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Abstract 

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons 
in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies 
have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synu-
clein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response 
by activating microglia which can further activate the dopaminergic neuron’s neuroimmune response mediated by 
reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation 
processes are involved in the process of PD and further research on the neuroimmune response mechanism may 
open new methods for its prevention and therapy. While current therapeutic regimens are still focused on control-
ling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process 
of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based 
on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of 
disease-modifying therapy with multiple targets.
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Introduction
Parkinson’s disease (PD) is a neurodegenerative dis-
ease characterized by the loss of dopaminergic neu-
rons in the substantia nigra [1, 2]. The main clinical 
manifestations are quiescent tremors, myotonia, tardi-
ness, and abnormal postural gait [3, 4]. Abnormalities 
of the immune system are also considered an essential 
component of PD susceptibility and progression, and 
this area of research has received increasing attention 
over the past decade. PD is characterized by the death 
of dopaminergic neurons containing Lewy bodies (LB) 
composed mainly of alpha-synuclein (α-Syn) in the 
substantia nigra (SN), which provide the final diagnos-
tic and pathological features for postmortem examina-
tions [5, 6]. The α-Syn protein is a small acidic synaptic 
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protein made up of 140 amino acids with a tendency 
to misfold and aggregate [7]. During the course of the 
disease, the major constituent of LB is misfolded α-Syn, 
which spreads to different brain regions in a prion-like 
fashion [8]. Microglia are the first immune defense sys-
tem of the human brain and one of the main cell types 
involved in the inflammatory response of the central 
nervous system [9, 10]. The misfolded α-Syn protein 
can bind to and activate microglial cells through recep-
tors on the surface of microglial cells, leading to a series 
of persistent inflammatory responses [11, 12].

Due to the lack of understanding of the cause of PD, 
symptomatic clinical therapy has traditionally focused 
on using medicines like levodopa and brain surgery. 
Besides the adverse effects associated with using long-
term oral levodopa, drug resistance is the critical rea-
son that renders the treatment ineffective. While they 
ameliorate patients’ symptoms to some extent, surger-
ies like neuronuclear destruction and deep brain stimu-
lation can cause irreversible neurological damage [13, 
14]. In recent years, some vaccines and antibody for-
mulations targeting α-Syn by active and passive immu-
nization have been developed according to the main 
pathological markers of PD, and preliminary efficacy 
and safety assessments have been achieved [15–17]. 
Nerve repair, replacement, and regeneration have 
become possible with the development of stem cell 
technology and progress has been made in treating PD 
with stem cell transplantation. Mesenchymal stem cells 
(MSCs) are adult stem cells with paracrine, immune 
regulation, and multidirectional differentiation poten-
tial [18–20]. It was previously believed that the main 
pathogenic mechanism of PD was the loss of dopamin-
ergic neurons and most researchers considered that 
the therapeutic effect of MSCs on PD was attributable 
to their cell replacement ability [21, 22]. The research 
focus of MSCs has shifted from cell replacement to 
multitarget therapy such as paracrine and immune 
regulation [23, 24]. The results of the studies also show 
that MSCs can accelerate the clearance and degradation 
of α-Syn through multitarget-modifying, such as modu-
lating microglia activation, autophagic pathway, endo-
cytosis, and protease secretion [25–28]. Research in 
the emerging field of PD immunomodulation provides 
an opportunity to identify new therapeutic targets and 
strategies to attenuate or reverse neurodegenerative 
changes. This review provides a concise overview of the 
development of neuroimmune responses and immune 
regulations in PD vaccine and antibody preparations 
targeting α-Syn through active and passive immuni-
zation, and the latest theoretical research and efficacy 
evaluation results of MSCs for the treatment of PD 
through multitarget disease modifications.

The mechanism of the neuroimmune response 
in PD
The α‑Syn prion‑like spreading
The aggregation of misfolded proteins in the central nerv-
ous system is a crucial hallmark of several age-related 
neurodegenerative diseases, including PD, Alzheimer’s 
disease, and amyotrophic lateral sclerosis [29]. These 
diseases share key biochemical and biophysical charac-
teristics with prion diseases. PD patients are believed to 
have a neuropathological basis denoted by the presence 
of LBs, which mostly comprise α-Syn inclusions. Patho-
logical aggregation of α-Syn and its propagation through 
synaptic coupling are increasingly recognized as the basis 
for the pathophysiological progression of PD and related 
synuclein diseases [29]. Although the precise molecular 
mechanisms responsible for pathological accumulation 
and diffusion of α-Syn in the central nervous system are 
unclear, there is increasing evidence that misfolding and/
or neuronal internalization of α-Syn promotes conforma-
tional template formation of endogenous α-Syn in mono-
cytes by mechanisms similar to prion formation [30]. 
Microglia are macrophage-like populations of the cen-
tral nervous system, which remain quiescent until injury 
or infection activates the cells to perform inflammatory 
functions and antigen-presenting cell (APC) functions 
[31]. The α-Syn aggregates in the central nervous system 
and can trigger a neuroinflammatory response by activat-
ing microglia, which can further activate the dopaminer-
gic neuron neuroimmune response mediated by reactive 
T cells through antigen presentation [4, 31, 32].

Innate and adaptive immunity
There are innate and adaptive parts of the immune sys-
tem that work together to fight infection; however, 
when the immune system is maladjusted, the immune 
response can be a significant trigger of the disease.  The 
innate immune system is the body’s first line of defense 
against the invasion of pathogens and consists of vari-
ous cells that perform functions such as phagocytosis 
and antigen presentation. Due to the blood–brain bar-
rier (BBB), the human brain has long been considered an 
immune-privileged organ. Prior research on the immune 
response of neurodegenerative diseases mainly focused 
on the innate immune system including dendritic cells, 
macrophages, and microglia, which can be activated 
by recognizing pathogen-associated molecular pat-
terns and pattern-recognition receptors of endogenous 
damage-associated molecular patterns (such as α-Syn) 
[33–35]. The adaptive immune system of B and T lym-
phocytes produces a highly specific, targeted response 
to a wide variety of intracellular and extracellular infec-
tions [36].  CD4 + or CD8 + T cells are naive until their 
T cell receptors (TCRs) recognize the specific antigen 
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presented by antigen-presenting cells via major histo-
compatibility complex (MHC) molecules [37]. In general, 
endogenous antigens are presented to CD8 + T cells by 
MHC-I, while exogenous resistance components are pre-
sented to CD4 + T cells by MHC-II [38]. All cells in the 
human body express MHC-I and can activate CD8 + T 
cells, while only specialized antigen-presenting cells 
including dendritic cells, macrophages, and microglia 
express MHC-II and have the ability to activate CD4 + T 
cells [38]. Once activated in secondary lymphoid organs, 
naive T cells differentiate into effector cells with specific 
functions to adapt to infection. CD8 + T cells can differ-
entiate into cytotoxic T lymphocytes and induce apop-
tosis of infected cells without affecting adjacent healthy 
cells [39].  CD4 + T cells differentiate into helper T cell 
subtypes  (Th1, Th2, and Th17 cells), which can produce 
various cytokines that help B lymphocytes [39].  Once 
activated by their specific antigen, primitive B lympho-
cytes can differentiate into plasma cells with the help of 
T helper cells, which produce antibodies specific to the 
antigen and promote clearance through phagocytosis 
[39].

