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Abstract 

Background  Deep understanding the differentiation process of human embryonic stem cells (hESCs) is essential for 
developing cell-based therapeutic strategy. Substantial efforts have been made to investigate protein-coding genes, 
yet it remains lacking comprehensive characterization of long non-coding RNAs (lncRNAs) during this process.

Methods  hESCs were passaged every 5–6 days and had maintained stable karyotype even until the 50th genera‑
tion. Pancreatic progenitor specification of in vitro differentiation from hESCs was performed and modified. The nuclei 
were stained with 4,6-Diamidino-2-phenylindole (DAPI). Droplet-based platform (10X Genomics) was applied to gen‑
erate the single-cell RNA sequencing (scRNA-seq) data. The quality of the filtered read pairs was evaluated by using 
FastQC. Batch effects were removed using the size factor method. Dimension reduction and unsupervised clustering 
analyses were performed using Seurat R package. The Monocle 2 and MetaCell algorithms were used to order single 
cells on a pseudotime course and partition the scRNA-seq data into metacells, respectively. Co-expression network 
was constructed using WGCNA. Module- and hub-based methods were adopted to predict the functions of lncRNAs.

Results  A total of 77,382 cells during the differentiation process of hESCs toward pancreatic progenitors were 
sequenced. According to the single-cell map, the cells from different time points were authenticated to constitute 
a relatively homogeneous population, in which a total of 7382 lncRNAs could be detected. Through further analyz‑
ing the time course data, conserved and specific expression features of lncRNAs during hESC differentiation were 
revealed. Based upon pseudotime analysis, 52 pseudotime-associated lncRNAs that grouped into three distinct 
expression patterns were identified. We also implemented MetaCell algorithm and network-based methods to 
explore the functional mechanisms of these lncRNAs. Totally, 464 lncRNAs, including 49 pseudotime-associated 
lncRNAs were functionally annotated by either module-based or hub-based methods. Most importantly, we dem‑
onstrated that the lncRNA HOTAIRM1, which co-localized and co-expressed with several HOX genes, may play crucial 
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role in the generation of pancreatic progenitors through regulation of exocytosis and retinoic acid receptor signaling 
pathway.

Conclusions  Our single-cell analyses provide valuable data resources for biological researchers and novel insights 
into hESC differentiation processes, which will guide future endeavors to further elucidate the roles of lncRNAs.

Keywords  hESC differentiation, Pancreatic progenitors, scRNA-seq, LncRNA, Metacell, Functional annotation

Background
The self-renewal and pluripotency features of human 
embryonic stem cells (hESCs) have made them to be val-
uable resources for basic scientific research and provided 
remarkable promises in translational medicine [1–4]. 
hESCs are able to differentiate diverse cell lineages both 
in vitro and in vivo through a series of defined develop-
mental paths, which allows scientists to investigate the 
molecular mechanisms of early cell fate decisions [4, 5]. 
Furthermore, due to the therapeutic potential for dia-
betes and for application in drug discovery, in vitro dif-
ferentiation of hESCs into pancreatic progenitor cells, 
which are on course to become functional beta-like cells, 
has received much attention over the past decades [4, 6, 
7]. Nevertheless, the mechanisms underlying hESCs dif-
ferentiation and the therapeutic efficiency remain largely 
unknown. By contrast, several problems such as unex-
pected cell growth,  low differentiation efficiency, and 
the risk of teratoma formation have occurred. Therefore, 
more comprehensive and systematic studies to inves-
tigate the transcriptome of cells in the development of 
hESCs are desired.

Long non-coding RNAs (lncRNAs) that are defined as 
transcripts longer than 200 nucleotides (nt) with little or 
no protein-coding potential have emerged as important 
regulators in a variety of cellular developmental and dif-
ferentiation processes and are closely related to major 
human diseases, such as diabetes [8, 9]. Recent studies 
have indicated that lncRNAs appear as regulators for ESC 
self-renewal and pluripotency [10–12]. Furthermore, 
the number of lncRNAs is cell-specific and dynamically 
regulated during β cell differentiation and maturation, 
indicating that lncRNAs could be potential regulators 
of lineage-specific differentiation or specialized cellular 
functions [13, 14]. However, the global expression pat-
terns and regulatory mechanisms of lncRNAs during the 
early stage of hESCs remain poorly understood and need 
to be addressed systematically.

Recently, although high-throughput single-cell RNA 
sequencing (scRNA-seq) has been applied to character-
ize cell types during human beta-cell and islet cell dif-
ferentiation [15–17], single-cell lncRNA profiling of the 
differentiation process of hESCs to pancreatic progeni-
tor seems to have not been reported. Here, we apply 
scRNA-seq and computational approaches to generate a 

single-cell transcriptome map of the early stage of hESC 
differentiation toward pancreatic progenitors and per-
form the systematical analysis to globally characterize the 
expression dynamics and functional roles of lncRNAs.

