study by Guo et  al. [25], Li et  al. [42] 
found that AGEs led to the decreased osteogenic poten-
tial of SIRT3-associated ADSCs. SIRT3 is mainly located 
in mitochondria and has an important role in mitochon-
drial function and cellular homeostasis. Some studies 
suggest that mitotic abnormalities are closely associated 
with the dysfunction of bone marrow stem cells [98]. In 
addition, increasing evidence suggests that SIRT3 is asso-
ciated with bone metabolic processes [99]. One study 
found that knockdown of SIRT3 resulted in dysregulation 
of mitochondrial homeostasis and decreased osteogenic 
differentiation potential [100], and in addition, knock-
down of SIRT3 resulted in increased osteoclast activity, 
significantly increased bone resorption, and significant 
loss of bone mass [101]. Abnormal SIRT3 expression can 
lead to osteoporosis [25].

Mechanisms of AGEs affecting NSCs differentiation
Neurospheres can self-renew and differentiate into spe-
cific neurons, glial cells, and oligodendrocytes [102, 
103]. Guo et  al. [45] performed in  vivo studies and 
found that AGEs can reduce the differentiation of NSCs 
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into neurons and increase their differentiation into 
astrocytes by down-regulating the expression of the 
Notch-Hes1 signaling pathway. In NSCs, AGEs up-reg-
ulated Notch expression, and Notch signaling was acti-
vated by ligands that bind to Notch receptors, thereby 
triggering the release of the receptor intracellular 

domain (NICD), which then translocates to the nucleus 
and cooperates with the DNA-binding protein RBPJ 
and the transcriptional cooperative effector MAML to 
activate RhoA/ROCK expression. RhoA/Rock induces a 
significant increase in the expression of Hes1 and Hes5, 
especially Hes1, which in turn inhibits the expression 

Fig. 2  AGEs attenuate osteogenic differentiation ability of ADSCs by inhibiting Wnt/β-catenin pathway (Zhang et al., 2018; Li et al., 2020). In ADSCs, 
Wnt ligands interact with Frizzled and activate the Wnt signaling pathway, while AGEs inhibit the Wnt/β-catenin signaling pathway, which leads 
to an increase in phosphorylated β-catenin expression. β-catenin translocates into the nucleus and binds to TCF/LEF, leading to a decrease in LEF 
expression and inducing a decrease in OPN and RUNX2 expression
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of differentiation factors such as Ascl1 and Neurog2, 
ultimately leading to a decrease in the ability of NSCs 
to differentiate into neurons and promote the differen-
tiation into astrocytes (Fig. 3).

It has been confirmed that Notch1-mediated path-
ways are involved in hippocampal neurogenesis under 
both physiological [104] and pathological conditions 
[105]. The Notch signaling pathway has an important 

Fig. 3  AGEs attenuated differentiation of NSCs into neurons and promoted differentiation into astrocytes by up-regulating Notch-Hes1 signaling 
(Guo et al., 2014). In NSCs, AGEs up-regulated Notch expression, and Notch signaling was activated by ligands that bind to Notch receptors, thereby 
triggering the release of the receptor intracellular domain (NICD), which then translocates to the nucleus and cooperates with the DNA-binding 
protein RBPJ and the transcriptional cooperative effector MAML to activate RhoA/ROCK expression. RhoA/Rock induces a significant increase in the 
expression of Hes1 and Hes5, especially Hes1, which in turn inhibits the expression of differentiation factors such as Ascl1 and Neurog2, ultimately 
leading to a decrease in the ability of NSCs to differentiate into neurons and promote the differentiation into astrocytes
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regulatory role during embryonic development and 
acquired growth and development. Moreover, in mam-
mals, the Notch signaling pathway has four Notch 
receptors, such as Notch1, and five Notch ligands, such 
as Jagged1 [106]. After the receptor binds to the ligand 
on the membrane, it is cleaved by gamma-secretase to 
release the Notch intracellular domain (NICD) into the 
nucleus and form a transcriptional activation complex 
after binding to the corresponding transcription factors, 
thereby regulating the expression of downstream target 
genes such as hairy division-related enhancers, includ-
ing the Hes1 gene [107, 108]. In addition, this pathway 
is required to maintain and expand the neural stem cell 
repertoire [109], and in regulating neural stem cell dif-
ferentiation, it inhibits neural stem cell differentiation 
into neurons and promotes differentiation into glial cells 
[110, 111]. In sum, the Notch-Hes1 pathway is an impor-
tant regulatory mechanism through which AGEs inhibit 
neurogenesis and promote astrocyte differentiation, pro-
viding potential therapeutic targets for hyperglycemia-
related cognitive deficits.