The recent discovery of meningeal lymphatic ves-
sels has directly overturned the traditional idea of brain 
immune privilege [40, 41]. There is evidence that cen-
tral nervous system antigens can interact with lympho-
cytes and antigen-presenting cells through meningeal 
lymphatic pathways, which suggests that both innate 
and adaptive immune responses may be involved in the 
development of neurodegenerative disease [40–42]. 
Many studies have shown that persistent inflammatory 
response, microglial cell activation, and T cell infiltration 
are common characteristics of PD models and patients, 
and these factors play a vital role in the degeneration of 
dopaminergic neurons [43–45]. Seeking new therapeu-
tic strategies to suppress neuroinflammatory responses 
can prevent or delay the loss of neurons in the SN and 
prevent disease progression. We have delineated an over-
view of the development of the neuroimmune response 
to PD as provided below.

Mechanisms and roles of α‑Syn in microglia cells
PD and brain–gut–microbe axis
The gut flora and other microbes control integral func-
tions of immune cells in the gut, periphery, and brain. 
The presence of intestinal inflammation or gastrointesti-
nal abnormalities such as constipation and diarrhea often 
precedes movement disorders in PD patients for many 
years [31, 46]. According to Braak’s hypothesis, abnor-
mal α-Syn accumulation begins in the gut and spreads 
to the brain through the vagus nerve. It appears early in 
the enteric nervous system, glossopharyngeal nerve, and 
vagus nerve. It is possible that  shaving the vagus nerve 

has a reduced risk of PD (Fig.  1) [47]. The α-Syn trav-
els in the brain in a prion-like fashion between different 
neurons and brain regions. Although there is no doubt 
that the gastrointestinal tract is involved in the occur-
rence and development of PD, there are still limitations 
in the study of PD and the brain-gut-microbe axis. Biopsy 
of the SN does not explain the timing of α-Syn deposi-
tion, systemic autopsy could not explain the dynamic 
process of α-Syn deposition, and animal experiments do 
not perfectly simulate the occurrence and development 
of PD. Even the mechanism of misfolding and deposition 
of α-Syn is not clear in vivo, so it is too early to directly 
implicate misfolding of α-Syn in the gastrointestinal 
tract as the origin of PD. Studies have found that α-Syn 
is expressed presynaptically in the perinuclear area in 
the central nervous system, and there is a dynamic bal-
ance between production and degradation in healthy 
people [48]. The ubiquitin proteasome system (UPS) 
and autophagy–lysosome pathway (ALP) are two criti-
cal intracellular mechanisms for removing misfolded or 
aged proteins, so they have a significant impact on main-
taining α-Syn levels. The UPS selectively degrades intra-
cellular, membrane, misfolded, and damaged proteins 
[49–51]. Parkin and UCHL1, with two genetic mutations 
found in PD, affect the function of the UPS, so α-Syn 
does not degrade effectively and forms Lewy bodies, and 
the ALP pathway is a compensatory degradation mode 
for the damaged UPS [52, 53]. Neuronal cells have only 
a limited ability to remove α-Syn, and misfolding and/
or neuronal internalization of α-Syn promote conforma-
tional template formation of endogenous α-Syn mono-
cytes by mechanisms similar to prion-like spreading [30].

PD and microglial activation
Microglia, as the first line of defense of the immune sys-
tem, similar to macrophages in the central nervous sys-
tem, can respond quickly to invading pathogens, changes 
in the physiological microenvironment, and damage to 
the central nervous system, playing a centric role in the 
central inflammatory response [10, 54, 55]. Acute inflam-
matory reactions mediated by microglia are generally 
thought to benefit neuronal survival via the predominant 
phenotype M2. Nevertheless, the long-term and exces-
sive activation of microglia can result in chronic inflam-
matory events, which unexpectedly exert a detrimental 
influence, as demonstrated in neurodegenerative diseases 
such as PD. When activated by pathological injury in the 
brain, microglial cells can rapidly change their morpho-
logical characteristics, increase their motility and phago-
cytic activity, and secrete cytokines that fight pathogens 
and promote tissue remodeling and repair [54]. Toll-
like receptors (TLR) are a family of pattern-recognition 
receptors that recognize pathogen-related molecular 
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patterns and misfolded proteins [56]. Microglia can rec-
ognize misfolded α-Syn by receptors such as TLR2 and 
TLR4 on the cell surface, so the binding of α-Syn to 
TLR2 and TLR4 can initiate related signaling pathways, 
such as NF-κB and the upregulation of proinflammatory 
cytokines and promote the transformation of anti-inflam-
matory microglial phenotype M2 into the proinflamma-
tory microglial phenotype M1 [57]. The M2 phenotype 
of microglia can secrete anti-inflammatory factors IL-4, 
IL-10, and transforming  growth  factor-β (TGF-β), to 
significantly reduce and/or produce a large number of 
proinflammatory cytokines such as IL-1β, tumor necro-
sis factor-α (TNF-α) and reactive oxygen species (ROS) 
(Fig.  1) [57, 58]. Proinflammatory cytokines and ROS 
secreted by phenotypic M1 microglia further amplify 
neuroinflammatory responses in the brain and exacer-
bate the death of dopaminergic neurons [58].

PD and pyroptosis
Microglia are the main cell mediators of brain inflam-
mation during the inflammatory response. Inflamma-
tory responses mediated by inflammatory cytokines such 
as IL-1β secreted by microglia play an essential role in 

the development and progression of PD [59]. The major 
events that regulate the secretion of IL-1β by microglia 
are the activation of inflammasomes and a programmed 
inflammatory cell death process called pyroptosis [60]. 
Pyroptosis is a new type of programmed cell death 
related to an inflammatory response with similar char-
acteristics but different mechanisms than apoptosis 
[61]. It is not regulated by the apoptosis-related protein 
caspase-3, but rather depends on the regulation of the 
inflammation-related protein caspase-1 [62]. The NLRP3 
inflammasome plays an important role in pyroptosis, 
which is a critical component of the innate immune sys-
tem that mediates caspase-1 activation and the secretion 
of proinflammatory cytokines [63]. Inflammasomes are 
associated with some autoimmune diseases and neurode-
generative diseases such as PD [64]. Activation of NLRP3 
promotes the secretion of inflammatory factors such as 
IL-1β and IL-18 and induces pyroptosis, which enhances 
inflammatory effects by promoting the secretion of 
IL-1β and activation of inflammasomes [64, 65]. There 
is also a close correlation between pyroptosis and α-Syn 
aggregation. The aggregation of α-Syn can be released 
from damaged neurons into the extracellular space to 