Methods
Cell culture
Human embryonic stem-cell lines (H9) were obtained 
from Cell Bank of the Shanghai Institutes for Biologi-
cal Sciences of the Chinese Academy of Sciences (Order 
Number: 18-1-1522) and authenticated using short tan-
dem repeat (STR) analysis (GENETIC TESTING BIO-
TECHNOLOGY Co., Ltd.). hESCs were maintained in 
feeder-free cell culture medium mTeSR™1(STEMCELL 
Technologies, #85850). hESCs were passaged every 
5–6  days using ReLeSR™ (STEMCELL Technologies, 
#05873) and had maintained a stable karyotype even 
until the 50th generation (Beijing Cellapybio Biotechnol-
ogy Co., Ltd.).

Procedures for pancreatic progenitor specification 
in vitro differentiation from hESCs were performed and 
modified according to previously protocols [18, 19]. 
Briefly, hESCs were dissociated into single cells by Try-
pLE™ (ThermoFisher, 12604021) and re-suspended in 
DMEM/F-12 (ThermoFisher, 11330057). After centri-
fuging at 300 g for 5 min, cell pellets were re-suspended 
in mTeSR™1 with 10  μM Y-27632. The differentiation 
was conducted 24  h later by changing the induction 
media. The media changes were described as follows. 
Day 1:RPMI1640 supplemented with 100 ng/ml Activin, 
50  ng/ml WNT3a and 1:2000 ITS. Day 2–3: RPMI1640 
supplemented with 100  ng/ml Activin, 0.2% FBS and 
1:1000 ITS. Day 4–6: RPMI1640 supplemented with 0.5% 
FBS, 0.25 mM Vitamin C, 1:1000 ITS and 50 ng/ml KGF. 
Day7–9: DMEM supplemented with 0.5% FBS, 0.25 mM 
Vitamin C, 50 ng/ml KGF, 2 μM RA, 1:200 B27, 0.25 μM 
Sant1, and 100 ng/ml Noggin.

Immunofluorescence and image analysis
The prepared cells were twice-washed with 0.1 mM phos-
phate-buffered saline (PBS) and then cross-linked by 4% 
paraformaldehyde for 20 min at room temperature. After 
another wash with 0.1  mM PBS, the cells were incu-
bated with 10% BSA and 0.5% Triton X-100 in PBS for 
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1  h. Primary antibodies (anti-SOX17, Abcam/ab84990, 
1:1000, and anti-FOXA2, R&D/AF2400, 1:500) were then 
added and incubated at 4 °C overnight. The next day, the 
cells were washed with 0.1 mM PBS three times and fol-
lowed by incubation with secondary antibodies (1:1000) 
conjugated with a fluorophore at room temperature for 
2–3 h. The nucleus was then stained by using 4,6-Diami-
dino-2-phenylindole (DAPI).

The fluorescence expression of SOX17, FOXA2, and 
DAPI was detected using the Leica DMi8 system (S/N 
434713, objective lenses 20×, Fluorescence Filters: Blue 
for DAPI, Green for SOX17 and Red for FOXA2) and 
the Leica DFC7000 T camera/detector. The images were 
acquired with Leica Application Suite X software and 
then analyzed using ImageJ2x software. Briefly, the back-
ground was subtracted at the value of 10 from these raw 
images (resolution 1920 × 1440 pixels), and the individ-
ual color channels were then merged to assess the colo-
calization of SOX17 an FOXA2 expression in the nuclei. 
No further downstream processing or averaging that 
enhances the resolution of the images was conducted. 
The immunofluorescence analysis experiment was 
repeated three times independently.

Single‑cell library preparation and sequencing
Droplet-based platform (10X Genomics) was used to 
generate the scRNA-seq data in current study accord-
ing to the manufacturer’s instructions in the Chromium 
Single-Cell 3’ Reagents Kits v2 User Guide. The single-
cell suspension from each time point was washed twice 
with 1 × PBS + 0.04% BSA. The loaded cell numbers were 
about 10,000 for each sample, that were confirmed with 
TC20™ Automated Cell Counter. The cells were then par-
titioned into the Gel Beads-in-Emulsion (GEM) along 
with Gel Beads coated with oligos in the 10X Genom-
ics Chromium Controller machine. In each GEM, poly-
adenylated RNAs were captured by poly-dT oligos and 
then were reverse transcribed, amplified, and barcoded 
(including cell-specific and transcript-specific barcodes). 
Library quality and concentration were assessed using 
the Agilent 2100 Bioanalyzer (Agilent Technologies). 
Libraries were run on the Illumina Hiseq X with 150 bp 
paired-end reads.