Bao et  al. [44] found that the expression level of His-
tone deacetylase 3 (HDAC3) was up-regulated in cul-
tured NSCs after AGEs induction. AGEs inhibited 
neuronal differentiation and reduced neuronal regenera-
tion in NSCs, and down-regulation of HDAC3 expression 
partially reduced the inhibitory effect of AGEs on neural 
stem cell differentiation. HDAC3 is one of the four mem-
bers of human class I HDACs that has an important role 
in the proliferation and differentiation of neural stem 
cells [112]. HDAC inhibitors can induce neuron-directed 
differentiation (NPs) into neurons by directly up-regu-
lating the expression of neuron-specific genes (NeuroD, 
Ngn1, and Math1) [113, 114] or exerting a regulatory role 
by activating the Notch/Hes signaling pathway [115]. In a 
study of differentiation of mouse NSCs, down-regulation 
of HDAC3 expression increased neuronal differentiation 
of NSCs [116], which is consistent with Bao’s findings 
[44]. To sum up, the above data suggest that AGEs inhibit 
the neuronal differentiation of NSCs by up-regulating 
the expression of HDAC3, while its potential molecular 
mechanism remains unclear. Future studies should focus 
on how HDAC3 regulates the differentiation of NSCs, 
and find key genes regulated by HDAC3 to explore the 
route for directionally inducing stem cells to differentiate 
into specific cells.

Mechanisms of AGEs affecting EPCs differentiation
Wang et al. [48] showed that AGEs/RAGE promotes oste-
ogenic differentiation of rat bone marrow EPCs through 
the MAPK signaling pathway. Mitogen-activated protein 
kinases (MAPK) signaling pathway, a group of mitogen-
activated protein kinases that extracellular stimuli can 

activate, is an important carrier protein that transmits 
stimuli on the cell surface to the nucleus, including three 
kinases, including p38 mitogen-activated protein kinases 
(p38 MAPK), extracellular regulated protein kinases1/2 
(ERK1/2), and c-Jun amino-terminal kinase (JNK), which 
are important components of intracellular signaling path-
way transduction involved in a series of cell activities 
such as regulating cell proliferation, apoptosis, differen-
tiation, and survival as well as functional synchroniza-
tion between cells [117]. Notably, MAPK has a role in 
differentiating BMSCs [118], and osteoblast-specific gene 
expression is regulated by the MAPK pathway [119, 120]. 
In addition, the MAPK pathway activates osteopontin 
expression further to down-regulate osteogenesis and 
mineralization formation [121]. In the MAPK signaling 
pathway, the p38 pathway has an important role in cells’ 
growth, survival, and differentiation, and regulation of 
p38 can promote the osteogenic differentiation of BMSCs 
[122]. Moreover, the ERK pathway, as the most classical 
pathway, mainly regulates the initial proliferation and dif-
ferentiation of cells and plays an important role in osteo-
blasts [123], while the JNK pathway affects the activity 
of osteoblasts [124]. In summary, the MAPK signaling 
pathway has an important role in stem cell differentiation 
and is also an important regulatory mechanism through 
which AGEs affect the decrease in osteogenic differentia-
tion of endothelial cells.

Strategies to improve the differentiation capacity 
of primary stem cells by solving the problem 
of AGEs
The detrimental effects of AGEs on the differentiation 
of primary stem cells are often overlooked. Therefore, 
effective interventions are essential to promote stem cell 
differentiation in favorable directions. Combined with 
previous studies, we found that interventions tend to rely 
on blocking pathways in which AGEs act to reverse the 
detrimental effects of AGEs on stem cell differentiation; 
related mechanisms mainly include AGE/RAGE [24, 37, 
38] and Wnt/β-catenin signaling pathways [33, 35, 38].