Fig. 1  Mechanisms and roles of microglia activated by α-Syn on T cells in PD. Pathologic factors cause abnormal α-Syn accumulation in the 
brain parenchyma (1). Toll-like receptors on microglia can recognize misfolded α-Syn and promote the transformation of non-activated microglia 
into activated microglia and antigen-presenting cells (2). Proinflammatory cytokines and ROS secreted by microglia amplify neuroinflammatory 
responses in the brain and hasten the death of dopaminergic neurons (3). α-Syn aggregation in microglia activates NLRP3 inflammasomes, 
amplifying the inflammatory response and damaging dopaminergic neurons (4). The blood–brain barrier is compromised with age and disease, 
allowing peripheral blood immune components such as T cells to infiltrate the brain parenchyma (5). Activated microglia increase the secretion of 
inflammatory chemokines like RANTES and eotaxin, increasing CD8 + T cell infiltration and the cytotoxic response to dopaminergic neurons (6, 7). T 
lymphocyte-induced dopaminergic neuron death was mediated by the IL-17-IL-17R signaling pathway, which then activated the downstream NF-B 
signaling pathway (8). The images in this figure were downloaded from ProteinLounge.com with permission to use them
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recognize TLR receptors on microglia, which activates 
the NF-κB pathway and promotes the production of 
the IL-1β precursor protein [57, 66]. The aggregation of 
α-Syn in microglia activates NLRP3 inflammasomes and 
induces pyroptosis as a danger signal [67]. Inflamma-
tory cytokines IL-1β and IL-18 secreted outside the cells 
further amplify the inflammatory response and damage 
dopaminergic neurons (Fig. 1).

In summary, the neuroimmune response induced 
by excessive or misfolded α-Syn is likely to be caused 
by microglia-mediated inflammation. The misfolded 
and deposited α-Syn can activate the adaptive immune 
response, which induces the pathological development of 
PD. This novel mechanism may explain the pathogenesis 
of PD and offer a new strategy for treatment.

Mechanisms and roles of microglia on T cells in PD
PD and T cell
In 1988, P L McGeer et  al. identified a unique pattern 
of HLA-DR-positive microglia by double immunostain-
ing for glial fibrillary acidic protein and HLA-DR in PD 
patient samples obtained after death, which indicated 
that the disease might be related to a neuroimmune 
response [68]. Studies have also shown a decrease in the 
number of T cells, including CD4 + and CD8 + T cells 
in the peripheral blood of PD patients, the high expres-
sion of MHC molecules in mononuclear cells, and the 
detection of a large number of activated T cells in the 
cerebrospinal fluid [69–72]. This phenomenon indicated 
that the peripheral immune components might enter the 
central nervous system in PD patients and that the ability 
of peripheral blood T cells to enter the brain may be the 
result of systemic inflammatory responses. Studies have 
shown that the integrity of the BBB in the ventral mid-
brain and deep cortex is damaged due to inflammation 
in PD patients and as a result, T cells can infiltrate into 
the brain (Fig.  1) [70, 73–75]. Studies have also shown 
that the levels of CD4 + and CD8 + T cells in the SN of 
the brain are significantly higher in PD patients than that 
in healthy people [76–78]. It is worth noting that T cells 
are mainly distributed near blood vessels and neuromela-
nin-positive dopaminergic neurons, which suggests that 
T cells are likely to interact with dopaminergic neurons 
through targeted migration [75, 79].

Microglia promote infiltration of CD8 + T cells
Roy et  al. reported marked upregulation of RANTES 
(regulated on activation, normal T-cell expressed and 
secreted) and eotaxin, chemokines that are involved in T 
cell trafficking, in the serum of hemi-Parkinsonian mon-
keys [80]. The infiltration of CD8 + T cells around the 
hemi-Parkinsonian monkey’s parenchyma was signifi-
cantly increased compared to that of the control group, 

which indicated that they were highly likely to migrate 
to the parenchyma by chemotaxis [80]. In addition, they 
discovered that in a 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP) PD mouse model, the expression of 
RANTES and eotaxin was up-regulated in microglia cells 
of brain parenchyma, and confirmed that activation of 
the NF-κB signaling pathway is the most important regu-
latory pathway for inflammation in the upregulation of 
these two chemokines, because this pathway controlled 
the transcription and expression of proinflammatory 
factors such as RANTES and Eotaxin in many cells [81]. 
The NF-κB activation of microglia in the SN has been 
confirmed in MPTP-treated mice and monkeys and PD 
patients, and the role of NF-κB in the adaptive immune 
response of PD brain SN has been investigated [82–84]. 
These results suggest that activation of the NF-κB sign-
aling pathway in microglia under pathological condi-
tions of PD promotes the secretion of inflammatory 
chemokines such as RANTES and eotaxin, increasing 
the infiltration of CD8 + T cells into PD brain SN and the 
cytotoxic response to dopaminergic neurons (Fig. 1).

Microglia regulate CD4 + T cells
In 2017, two studies showed that autoreactive T cells 
could recognize specific α-Syn epitopes in PD patients 
[85, 86]. Researchers observed infiltration of CD4 + Th17 
cells was also observed in an MPTP mouse model and 
that Th17 cells increased the death of dopaminergic 
neurons in MPTP-treated ventral midbrain dopamin-
ergic neuron cultures [87, 88]. In the same study, the 
death of midbrain neurons derived from autologous 
induced pluripotent stem cells in PD patients may be 
closely related to CD4 + Th17 cells secreting IL-17, indi-
cating that in addition to the neuronal susceptibility to 
CD8 + cytotoxic T lymphocytes, CD4 + T cells are also 
involved in the pathological process of PD [88]. The death 
of T lymphocyte-induced dopaminergic neurons was 
found to be mediated through the IL-17-IL-17R signaling 
pathway, which further activated the downstream NF-κB 
signaling pathway associated with cellular inflammatory 
and immune responses (Fig. 1) [88]. Activated microglia 
can be used as antigen-presenting cells (APCs) to pre-
sent autoantigens such as α-Syn by MHC molecules [85]. 
The T cells activated by α-Syn misfolded proteins mainly 
involve CD4 + T cells, which proliferate and release large 
amounts of proinflammatory cytokines, leading to the 
apoptosis of dopaminergic neurons [87]. In addition to 
the activation of T cells by APCs, another clinical study 
of PD also showed that neuroinflammatory conditions 
such as secretion of inflammatory cytokines can trig-
ger the expression of MHC-I molecules on the surface 
of dopaminergic neurons, making them vulnerable to 
attacks by CD8 + T cells, which also strongly supports 
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the participation of the autoimmune response in PD 
patients [85].

In summary, CD4 + /CD8 + T cells expressing α-Syn 
were found in the brains of PD patients, where α-Syn 
could be recognized as an antigen by APCs, such as 
microglia or monocytes. The APCs can present antigens 
to CD4 + and CD8 + T cells, induce their activation, and 
trigger an autoimmune response in the brain, leading to 
the death of dopaminergic neurons.