Quality control (QC) and pre‑processing of scRNA‑seq data
Raw scRNA-seq reads were pre-processed using Trim-
momatic software [20] with the parameters: SLID-
INGWINDOW: 4:10; TRAILING:3; ILLUMINACLIP: 
adapter.fa: 2: 0:7. The quality of the filtered read pairs was 
evaluated using FastQC. Clean reads from each cell were 
mapped to the human reference genome (GRCh38) and 
quantified using the 10X Cell Ranger package (version 
2.1.0, 10 × Genomics). Low-quality or doublet cells were 

filtered for each sample according to the following crite-
ria: (1) the cells were filtered if the number of total UMI 
counts was lower the medians of all cells minus 3 × the 
median absolute deviation (MAD); (2) cells were filtered 
out if the total number of expressed genes was lower than 
2000 or higher than the medians of all cells plus 3 × the 
MAD; (3) cells were filtered out if the proportion of reads 
mapped to mitochondrial genes was larger than 5% or 
higher than the medians of all cells minus 3 × the MAD. 
For cells from all samples, the size factor was computed 
based on a pooling and deconvolution strategy as imple-
mented in the R package named ComputeSumFactors 
with the sizes ranged from 80, 100, 120 to 140 [21]. Then, 
the counts of each cell were normalized by dividing the 
counts by the size factor.

Dimension reduction and clustering
Based on scRNA-seq expression data, we performed 
dimension reduction and unsupervised clustering analy-
sis using Seurat R package (version 3.1.5) [22]. The genes 
that expressed in at least 3 cells were retained. The count 
matrix was normalized using NormalizeData function 
with default parameters. Then, FindVariableGenes func-
tion was used to identify highly variable genes (HVGs) 
that were subsequently used for PCA dimension reduc-
tion. The top fifteen principal components were selected 
according to elbow method and used for graph-based 
clustering. Cell clusters were identified and projected 
into 2D spaces using UMAP.

Differential expression and functional enrichment analysis
Differentially expressed genes (DEGs) were identified 
using FindMarkers function with Wilcoxon rank sum 
test as implemented in Seurat. DEGs with adjusted P 
value less than 0.01, fold-change ≥ 2, and detected in a 
minimum fraction of 0.25 cells were retained. GO term 
enrichment analysis were done on DEGs using DAVID 
with default parameters.

Re‑analysis of human SC‑islet and pancreatic islet 
scRNA‑seq data
Read counts of from human SC-islet and pancreatic islet 
were obtained from previous publications [15, 16]. Data 
integration, batch effect normalization, dimensional-
ity reduction, and unsupervised clustering analysis were 
performed as described above.

Pseudotime analysis
The Monocle 2 (version 2.14.0) [23] was used to order 
single cells on a pseudotime course during hESC differ-
entiation. The genes with expression value more than 
0.1 and expressed in more than 10 cells were subjected 
to differential expression analysis. The genes with q 
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value < 1E−4 were selected as ordering genes and used 
for pseudotime calculation. The Discriminative Dimen-
sionality Reduction with Trees (DDRTree) algorithm was 
used for dimension reduction. To explore the different 
expression patterns of lncRNAs during hESC differen-
tiation, the lncRNAs that significantly expressed along 
pseudotime were identified by “differentialGeneTest” 
function, which were then clustered into three distinct 
expression patterns based on k-means cluster method.

Partitioning the scRNA‑seq data into metacells
MetaCell algorithm (version 0.3.41) [24] was used to par-
tition the scRNA-seq data into metacells. After removing 
mitochondrial genes (annotated with the prefix “MT-”), 
the remaining genes whose scaled variance (variance/
mean on down-sampling) more than 0.08 were used to 
compute cell similarities. Two balanced K-NN similarity 
graph was constructed by using the parameter K = 100. 
Then, 500 bootstrap iterations with resampling 75% of 
the cells in each iteration were performed in the resam-
pling procedure. The minimum metacell size was set to 
30. The metacells and the cells involved in them were 
projected into 2D spaces by “mcell_mc2d_plot_by_fac-
tor” function.

Co‑expression network construction
The expression profiles of both protein-coding and 
lncRNA genes across all metacells were used to construct 
co-expression network, in which genes are represented as 
nodes, and two genes are linked by an edge (undirected) 
if they are co-expressed significantly.

Only genes with expressional variance ranked in the 
top 75% were retained for co-expression network con-
struction. The Pearson correlation coefficients for each 
gene pair were calculated. The significance of correlations 
between gene pair was evaluated by Fisher’s asymptotic 
test using R package WGCNA library of R and adjusted 
by Bonferroni multiple test correction using R package 
Multtest. Only gene pairs that met the following criteria 
were regarded as co-expressed and connected by edges: 
(1) Adjusted P value < 0.01; (2) Pearson correlation coef-
ficient more than 0.7; (3) Pearson correlation coefficient 
ranked in the top or bottom 0.5% for each gene.