Blocking AGE/RAGE interaction is an effective strat-
egy to reverse the adverse effects of AGEs on primary 
stem cells [31, 32]. Numerous studies have shown that 
AGE/RAGE interaction induces osteoblast apoptosis, 
reduces bone mass, and promotes osteoporosis in dia-
betic patients [125–127]. Zhang et al. [38] reported that 
FPS-ZM1, a RAGE inhibitor, could rescue the negative 
impact of AGEs on the osteogenic potential of ADSCs. 
Also, the authors found that FPS-ZM1 treatment 
resulted in decreased RAGE protein and mRNA. Twenty-
one days later, the experimental results confirmed that 
alizarin red-S staining was significantly increased in 
PDLSCs treated with FPS-ZM1, while both OPN and 
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Runx2 mRNA levels were increased. In previous stud-
ies, chondrooligomeric matrix protein angiopoietin 1 
(COMP-Ang1) was demonstrated to promote osteoblast 
differentiation and bone formation [128–130]. Kim et al. 
[24] further confirmed this idea. COMP-Ang1 is thought 
to promote the enhancement of the osteogenic differenti-
ation ability of BMSCs by affecting the p38/MAPK path-
way and attenuating the expression of RAGE. Western 
blot (WB) results showed that COMP-Ang 1 significantly 
decreased the increase in RAGE expression induced by 
AGE treatment, and these results suggest that COMP-
Ang1 may reverse the adverse effects of AGEs on BMSCs 
differentiation in part by decreasing the expression of 
RAGE; Wang et  al. [37] found that periostin attenuated 
AGE-induced osteogenic inhibition of periodontal liga-
ment stem cells by decreasing RAGE levels.

Abnormal changes in the Wnt signaling pathway 
are closely associated with bone metabolism [131, 
132]. Some studies have shown that activation of the 
Wnt/β-catenin pathway promotes osteogenic differen-
tiation of BMSCs, and treatment with high concentra-
tions of WNT3a inhibits osteogenic differentiation of 
BMSCs [133–135]. Dickkopf-1 (DKK 1) can reverse the 
adverse effects of AGEs on PDLSCs through the medi-
ated canonical Wnt/β-catenin pathway [33]. Also, DKK 
1 can increase RUNX2 expression by inhibiting active 
β-catenin in PDLSC. Furthermore, β-catenin knockdown 
promotes osteogenic differentiation of PDLSC. Zhang 
et  al. [35] found that AGEs activate the canonical Wnt/
β-catenin signaling pathway and promote the nuclear 
translocation of β-catenin, while berberine partially res-
cues the AGEs-induced reduction in osteogenic potential 
of PDLSCs by inhibiting the canonical Wnt/β-catenin 
pathway. In addition, FPS-ZM1 has an important role in 
attenuating high glucose-induced BMSC inflammation 
[136]. Zhang et al. [38] reported that FPS-ZM1, a RAGE 
inhibitor, up-regulated the osteogenic potential of ASCs 
by partially regulating Wnt signaling.

At the same time, other studies have also provided 
strategies to reduce the adverse effects of AGEs on stem 
cells; however, these strategies are relatively independ-
ent. Wang et al. [34] found that GLP-1 may attenuate/
inhibit the effect of AGEs in hPDLSC by inhibiting 
PKCβ2 phosphorylation, resulting in the increase in 
osteogenic genes and the enhancement of cell miner-
alization ability. GLP-1 (glucagon-like peptide-1), a 
30/31-amino acid hormone, is an important modula-
tor of bone growth and remodeling [23]. In addition, 
GLP-1 is important in reducing insulin resistance and 
promoting insulin secretion (139). Previous studies 
have found that GLP-1 receptor agonists facilitate the 
increase in bone mass and osteogenesis (140) and are 

effective in preventing the development of osteoporo-
sis. It is believed that further research and application 
of GLP-1 in the prevention and treatment of diabetic 
osteoporosis are expected. Sirt3 has an important role 
in maintaining mitochondrial homeostasis, cellular 
energy supply, and biosynthesis, while cellular homeo-
stasis is important for cellular differentiation [25, 101]. 
Abnormal expression of Sirt3 is closely related to bone 
metabolism disorders, so silencing Sirt3 expression can 
effectively prevent AGEs-induced osteoporosis [25]. 
Other studies [42] have also demonstrated that irisin 
decreases AGE-induced differentiation dysfunction in 
ADSCs by mediating Sirt3 expression. Thus, SIRT3-
mediated intracellular mechanisms could serve as novel 
therapeutic strategies for bone regeneration under dia-
betic conditions in the future. Through the above inter-
ventions, the differentiation ability of stem cells can 
still be improved even if they are affected by AGEs, and 
these methods open up new therapeutic ideas for regu-
lating the differentiation ability of primary stem cells.

Conclusion
This systematic review summarizes the effects of AGEs 
on the differentiation potential of various types of pri-
mary stem cells and how this abnormal differentiation 
of primary stem cells affects the body. AGE/RAGE and 
Wnt/β-catenin signaling pathways are considered impor-
tant regulatory mechanisms through which AGEs affect 
the differentiation ability of primary stem cells. In the 
future, more effective approaches are needed to address 
the negative impact of AGEs on the differentiation prop-
erties of primary stem cells.
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