Mechanisms and roles of T cells on microglial cells 
in PD
T cells regulate the activation of microglia
The regulation of T cells on microglia is also critical in 
the brain pathogenesis of PD patients. Some researchers 
have suggested that T cells are essential for the upregu-
lation of MHC-II molecules in microglia, and this is an 
important process of α-Syn activation of microglia in the 
SN, leading to the loss of dopamine neurons [89–91]. 
David et al. found that α-Syn alone may not be sufficient 
to cause significant death of dopaminergic neurons in the 
SN, while T cells can accelerate the death of dopaminer-
gic neurons by up-regulating the expression of MHC-II 
molecules in microglia [90]. This study found that MHC-
II overexpression in  vivo accelerated α-Syn-induced 
microglial activation, and MHC-II knockout prevented 
α-Syn-induced microglial activation, antigen presenta-
tion, and dopaminergic neuron degeneration. Meena 
et al. evaluated the effect of T cells on the neurodegen-
eration of PD by injecting the adeno-associated virus 
(AAV) encoding human wild-type α-Syn into the SN of 
T-cell-deficient rats [92]. The results showed no signifi-
cant increase in microglial activation in the T-cell deficit 
group, whereas the rats without T-cell deficiency showed 
a significant increase in MHC-II positive microglial acti-
vation and significant loss of dopaminergic neurons. The 
presence of CD4 + and CD8 + T cells in the SN was also 
observed after MHC-II expression in microglia and loss 
of dopaminergic neurons [93]. The MHC is a group of 
cell surface proteins divided into two major classes of I 
and II molecules, that plays a fundamental role in adap-
tive immunity [94, 95]. Under normal conditions, MHC-I 
molecules are involved in endogenous antigen presen-
tation and are commonly expressed in almost all cells, 
while MHC-II molecules are involved in exogenous 
antigen presentation and are mainly expressed by APCs, 
such as monocytes, macrophages, and dendritic cells 
[94]. Genome-wide association studies (GWAS) showed 
that PD was associated with the haplotype of the MHC-
II gene, and the expression level of MHC-II was signifi-
cantly increased in PD samples [96]. In addition, MHC-II 
positive microglia were detected in the SN of PD patients, 
and their expression level increased with the severity of 

the disease [90]. Activated microglia can express MHC-II 
molecules to further activate T cells, which in turn up-
regulate the expression of MHC-II molecules in micro-
glia to accelerate the activation process [91].

Homeostasis of Teffs and Tregs
It  follows  that  T cells play a key role in the neuroim-
mune response of PD, but the regulatory effect of specific 
subtypes of T cells on microglia remains to be further 
explored. The T cells involved in the regulation of micro-
glia in the neuroimmune system are classified as effector 
T cells (Teffs) and regulatory T cells (Tregs) and play a 
crucial role in maintaining neuroimmune homeosta-
sis [97]. The balance of cellular immune function may 
control the rate of disease, and when this balance is dis-
turbed, it can lead to disease. Studies have shown that 
CD4 + Teffs (such as Th1 and Th17) are involved in the 
process of neuron degeneration (such as in PD and MS) 
and maintain and accelerate the proinflammatory M1 
phenotype of microglia by secreting proinflammatory 
phenotypic factors L17, IFN-γ, and granules B (Fig.  2) 
[45, 92, 98]. Similarly, in the MPTP model of PD, infiltrat-
ing T lymphocytes were found near the activated micro-
glia and MHC-II was significantly overexpressed [92]. 
These MHC-II-overexpressed microglia further activated 
T lymphocytes through the antigen presentation process 
enhancing the immune response of Teffs to the neurode-
generative process.

Tregs inhibit the activation of microglia
Tregs are naturally occurring subsets of CD4 + and 
CD25 + T lymphocytes [99]. In contrast to Teffs, anti-
inflammatory phenotypes of cytokines secreted by Tregs 
have been shown to have neuroprotective effects. They 
are a major source of IL10 and TGF-β1 in  vivo and are 
a major regulatory mechanism that controls innate and 
adaptive immune responses, so they have great poten-
tial to induce neuroprotection in PD [100]. Studies have 
shown that Tregs can inhibit microglial activation, pro-
mote neuronal survival in an MPTP-induced PD model, 
and are thought to inhibit the immune response through 
a variety of mechanisms [99, 100]. They also inhibit the 
functional metabolic pathway of Teffs through the release 
of anti-inflammatory factors such as IL-10 and TGF-β1. 
In addition to inhibiting the function and proliferation of 
Teffs, Tregs maintain anti-inflammatory microglia and 
astrocyte phenotypes by releasing IL-4, IL-10, and TGF-β 
(Fig.  2) [101, 102]. It has been shown that the transfer 
of CD4 + CD25 + Tregs to MPTP model mice with PD 
results in dose-dependent neuroprotective effects accom-
panied by inhibition of microglial activation, resulting in 
increased survival of dopaminergic neurons in the sub-
stantia nigra [99]. It has also been shown that Tregs can 
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inhibit the function of M1-type microglia by inhibiting 
the activation of the NF-κB signaling pathway [91].

PD and T cell homeostasis
The disruption of Teff and Treg homeostasis plays a cru-
cial role in the neuroimmune response mechanism of 
PD [91]. In the initial stage of the disease, the damaged 
BBB allows T lymphocytes, including Tregs, to enter the 
brain and Tregs can also play a role in immune regulation 
at this stage. However, with the progression of the dis-
ease, the immunosuppressive properties of Tregs gradu-
ally decrease, which breaks the homeostasis between 
Tregs and Teffs. The Teffs then accelerate the activation 
of microglial cells by secreting various proinflammatory 
factors and further accelerate the occurrence of neurode-
generation (Fig. 2) [92].

Summary of pathological mechanism
Taken together, the major factors that constitute the 
neuroimmune microenvironment of PD include a per-
sistent inflammatory response, activated microglia, a 
balance disorder between Teffs and Tregs, and degenera-
tion of dopaminergic neurons, which leads to the occur-
rence and development of PD (Fig.  3). The α-Syn is the 
main pathological marker of PD. Under normal physi-
ological conditions, there is a dynamic balance between 
the production and degradation of α-Syn in the human 

body, but the dynamic balance is broken and α-Syn is 
misfolded due to the action of various genetically or envi-
ronmentally controlled pathological factors. Besides the 
abnormal α-Syn accumulation in the brain, the abnor-
mal α-Syn accumulation starting in the gut can also be 
transmitted to the brain through the vagus nerve. Dur-
ing the course of the disease, the α-Syn can spread to 
different brain regions in a prion-like fashion. Microglia 
are the first immune defense system of the human brain 
and one of the main cell types involved in the inflamma-
tory response of the central nervous system. Microglia 
can recognize misfolded α-Syn through TLR2 and TLR4 
receptors on the cell surface and further initiate related 
signaling pathways, such as activating the NF-κB signal-
ing pathway and up-regulating the expression of proin-
flammatory cytokines, to promote the transformation of 
anti-inflammatory phenotype M2 into proinflammatory 
phenotype M1. The activation of the NF-κB signaling 
pathway in microglia under pathological conditions of 
PD promotes the secretion of inflammatory chemokines 
such as RANTES and eotaxin, increasing the infiltra-
tion of CD8 + T cells in PD brain SN and the cytotoxic 
response to dopaminergic neurons. In addition, α-Syn 
can be taken up as an antigen by microglia and then acts 
as APCs, which in turn provide antigens to CD4 + and 
CD8 + T cells and cause them to activate and trigger 
an autoimmune response through multiple pathways, 