LncRNA function prediction based on module‑ 
and hub‑based methods
Based on co-expression network constructed above, we 
predicted lncRNA functions by both model- and hub-
based methods [25, 26]. Genes in the same network 
modules are closely connected with each other and 
may act as functional programs to play similar func-
tions. The Markov cluster algorithm (MCL) was used 
to identify co-expressed modules in the network. If the 

protein-coding genes involved in a co-expressed mod-
ule are significantly enriched for at least one GO term 
(adjusted P value < 0.01), the lncRNAs involved in this 
module would be assigned the same GO functions. For 
hub-based method, the functions of hub lncRNAs were 
predicted based on the functional enrichments (adjusted 
P value < 0.01) of their immediate neighboring protein-
coding genes.

Results
Large‑scale scRNA‑seq of the early stage of hESC 
differentiation
To systematically characterize the transcriptomics of the 
early stage of hESC differentiation toward pancreatic 
progenitors, we performed droplet-based scRNA-seq 
(10X Chromium) by taking samples at four time points 
(day 0, day 2, day 4, and day 9) based on established pro-
tocols [18, 19] (Fig.  1A and Additional file  1: Table  S1). 
After sequencing and quality control, high-quality tran-
scriptomic data from 40,190 cells were obtained, includ-
ing 6178 hESCs (day 0), 7615 cells from day 2, 13,082 
cells from day 4, and 13,315 cells from two replicated 
samples of day 9 (marked as Day 9-R1 and Day 9-R2). 
For each sample, doublet cells and low-quality cells were 
filtered out if the number of expressed genes was higher 
than the medians of all cells plus 3 × the median absolute 
deviation or lower than 2000, respectively. On average, 
we detected 4391 genes (from 2001 to 8772) expressed in 
each individual cell (Fig. 1B). Sequencing depth and the 
number of detected genes were comparable across sam-
ples (Fig.  1B). To assess batch effects, the overall qual-
ity and gene expression profiles between two replicated 
samples of day 9 were compared. The results showed that 
cells from each batch were evenly distributed on the uni-
form manifold approximation and projection (UMAP) 
(Fig. 1C) and the highly correlated gene expression pro-
files (the Pearson correlation coefficient was 0.99) of the 
two batches (Fig.  1D), proving minimal batch effect in 
the present study. In addition, all samples showed highly 
correlated gene expression profiles with Pearson correla-
tion coefficients were within the 0.90–0.97 range (Addi-
tional file 11: Fig. S1). Altogether, these results confirmed 
the validity and reasonable technical variability of our 
scRNA-seq data.

Next, dimension reduction and low-dimensional visu-
alization of the scRNA-seq time series were performed 
by principal component analysis (PCA) based on the 
genes with high variance and expression across cells. 
Obviously, principal component (PC) 1 mainly discrimi-
nated day 0–4 from day 9, while PC2 captured the differ-
ences among hESCs, day 2, and day 4, with day 2 located 
in the middle of the axis (Fig. 1E).
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Moreover, we performed uniform manifold approxi-
mation and projection (UMAP) analysis and clustered 
all cells together by using Seurat. In total, we defined 13 
clusters that grouped into six cell groups featured by the 
expression of known marker genes and sample informa-
tion, including hESCs (cluster 4 and 7), mesendoderm 
cells (cluster 1 and 9), definitive endoderm cells (cluster 
2, 5, 6, and 8), ISL1+ progenitors (cluster 0, 3, and 11), 
and two groups of intermediate cells (cluster 10 and clus-
ter 12) (Fig. 1F, G). Markedly, cells of hESC group (G1_
hESC_day0) were dominant from day 0 and expressed 
well-known stem-cell markers including POU5F1, 
NANOG, and SOX2 (Fig.  2A). The second cluster, G2_
ME_day2, was characterized by the high expression of 
the mesendoderm markers such as FGF4 and WNT3 and 
predominantly composed of cells from day 2 (Fig.  2A). 
The third group, G3_DE_day4, characterized by spe-
cific expression of SOX17 and high expression of FOXA2 
(Fig.  2A), was mainly composed of definitive endoderm 
cells, which were also confirmed by immunofluorescence 
staining for SOX17 and FOXA2 (Fig.  2B and Additional 
file  12: Fig. S2). The fourth group, G4_IP_day9, was 
annotated as ISL1+ progenitor cells for the expression of 
ISL1 and HNF1B (Fig. 2C), which are of significance for 
the development of endocrine progenitors [27, 28], and 
mainly composed of cells from two replicated samples of 
day 9.

To take a global view of the expression pattern of 
marker genes, we combined the analysis results of our 
data with previous studies [15, 16] and evaluated the 
expression levels of well-known marker genes across 
in vitro β-cell differentiation and human main pancreatic 
islet cell types. The results showed that all marker genes 
were dynamically expressed along the cell developmental 
stages (Fig. 2C), which may reflect the dynamic features 
of cell differentiation pathways.

To further investigate the pathways or molecular events 
during the early differentiation of hESCs, functional 
enrichment analysis based on differently expressed genes 
(DEGs) among cell groups were performed (Fig. 2D and 
Additional file  2: Table  S2, Additional file  3: Table  S3). 
Expectedly, we found that genes specifically expressed 
in each cell group were significantly enriched for the 
expected biological functions (Fig.  2E). For instance, 

genes that are specifically expressed in hESCs were sig-
nificantly enriched in stem-cell functions such as somatic 
stem-cell population maintenance (P = 8.77E−08). And 
the major biological processes enriched in mesendoderm 
cell groups were related to cell division (P = 3.84E−04), 
oxidation–reduction process (P = 0.002) and Wnt sign-
aling pathway (P = 0.003), in accordance with the sta-
tus of cells at this stage. Genes related to endoderm 
formation were enriched in definitive endoderm cell 
group (P = 2.32E−04), which also evidenced by the high 
and specific expression of DUSP4, LHX1 and EOMES 
(Fig.  2F). Furthermore, glycolytic process and ante-
rior/posterior pattern specification were significantly 
enriched in ISL1+ progenitor cells (P = 2.32E−05 and 
4.32E−05, respectively) (Fig.  2E), consistent with the 
properties of this cell group.

Apparently, we revealed that a portion of marker genes 
were lncRNAs whose functions in hESC differentia-
tion process have not been well elucidated (Fig. 2D). For 
instance, four lncRNA genes (RP11-1144P22.1, FOXD3-
AS1, LINC01356 and HOTAIRM1) were listed in the top 
10 most significant differentially expressed genes during 
the early stage of hESC differentiation (Fig.  2G). These 
discoveries prompted us to conduct further analyses 
to globally explore the expression patterns and putative 
roles of lncRNAs during the differentiation of hESCs 
toward pancreatic progenitors.

Highly expressed lncRNAs shown both conserved 
and specific expression features
To depict the expression profiles of lncRNAs during 
the hESC differentiation, we first checked the number 
of expressed lncRNAs at single-cell levels. The results 
showed that a total of 7382 lncRNAs could be detected 
(on average 149 lncRNAs per cell) in our scRNA-seq 
data (Additional file 13: Fig. S3), enabling us to perform 
further analyses. Furthermore, the expression level and 
frequency of lncRNAs were evaluated and an average of 
128 lncRNA genes were found to express in at least 25% 
of cells (Fig. 3A). Intriguingly, among the top ten highly 
expressed lncRNAs, some were commonly expressed in 
all samples of hESC early differentiation and the others 
were expressed in a stage-specific manner (Fig.  3B, C). 
For example, as the top two highly expressed lncRNAs, 

Fig. 2  Expression profiles and functional enrichments of marker genes across time points identified during hESC differentiation. A. UMAP 
visualization of the expression of well-defined marker genes of different stages in hESC differentiation. B. The representative immunofluorescence 
staining for definitive endoderm cells with antibodies against SOX17 and FOXA2. DAPI serves as a nucleus indicator. The individual color channels 
were merged to assess the colocalization of SOX17 an FOXA2 expression in the nuclei. Scale bars, 200 μm. C. Dot plot showing the average and 
percentage expression of well-defined marker genes in different stages or cell types. Genes are colored according to their mean expression 
level. Diameter denotes fractional expression. SC-α, SC-β, and SC-EC represent stem-cell-derived α, β, and enterochromaffin cells, respectively. D. 
Heatmap showing the expression of the top ten marker genes of each time point. lncRNA genes are indicated by arrows. E. Enriched GO terms 
of marker genes of each time point. F. UMAP visualization of the expression of genes related to endoderm formation. G. Violin plots showing the 
expression of lncRNA genes that listed in the top 10 marker genes of each time point

(See figure on next page.)
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MALAT1 and ZSAF1, were expressed in 99% of cells, 
while as the third and fourth highly expressed lncR-
NAs, RP11-148B6.1 and LINC01356, were expressed in 
only 67% and 65% of cells, respectively, and specifically 

expressed in day 0–4 (Fig. 3C). In particular, HOTAIRM1 
as the sixth highly expressed lncRNA was exclusively 
expressed in day 9 (Fig. 3C). In conclusion, these results 

Fig. 3  Conserved and specific expression features of lncRNAs. A. The plots showing the percentage of expressing cells against the mean expression 
level for lncRNA genes. The top 10 expressed lncRNAs were labeled. B. The top 20 highly expressed lncRNAs. Genes are ordered according to their 
mean expression levels. C. UMAP visualization of the expression of top 10 highly expressed lncRNA genes. D. UMAP plot of stem-cell-derived islet 
cells. E. UMAP plot of human pancreatic cells. F. UMAP visualization of gene expression level of the indicted genes
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may imply distinct roles of these lncRNAs during the 
early stage of hESC differentiation.