Fig. 2  Mechanisms and roles of T cells on microglia cells in PD. The damaged BBB allows T lymphocytes, including Tregs, to enter the brain in 
the early stages of the disease, and Tregs can also play a role in immune regulation (left of the illustration). The immunosuppressive properties of 
Tregs gradually decrease as the disease progresses (middle and late stage), breaking the homeostasis between Tregs and Teffs. Teffs, in particular, 
hasten the activation of microglia cells by secreting various proinflammatory factors, which hastens the onset of neurodegeneration (right of the 
illustration). The images in this Figure were downloaded from ProteinLounge.com with permission to use them
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eventually leading to the apoptosis of dopaminergic neu-
rons. The regulation of microglia by T cells invading the 
brain of PD patients is also an important form of patho-
genesis. In the initial stage of the disease, the impaired 
BBB allows T lymphocytes, including Tregs, to enter 
the brain. As the disease progresses, the homeostasis 
between Tregs and Teffs is disrupted, and Teffs accelerate 
the activation process by secreting various pro-inflam-
matory factors to up-regulate the expression of MHC-
II molecules in microglia. Moreover, further activation 
of microglia also increases their effect on T cells, and 
the interaction between the two kinds of cells creates a 
vicious cycle that accelerates mitochondrial dysfunction 
and apoptosis in dopaminergic neurons. Inhibiting auto-
immune responses through external intervention such as 
stem cell therapy and increasing the number of Tregs in 
the brain is likely to become an important strategy for PD 
treatment.

Immunomodulatory therapies targeting α‑Syn for PD
A-Syn is the primary pathological marker of PD and the 
most promising therapeutic target for PD immunother-
apy. Misfolded α-Syn accumulates in microglia and dopa-
minergic neurons, which can activate various immune 
pathways. As a result, targeting α-Syn to prevent intra-
cellular aggregation and propagation is an important 
strategy for the prevention and treatment of Parkinson’s 

disease. The current PD treatment focuses primarily on 
α-Syn clearance and degradation, as well as immunoregu-
lation therapy for autoimmunity.

A‑Syn immunotherapy, both active and passive
Active and passive
A-Syn forms oligomers and fibrils depending on its 
biological properties and the situation. However, it is 
subject to posttranslational modifications such as acety-
lation, phosphorylation, and truncation [103, 104], and 
it also targets related immune mediators primarily via an 
immune pathway to accelerate dopaminergic neurode-
generation [105, 106]. Immunotherapy, including active 
and passive immunity, is based on the principle of specific 
antigen/antibody binding [107, 108]. Active immunity 
is the use of antigens to stimulate the body’s production 
of antibodies rather than directly introducing antibod-
ies from outside the body, which has a high resistance to 
subsequent infection, either through the disease patho-
gen itself or through immunization [109]. Data show that 
naturally occurring anti-α-Syn autoantibodies help with 
α-Syn clearance, reduce protein aggregation, and protect 
neurons [107, 110]. Active immunization against PD has 
been tested in animal models and early clinical trials in a 
large population, and it has proven to be less expensive 
than other treatments [107, 111]. Vaccinations do not 
require frequent injections, which can relieve financial 

Fig. 3  Neuroimmune microenvironment in PD. The neuroimmune microenvironment of PD is composed of several major factors, including 
a persistent inflammatory response (1), activated microglia (2), a balance disorder between Teffs and Tregs (3,4), and dopaminergic 
neurodegeneration (5), all of which contribute to the occurrence and progression of the disease through their interactive regulation. The images in 
this Figure were downloaded from ProteinLounge.com with permission to use them
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and psychological stress on patients. Active immunity is 
more suitable for patients with early Parkinson’s disease 
and high-risk groups because it relies on the use of spe-
cific antigens that can produce inflammatory response 
antibodies [112, 113]. Passive immunity is the specific 
immunity acquired by the body by passively receiving 
antibodies, sensitized lymphocytes, or their products. 
Antitoxin, placental globulin, antibacterial serum, and 
immune modulators are common biological products of 
artificial passive immunity [100, 114]. Passive immuni-
zation is thus appropriate for patients with moderate to 
severe PD.

A‑Syn antibody preparations and clinical trials
Several studies have shown that an α-Syn transgenic 
mouse line, 83Vle/J, expressing human A53T vari-
ant α-Syn (the full-length, 140 amino acid isoform), 
can produce high-affinity antibodies and reduce α-Syn 
accumulation in dopaminergic neurons, thereby reduc-
ing neuronal damage [115, 116]. Furthermore, DNA 
vaccines can induce active immunity in the brain by 
inducing the production of antibodies that recognize 
misfolded α-Syn [117]. These peptide fragments, as 
well as the full-length recombinant α-Syn, were used to 
sensitize mouse dendritic cells, which were then intra-
venously delivered into transgenic mice expressing the 
human A53T variant of α-Syn, which could effectively 
produce specific antibodies and improve neuromotor 
function in  vitro [116, 118]. Two short peptide vac-
cines (PD01A and PD03A) are being tested in clini-
cal trials to assess the efficacy, tolerability, and safety 
of active immunization in Parkinson’s disease patients 
(Table  1) [15, 16, 119]. Traditional antibodies, such as 
monoclonal (mAb) and polyclonal (pAb), have been at 
the forefront of biomedical research for diagnostic and 
analytical therapies against cancer, immune diseases, 

and infectious diseases [120]. They do, however, have 
limitations, such as stability over narrow pH and tem-
perature ranges and the potential inability to access 
specific active sites on proteins [120]. Single-stranded 
antibodies have superior tissue penetration, the abil-
ity to cross the blood–brain barrier, the unique abil-
ity to bind to small cavities or clefts, high affinity and 
specificity, and high stability at extreme temperatures 
and pH [120, 121]. These advantages of single-stranded 
antibodies can improve their therapeutic effect and 
be used to treat PD [121]. A clinical trial of antibody 
preparation MEDI1341 was conducted to reduce extra-
cellular α-Syn levels in healthy volunteers, and the 
study evaluated safety and tolerability (Table  1) [122]. 
MEDI1341 rapidly enters the central nervous system 
after intravenous injection into rats and cynomol-
gus monkeys, lowering free extracellular α-Syn levels 
in the interstitial fluid (ISF) and cerebrospinal fluid 
(CSF) compartments [123]. AstraZeneca and Takeda 
are collaborating to develop the antibody MEDI1341, 
which reportedly retains reduced immune effector 
function [122]. Clinical trials of BIIB054 and PRX002, 
which directly target the amino terminus of α-Syn and 
are highly selective for the aggregation form of α-Syn 
(Table  1), have also been conducted [17, 124, 125]. 
BIIB054 binds to α-Syn in PD and DLB tissue sections 
and extracts but not in unaffected brains and prevents 
dopamine transporter reduction induced by injection 
of preformed α-Syn fibrils into mouse brains [122]. This 
study found no evidence of clinical efficacy. Each of the 
three infusions resulted in significant reductions in free 
serum α-Syn levels within 1  h of PRX002 administra-
tion. PRX002 levels in serum and CSF increased in a 
dose-dependent manner [125]. These studies looked at 
the efficacy, safety, tolerability, pharmacokinetics, and 
pharmacodynamics of PD patients.