To further assess the expression features of these lncR-
NAs in the late stage of hESC differentiation toward 
β-cells and in human pancreatic islets, computational 
analyses were performed by using scRNA-seq data gener-
ated by previous studies [15, 16]. The cell cluster results 
in current study were in accordance with those in the 
original papers (Fig.  3D, E). According to the cell clus-
ter annotations, we found that MALAT1 was conserved 
expressed during the whole process of hESC differen-
tiation and across the main pancreatic islet cell types 
(Fig. 3F). As expected, HOTAIRM1 was highly and spe-
cifically expressed in PDX1 progenitor cells. Addition-
ally, the lncRNA MEG3 was discovered to be specifically 
expressed in pancreatic β-cells (Fig. 3F), which has been 
validated by multiple previous studies [29–31].

Distinct lncRNA expression patterns during hESC early 
differentiation
Effective differentiation of hESCs requires genome-
wide gene specific expression at different developmental 
stages. To more comprehensively characterize the dis-
tinctive patterns of lncRNA expression, we further car-
ried out scRNA-seq of approximately 30,000 cells at daily 
intervals from day 5 to 9 by using the same protocol as 
described above (Fig.  4A). After quality control, 10,537 
cells from day 5, 6687 cells from day 6, 8107 cells from 
day 7, 5036 cells from day 8, and 6825 cells from day 9 (as 
control and marked as Day 9-C) were obtained and used 
for further analyses (Additional file 4: Table S4). Through 
unsupervised clustering of all qualified cells (77,382 cells 
in total) generated by current study, the single-cell map 
of hESC early differentiation was reconstructed (Fig. 4B). 
The cells from Day 9-C in close proximity to Day 9-R1 
and Day 9-R2, demonstrating the low degree of variation 
among different batches.

Next, we performed Monocle analysis [23, 32] to order 
cells and infer the pseudotime (hypothetical timeline) of 
each cell. As shown in Fig. 4C, the inferred pseudotimes 
were highly consistent with the hESC differentiation time 
point during which the cells were collected. For example, 
hESC stage (day 0) exhibited the lowest pseudotime and 
cells from different stages exhibit a progressive differen-
tiation pseudotime (Fig. 4C).

Based on pseudotime results, we further investigated 
the global lncRNA expression patterns during hESC dif-
ferentiation. In total, 52 lncRNA genes were found to be 
strikingly differentially expressed (adjusted P value < 0.01) 
along the pseudotime axis and were further grouped into 
three distinct expression patterns (Fig.  4D and Addi-
tional file  5: Table  S5). Specifically, 17 lncRNAs were 
involved in pattern I and highly expressed in day 6 to day 

9, represented by HOTAIRM1, KCNQ1OT1, HOXB-AS1, 
and CRNDE, implying their potential functions in initi-
ating the gene regulatory program toward ISL1+ pro-
genitor cells (Fig.  4E). 16 lncRNAs grouped in pattern 
II highly expressed at the beginning period of hESC dif-
ferentiation, represented by LINC00662, RP11.132A1.3, 
LINC00678, and RP11.69I8.2, indicating their putative 
roles in the stemness maintenance of hESC (Fig.  4E). 
19 lncRNAs, such as RP11.445F12.1, RP11.380D23.2, 
GATA6.AS1, and RP3.428L16.2 in pattern III showed 
upregulated expression in day 4–5 and downregulated 
expression in other stages, (Fig.  4E). These lncRNAs 
may contribute to the differentiation of definitive endo-
derm cells. Collectively, these results suggested that the 
lncRNAs for each pattern could be orchestrated and 
served as the functional program to regulate the hESC 
differentiation.

Dissecting the functional roles of lncRNAs during hESC 
differentiation based on co‑expressed modules 
and hub‑based sub‑networks
To further clarify the potential functions and regulatory 
mechanisms of those pseudotime-associated lncRNAs 
(the lncRNAs involved in different expression patterns 
along the pseudotime as described above), we performed 
computational analysis by constructing “coding–non-
coding” co-expression network based on gene expression 
correlations [25, 26]. To minimize the variance and noises 
of lncRNA expressions across single cells, we decom-
posed our scRNA-seq data into metacells that were 
defined as homogeneous cell groups by pooling together 
cells with the similar transcriptional states using a series 
of algorithms implemented in MetaCell package [24]. We 
totally identified 730 metacells with on average 96 cells 
involved in each metacell (Fig. 5A and Additional file 14: 
Fig. S4). According to the 2D projection and composition 
of metacells, the results derived from MetaCell algorithm 
were in accordance with the results of Seurat (Fig.  5A 
and Additional file  15: Fig. S5). Moreover, the expres-
sion patterns of several pseudotime-associated lncR-
NAs identified above such as HOTAIRM1, LINC01356, 
and RP11-771K4.1 were further confirmed by analyzing 
metacell marker genes (Additional file 16: Fig. S6).