Table 1  Clinical trials of immunotherapy against α-Syn in PD

Compound Trial ID/phase Mechanism Test purpose

Active immunotherapy

PD01A NCT01568099/I A short epitope peptide that induces the production of 
antibodies with a high affinity to α-Syn

Evaluation of efficacy, tolerability, and safety of active 
immunization in PD patientsNCT02270489/I

PD03A NCT02267434/I A vaccine that targets α-Syn and induced antibodies differ 
in specificity to PD01ANCT02270489/I

Passive immunotherapy

MEDI1341 NCT03272165/I Antibody preparation which has been conducted to reduce 
extracellular α-Syn levels

Evaluation of safety and tolerability on healthy volunteers

BIIB054 NCT02459886/I Antibody preparation which directly targets the amino 
terminus of α-Syn and is highly selective for the aggregation 
form of α-Syn

Assessment of the safety, tolerability, pharmacokinetics, 
and pharmacodynamics of PD patientsPRX002 NCT02157714/I
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MSCs modulate α‑Syn in PD: a multitarget 
disease‑modifying therapies strategy
MSCs and neuroinflammatory disease
MSCs, as adult stem cells capable of paracrine, immune 
regulation, and multidirectional differentiation, have sev-
eral advantages over embryonic stem cells, including a 
lower immune response, a lower risk of tumor formation, 
and no ethical concerns [126–129]. More research has 
been done on the relationship between MSCs and inflam-
matory processes since the discovery of their immu-
nomodulatory properties. There is evidence that MSCs 
can migrate to the site of an inflammatory response via 
chemotaxis and have an immunomodulatory effect on 
specific chemotaxis recruitment responses, thereby 
reducing the inflammatory response in the damaged area 
and promoting tissue repair [130–132]. MSC-based cell 
therapies have been used to treat a variety of autoim-
mune-related neurodegenerative and neuroinflammatory 
diseases, including PD, Alzheimer’s disease, multiple sys-
tem atrophy, and amyotrophic lateral sclerosis [133–136]. 
The main pathogenic mechanism in PD is thought to be 
the loss of dopaminergic neurons, and most researchers 
believe that the therapeutic effect is due to MSCs’ cell 
replacement ability. MSC research has shifted in recent 
years from cell replacement to multitarget therapy such 
as paracrine and immune regulation (Table 2).

Toxin‑based animal models
PD is a multifactorial disease caused by genetic and envi-
ronmental factors. Toxin-based animal models (such as 
6-OHDA and MPTP) have primarily aided in the devel-
opment of treatments for motor symptoms. Toxin-based 
models have advantages in that the symptoms are clear, 
the experiment period is short, they can be applied 
to a wide range of animal species, they show prodro-
mal symptoms, and they will be used in future models 
[137]. According to Roy A et al., T-cell migration-related 
cytokines RANTES and eotaxin were up-regulated in 
microglia in the brain parenchyma of MPTP monkey 
models, while CD8 + T cell infiltration around the deep 
brain parenchyma of PD monkeys was significantly 
increased [80]. This study also showed that MPTP animal 
models could simulate some pathological processes in 
PD patients.

Transgenic animal models
The α-Syn gene, the causative gene of familial PD, is one 
of the most important genetic factors in PD patients, and 
many α-Syn transgenic animal models have been created, 
contributing to the elucidation of PD pathology [137, 
138]. The α-Syn transgenic model can replicate α-Syn 
aggregation and show slowly progressive changes, similar 

to human PD. Furthermore, injected α-Syn fibrils have 
been shown in mouse experiments to spread throughout 
the brain [139]. The propagation model created by exog-
enously administered α-Syn fibrils is still developing, but 
obtaining a phenotype is relatively simple, and the exper-
iment takes less time than the transgenic model [139, 
140]. The fact that this model can be applied to primates 
and other animals is a huge plus.

According to one study, exosomes isolated from MSCs 
can significantly improve the motor, learning, and mem-
ory abilities of the progressive in α-Syn A53T trans-
genic mice model, and the mechanism may be related 
to changes in phospholipid composition and cholesterol 
metabolism in hippocampal neurons [141]. Currently, 
the use of MSCs in transgenic mouse models is relatively 
rare, with most studies focusing on toxin-based models. 
As a result, we will investigate the role and mechanism of 
MSC intervention in MPTP toxicity and α-Syn-induced 
cell models.

Modulating microglia activation
Microglia cells are the most active immune cells in 
brain tissue, and their mediated inflammatory response 
is linked to the pathogenesis of many immune-related 
nervous system diseases. Changes in the extracellu-
lar microenvironment can cause microglia to polarize 
into two cell phenotypes, M1 and M2. Misfolded α-Syn, 
though toxic to dopaminergic neurons, can activate 
microglia cells, causing them to polarize to the M1 phe-
notype, amplifying the neuroinflammatory response and 
secreting numerous proinflammatory factors [144, 145]. 
Because the phenotype mediated by α-Syn is involved in 
the pathogenesis of PD, external intervention to promote 
the polarization of microglia toward the M2 phenotype 
has important clinical value in the neuroinflammatory 
response [146, 147]. Lee et  al. demonstrated that MSCs 
could induce M2 phenotype microglia cell polarization, 
significantly improve phagocytic clearance of α-Syn in 
microglial cells, and have a significant neuroprotective 
effect in α-Syn-rich cells and animal models [26, 28, 146]. 
In the same study, the activated recombinant α-Syn pro-
tein was injected unilaterally into the right neocortex 
of mice. The findings confirmed that MSCs could pro-
mote the polarization of M2 phenotype microglia and 
reduce α-Syn aggregation in cortical areas by activating 
IL-4-related STAT signaling pathways in microglia cells 
and α-Syn inoculated IL-4 KO mice [146]. Bidirectional 
studies using siIL-4 MSCs in α-Syn mice and MSCs in 
IL-4R-KO mice confirmed that they could counteract 
α-Syn phagocytosis of microglia cells by promoting M1 
polarization [146]. They discovered that cerebrospinal 
fluid (CSF) from MSC-transplanted multiple system 
atrophy patients induced microglia M2 polarization and 
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had a prosurvival effect in α-Syn-treated BV2 cells via 
enhanced clearance of α-Syn [146]. Another study found 
that MSCs could regulate microglial cell activation and 
reduce the inflammatory cascade reaction of activated 
microglia cells via TNF- stimulated gene/protein 6 (TSG-
6), implying that MSCs and TSG-6 could be effective 
ways to treat neuroinflammatory diseases associated with 
microglial cell activation [148].