In view of gene expression values derived from Meta-
Cell method, we calculated the Pearson correlation coef-
ficients and adjusted P values for each gene pair and then 
constructed the co-expression network using weighted 
gene co-expression network analysis (WGCNA) method 
(Fig.  5B) [25, 26]. The resulting co-expression net-
work totally comprised of 6669 protein-coding genes 
and 591 lncRNA genes that were connected by 200,412 
edges, including 29,675 coding-lncRNA edges, 167,511 
coding-coding edges, and 3226 lncRNA-lncRNA edges 
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(Additional file 6: Table S6). The protein-coding genes in 
the network that had at least one GO term were adopted 
to predict the functions of lncRNAs. On average, there 
were 50 protein-coding partners connected with each 
lncRNA gene (the mean of Pearson correlation coeffi-
cient was 0.78) in the co-expression network (Additional 
file 17: Fig. S7).

Next, The Markov cluster algorithm (MCL) was applied 
to authenticate co-expressed gene modules in network. 
In total, 27 modules were identified through the use of 
a custom pipeline that comprised both protein-coding 
and lncRNA genes and significantly enriched for at 
least one biological function (Figs.  5C and Additional 
file 7: Table S7). Accordingly, 366 lncRNAs including 32 

Day 5 Day 6 Day 9Day 7 Day 8

Single cell sequencing

AC009501.4
RP11.348J12.2
RP11.1143G9.5
RP11.771K4.1
PCAT14
MIAT
HOXA.AS2
RP11.834C11.4
HOTAIRM1
HOXB.AS1
RP11.115D19.1
LINC01021
TP53TG1
CRNDE
RP11.295G20.2
RP11.736K20.5
KCNQ1OT1

RP11.1144P22.1
RP11.568A7.4
RP11.20D14.6
RNASEH1.AS1
D21S2088E
RP11.469A15.2
PWAR6
FOXD3.AS1
LINC00545
RP11.12G12.7
LINC00678
RP11.69I8.2
RP11.132A1.3
SNHG15
SNHG12
LINC00662

RP11.445F12.1
RP3.428L16.2
LINC00458
AP000688.29
RP11.380D23.2
RP11.326K13.4
ERVH48.1
CH17.189H20.1
AC007405.6
RP11.148B6.1
LINC01405
SNHG25
LINC01356
LINC00467
GATA6.AS1
RP13.188A5.1
RP11.295M3.4
LINC00261
HHIP.AS1

CRNDE

20 40 600

Day 5
Day 6

Day 9-R1

Day 7
Day 8

hESC
Day 2
Day 4

Day 9-R2
Day 9-C

Day 5

Day 6

Day 9-R1

Day 7

Day 8

hESC

Day 2

Day 4 Day 9-R2

Day 9-C

Pseudotime

U
M

A
P

_2

UMAP_1

P
attern I

P
attern II

P
attern III

Pseudotime

HOTAIRM1

10

1

30

3

3
1

10

10
1

30

3

3
1

10

10

1

30

3

10

1

30

10

1
3

10

1
3

1

5

10

1

30

3

3

10

1

30

3

10
1

100
KCNQ1OT1

RP11.132A1.3

HOXB.AS1

LINC00662

LINC00678 RP11.69I8.2

RP11.445F12.1

GATA6.AS1

RP11.380D23.2

RP3.428L16.2

Pseudotime

A B C

D

E
R

el
at

iv
e 

E
xp

re
ss

io
n

-3

3

0

R
el

at
iv

e 
E

xp
re

ss
io

n
R

el
at

iv
e 

E
xp

re
ss

io
n

Pseudotime

Pseudotime

Fig. 4  Characterization of lncRNA expression patterns based on pseudotime analysis. A. Experimental design for studying the 
pseudotime-associated lncRNAs. B. UMAP plot of cells from all samples. C. Violin plots of cell pseudotime across all samples. D. Heatmap showing 
the relative expression of pseudotime-associated lncRNAs along pseudotime axis. E. Relative expression of representative lncRNAs for each pattern 
with cells ordered along the pseudotime axis



Page 11 of 16Luo et al. Stem Cell Research & Therapy           (2023) 14:38 	

pseudotime-associated lncRNAs were functionally anno-
tated (Additional file  8: Table  S8 and Additional file  9: 
Table S9), some of which were in accordance with previ-
ous findings. For instance, the lncRNA CRNDE involved 
in Module 13 which including 78 protein-coding and 18 
lncRNAs and significantly enriched for “transforming 
growth factor (TGF) beta receptor signaling pathway” 
(adjusted P value = 1.56E-24), whose predicted functions 
were in line with the previous reports that CRNDE was 
significantly upregulated after TGFβ1 treatment and con-
tributed to cell proliferation (Fig.  5D, E and Additional 

file  9: Table  S9) [33, 34]. Notably, CRNDE as a pseudo-
time-associated lncRNA was highly enriched in day 6 and 
day 9 during hESC differentiation and its enriched func-
tions such as “secretion” (adjusted P value = 5.30E−21) 
and “exocytosis” (adjusted P value = 1.97E−13) were 
consistent with the expected cell functions at this stage 
(Fig.  5E). In addition, several antisense lncRNAs were 
involved in the module whose host genes have been 
demonstrated to have relationships with cell differen-
tiation, cell secretion or cell fate decision (Fig.  5D). For 
example, the host gene of HMGN3-AS1, HMGN3, has 