Enhancing autophagy
Autophagy is the primary pathway for the degradation 
of harmful aggregation proteins in a variety of neuro-
degenerative diseases. Autophagy has been shown to 
play an important role in the pathogenesis of PD, and 
autophagy disorders can result in abnormal α-Syn aggre-
gation, which can be cleared by increased autophagy 
[27, 149]. This suggests that autophagy regulation could 
be used to treat PD. The PD models exhibited increased 
autophagy and neuronal apoptosis, owing to the failure of 
most autophagosomes to fuse with lysosomes as a result 
of α-Syn misfolding and the resulting neuroinflammatory 
response [150–153]. MSCs have been shown in studies 

to significantly increase autophagosome formation and 
reduce α-Syn aggregation after intervention in PD mod-
els, and the neuroprotective effect of MSCs is largely 
dependent on lysosomal activity mediated by autophago-
some formation [154, 155]. Park et al. used human bone 
marrow-derived MSCs to interfere with an MPTP-
treated neuron cell model, which significantly reduced 
neuron apoptosis and abnormal α-Syn expression while 
increasing the number of LC3-positive autophagosomes 
(Fig. 4) [154]. MSCs derived from human bone marrow 
were injected into the tail vein of MPTP-treated PD ani-
mal models, which can also significantly enhance the 
maturation of late autophagic vacuoles and fuse with lys-
osomes to form autophagosomes [154]. These findings 
suggest that MSC therapy could significantly improve 
autophagosome formation and α-Syn clearance in PD 
models.

Mediating endocytosis
Extracellular α-Syn aggregates’ prion-like behav-
ior is important in the pathogenesis and progres-
sion of α-Synucleinopathies [156–158]. Although the 

Fig. 4  Mechanisms of MSC multitarget immunotherapy in PD. Through their paracrine effect, MSCs secrete a large number of immunomodulatory 
cytokines. MSCs can promote M2 phenotype microglia polarization and reduce α-Syn aggregation in cortical areas by activating IL-4-related 
STAT signaling pathways (1). MSCs can significantly increase the formation of LC3-positive autophagosomes and decrease α-Syn aggregation (2) 
by activating the autophagy signaling pathway. MSCs inhibit extracellular α-Syn CME by regulating clathrin and EEA1, as well as the interaction 
between α-Syn and nNMDA receptors by releasing Gal-1, which completely binds NMDA receptors with α-Syn (3, 4). MSCs can eliminate abnormal 
α-Syn expression and accelerate its degradation via secretory small molecule cleavage, such as MMP-2 (5). We hypothesized that hypoxia 
preconditioning MSCs would prevent pyroptosis in microglia cells by down-regulating the NLRP3 inflammasome via the HIF-1 signaling pathway 
(6). MSCs can significantly induce M2 phenotype microglia cell polarization and have a significant dopaminergic neuronal protective effect 
by attenuating inflammation amplification (7). MSCs can significantly induce M2 phenotype microglia cell polarization and have a significant 
dopaminergic neuronal protective effect by attenuating the antigen presentation process and T cell chemokine secretion (8)
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precise mechanism of α-Syn intercellular transmission 
is unknown, receptor-mediated endocytosis is likely to 
be an important route for α-Syn into cells. MSCs have 
been shown to inhibit extracellular α-Syn clathrin-medi-
ated endocytosis (CME) by modulating interactions with 
n-methyl-d-aspartic acid (NMDA) receptors [26]. MSCs 
can inhibit extracellular α-Syn CME by regulating clath-
rin and early endoplasmic reticulum antigen 1 (EEA1), 
as well as the interaction between α-Syn and the NMDA 
receptor in α-Syn aggregated cells (Fig.  4) [26]. MSCs 
were also found to reduce α-Syn endocytosis by releasing 
galectin-1 (Gal-1) to competitively bind NMDA recep-
tors with α-Syn [26].

Protease secretion
Because protease can cut abnormal α-Syn aggregates, 
using an exogenous protease’s cutting function may be 
able to clear abnormal α-Syn aggregation in PD. MSCs 
have been shown to secrete molecular substances into 
the nervous system microenvironment to promote pro-
teolysis. MMP-2 is a soluble factor derived from MSCs 
that can participate in the hydrolysis of α-Syn proteins 
[28, 159]. MMP-2 molecules can disrupt newly formed 
amyloid deposition, reducing α-Syn insolubility and oli-
gomeric levels significantly (Fig. 4) [28]. MSCs can thus 
eliminate abnormal α-Syn expression and accelerate its 
degradation via their small secretory molecule.

The hypothesis of inhibiting pyroptosis
MSC therapy for PD associated with microglia pyrop-
tosis has not yet been studied. In  vitro, hypoxia-pre-
conditioned olfactory mucosal mesenchymal stem cells 
(OM-MSC) inhibit pyroptotic death of microglial cells 
in response to cerebral ischemia/reperfusion injury by 
activating hypoxia-inducible factor-1 (HIF-1) [160]. The 
activation of the NLRP3 inflammasome in BV2 micro-
glia cells exposed to ischemia/reperfusion injury was 
investigated in this study, and it was discovered that the 
expression of ASC, caspase 1, caspase 8, and GSDMD 
proteins was increased after ischemia/reperfusion injury. 
Furthermore, IL-1 and 1L-18 levels increased following 
injury. It was also shown that co-culture with hypoxia 
preconditioned OM-MSCs significantly reduced pyrop-
totic cell death in microglia following cerebral ischemia/
reperfusion injury compared to normal OM-MSCs. In 
addition, α-Syn aggregation in microglia activates NLRP3 
inflammasomes and induces pyroptosis as a danger sig-
nal, causing microglia to switch from anti-inflammatory 
phenotype M2 to pro-inflammatory phenotype M1 [67]. 
IL-1 and IL-18 as two inflammatory cytokines produced 
extracellularly increase the inflammatory response and 
destroy dopaminergic neurons. Furthermore, hypoxia-
preconditioned OM-MSCs dramatically reduce IL-1 and 

IL-18 production in microglia, indicating that OM-MSCs 
may prevent pyroptosis in microglia. It was hypoth-
esized that hypoxia preconditioning of MSCs may pre-
vent pyroptosis of microglia cells in neurodegenerative 
diseases associated with neuroinflammatory responses, 
such as PD (Fig. 4).

Summary of multitarget disease‑modifying therapies
Taken together, dopaminergic neuron degeneration is 
caused by the interaction of α-Syn, microglia, and T cells 
during the course of PD. As a result, if one or more of 
these links can be targeted to slow disease progression, 
it will be an important strategy for PD prevention and 
treatment. In summary, the use of MSCs can acceler-
ate the clearance and degradation of α-Syn via multitar-
get disease-modifying therapies mechanisms such as 
modulating microglia activation, enhancing autophagy, 
mediating endocytosis, protease secretion, and pos-
sibly preventing pyroptosis of microglia. Furthermore, 
one study found that MSCs inhibit the differentiation of 
CD4 + T cells into Th17 cells isolated from PD patients 
and that this suppressive effect was primarily associ-
ated with an increase in functional CD25 + Foxp3 + Treg 
cells and IL-10 secretion [161]. Furthermore, studies 
have shown that MSCs can be induced to differentiate 
into dopaminergic neurons and improve neural func-
tion by replacing lost neurons in the brain of people with 
PD. MSCs as cell-based therapy candidates in PD have a 
broader scope than simple cell type replacement because 
they can be used as a cellular system for the detoxifica-
tion of reactive oxygen species (ROS) as well as a supplier 
of neurotrophic factors via paracrine effect to protect the 
mitochondrial function of dopaminergic neurons [162]. 
Based on progress in understanding MSCs’ multitar-
get disease-modifying therapies effect, we believe MSCs 
could be used as an important strategy for therapy or to 
prevent the onset of PD in at-risk individuals, as well as 
to slow the progression of the disease.

Major challenges of MSC‑based cell therapy
Allogeneic and autologous MSCs
Although MSCs have tremendous potential and opportu-
nities in the treatment of immune diseases such as PD, 
their clinical application faces numerous challenges. The 
differences in cell sources and amplification schemes, as 
well as the decreased survival rate, paracrine effect, and 
homing ability caused by the local adverse microenviron-
ment following cell transplantation, limit MSCs’ thera-
peutic effect. MSCs derived from allogenic sources have 
received the most attention and application over the last 
few decades. Despite numerous reports describing MSC 
immune privilege or low immunogenicity, other studies 
have shown that allogeneic MSCs enhance inflammation 
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and are subsequently cleared in response to rejection 
by donor-specific antibody levels, suggesting that this 
upregulation may be the reason for allogeneic MSC treat-
ment failure [163, 164]. Interestingly, one study found 
that the immunogenicity of MSCs depended on whether 
they differentiated in  vivo, with undifferentiated MSCs 
having low immunogenicity, while MSCs after differen-
tiation had significantly higher immunogenicity [165]. 
These factors also reduce MSCs’ therapeutic effect to 
some extent [163, 165]. Although allogeneic MSCs may 
be immunogenic, their potent immunomodulatory 
effects have opened up new avenues for immunomodula-
tory inflammatory diseases and attracted researchers in 
related fields. Researchers discovered in 2010 that OM-
MSCs isolated from human nasal mucosa were a better 
source of MSCs [166]. Since 2014, our research team has 
been studying autologous human OM-MSCs and has 
developed a complete culture system. These cells have a 
higher rate of proliferation and a shorter passage time. 
OM-MSCs are widely distributed in the nasal cavity, are 
easily accessible, exhibit no immune rejection, have few 
or no associated ethical issues [127, 167], and have the 
added benefit of retaining biological activity that does not 
change with age [168]. As previously stated, nasal mucosa 
develops from embryonic ectoderm and can directly 
differentiate into neurons under the right conditions. 
According to chromosome karyotype analysis and tumor 
gene analysis, there is no genetic variation after sub-
stantial in  vitro passages [169]. It is unknown, however, 
whether the success of autologous MSC  transplantation 
is impacted by pathologic genetic background since there 
have been no reports of clinical studies using autologous 
MSC  transplantation for the treatment of neurodegen-
erative diseases. Recently, we confirmed that OM-MSCs 
transplantation could alleviate the symptoms of Alzhei-
mer’s disease in APPswe/PS1dE9 mice and promote Aβ 
clearance through immunomodulation, thus demon-
strating the great potential and social value of OM-MSC 
treatment for Alzheimer’s disease patients. What’s more, 
our findings confirmed that OM-MSCs could differenti-
ate in multiple directions, including neurons, bone tissue, 
and adipose tissue [170]. Thus, the benefits of OM-MSCs 
make them an ideal source of cells for treating neuroim-
mune diseases such as PD.

Challenges and improvements for MSCs
The cell survival rate, number of homing cells, and 
immunomodulatory effects of MSCs after implantation 
in vivo are critical to the success of MSCs therapy. Exces-
sive inflammatory response, oxidative stress, hypoxia, 
and other negative factors in the microenvironment 
at the site of injury of the inflammatory immune dis-
ease may be the most important factors limiting MSC 

survival and efficacy. During in vitro amplification, these 
MSCs were cultured in 21% oxygen and 10–20% serum 
concentration, but after implantation in disease models 
or patients, they were exposed to hypoxic or ischemic 
microenvironments. In this case, MSCs rely solely on 
anaerobic glycolysis activation to obtain weak energy 
and may undergo self-apoptosis [171]. Many studies have 
shown that pretreatment with hypoxia, hypertrophic 
medium, cytokines, or chemicals can improve MSC sur-
vival, homing ability, and paracrine effect after transplan-
tation [172, 173]. The primary goal of MSC pretreatment 
is to allow them to adapt to the harsh local microenviron-
ment ahead of time while also increasing their survival 
rate, paracrine, immune regulation, and differentiation 
functions. Previous research has shown that a hypoxic 
microenvironment can promote OM-MSC proliferation 
and differentiation into dopaminergic neurons [128]. 
In  vitro, hypoxia-preconditioned OM-MSC inhibited 
pyroptotic death of microglial cells in response to cer-
ebral ischemia–reperfusion insult by activating hypoxia-
inducible factor-1 [160]. Hypoxic pretreatment has also 
been shown in studies to improve MSC migration and 
homing ability and increase the number of damaged local 
MSCs [174, 175]. Furthermore, the immunomodulatory 
effects of MSCs are mediated by a cascade of inflamma-
tory cytokines at the site of implantation [176], and pre-
conditioning MSCs with inflammatory cytokines can 
increase the expression of intercellular adhesion mol-
ecules, inducible oxide synthase (iNOS), and chemokines 
while inhibiting T cell proliferation [177, 178]. The opti-
mal culture scheme for MSCs to improve their survival 
rate, homing ability, and paracrine effect is a promising 
field of research that will address some of the challenges 
associated with MSC therapy. Finally, while MSC therapy 
has demonstrated pre-clinical success in treating various 
diseases, many other issues have been discovered during 
clinical trials. There is currently no international stand-
ard for the clinical application of MSCs, including cell 
dose, administration interval time, culture conditions, 
and route of administration. More research on the effects 
of the factors above and the biological characteristics of 
MSCs derived from various sources is required to find 
the best treatment for the various diseases and the poten-
tial for MSC-based therapies.

Conclusions
In summary, α-Syn is the primary pathological marker 
of Parkinson’s disease, and it can accumulate in the SN, 
triggering a neuroinflammatory response by activating 
microglia. This marker can further activate the neuroim-
mune response of dopaminergic neurons, which is medi-
ated by reactive T cells via antigen presentation. The main 
components of the PD neuroimmune microenvironment 
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are a persistent inflammatory response, activated micro-
glia, a balance disorder between Teffs and Tregs, and 
dopaminergic neurodegeneration, which interact to 
cause the occurrence and progression of PD. MSCs can 
help to reduce the burden of toxic aα-Syn by promoting 
the M2 phenotype of microglia, increasing autophagy, 
increasing proteolysis of α-Syn aggregates, and inhibit-
ing α-Syn intercellular transmission, allowing treatment 
via multitarget dominant immune regulation. Abnormal 
protein expression can be found in a variety of diseases 
with varying phenotypes, implying that abnormal α-Syn 
expression is a by-product of other major pathogenic 
pathways or immunomodulatory processes. Multitarget 
disease-modifying therapies involving neurodegenerative 
disease strategies are critical for the clinical efficacy of 
diseases characterized by abnormal protein expression, 
such as α-Syn, and the use of MSCs could be the most 
promising candidate for future treatment strategies.
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