Fig. 5  Functional annotation of lncRNAs using Metacell algorithm and co-expression network method. A. 2D projection of 730 metacells (metacell 
map). B. Visualization of co-expression network. Green nodes represent protein-coding genes and red nodes represent lncRNA genes. C. Gene–
gene correlation heatmap for genes involved in co-expressed modules. D. Sub-network visualization of module 13. The lncRNAs genes (red) 
mentioned in the main text were marked by rectangles. E. Functional enrichment results of model 13
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been identified as a key regulator in glucose homeosta-
sis especially in glucose-stimulated insulin secretion 
[35, 36]. Interestingly, a lncRNA MEG3 that was specifi-
cally expressed in human pancreatic β cells as described 
above was found in this module (Figs. 5D). These results 
indicated that the lncRNAs and protein-coding genes 
involved in the same modules may partly reflect the com-
plex gene interactions or regulations during hESC differ-
entiation process.

To further clarify the functions of individual lncRNAs 
in a more targeted way, we adopted hub-based predic-
tion method by assigning functions to hub lncRNAs 
based on the functional enrichments of their connected 
protein-coding genes. Through multiple filtration pro-
cesses as described in Materials and methods section, 
342 lncRNA genes (including 47 pseudotime-associ-
ated lncRNAs) with at least 10 neighboring protein-
coding genes which significantly enriched at least one 
GO term were functional annotated accordingly (Addi-
tional file 10: Table S10). For instance, as a pseudotime-
associated lncRNA that highly expressed in day 6 and 
day 9 during hESC differentiation, HOTAIRM1 con-
nected with 105 protein-coding and 13 lncRNA genes 
(Fig.  6A). As shown in Fig.  6B, HOTAIRM1 is located 
in the homeobox A (HOXA) gene cluster (between 
HOXA1 and HOXA2 locus) and was co-expressed with 
several HOX genes including HOXA1, HOXA2, HOXA3, 
HOXB1, HOXB2, and HOXB3. Based upon hub-based 
method, HOTAIRM1 was assigned functions such as 
“regulation of exocytosis” (adjusted P value = 1.73E−77), 
“retinoic acid receptor signaling pathway” (adjusted P 
value = 4.53E−28), and “anterior/posterior pattern spec-
ification” (adjusted P value = 9.74E−12) (Fig.  6C and 
Additional file  10: Table  S10), which is consistent with 
previous findings that the transcription of HOTAIRM1 
was induced by retinoic acid and the HOX gene clus-
ter played crucial roles in cell differentiation and early 
embryonic development [37–40]. Interestingly, the pre-
diction results of HOTAIRM1 were further validated by 
a recent study, which revealed that HOTAIRM1 could 
contribute to HOXA gene activation by regulating three-
dimensional chromatin organization [41]. Obviously, 
the antisense lncRNA HOXA-AS2 that co-expressed and 
co-located with HOTAIRM1 also acted as pseudotime-
associated lncRNA and showed the similar function 
annotations and expression patterns with HOTAIRM1 
(Fig.  6B–D). In addition, the pseudotime-associated 
lncRNA PCAT14 was co-expressed with 14 protein-
coding genes that significantly enriched “exocytosis” 
(adjusted P value = 7.12E−18) and “proteolysis” (adjusted 
P value = 1.08E−11) related processes (Fig.  6E, F and 
Additional file 10: Table S10). Notably, both HOTAIRM1 
and PCAT14 were confirmed as the critical regulators 

in cancer by multiple previous studies [42–45], but less 
is known about their regulatory roles during hESC 
development.

By combining the lncRNA functional annotation 
results of both module- and hub-based methods, the 
functions of 464 lncRNAs in total were predicted, 244 
of which were calculated by both methods (Additional 
file 9: Table S9 and Additional file 10: Table S10). Moreo-
ver, 94% (49/52) of pseudotime-associated lncRNAs were 
functional annotated. The main prediction results of the 
lncRNAs were similar between the two methods.

Discussion
hESC differentiation involves a series of changes in cell 
transcriptome with a complex spatial pattern. The molec-
ular characterization of cell groups from different stages 
of hESC differentiation based on protein-coding genes 
agreed well with previous reports [6, 28]. Although a 
number of protein-coding genes and transcription fac-
tors have been demonstrated as crucial regulators in 
hESC differentiation process, little is known about the 
physiological roles of lncRNAs in this process. The cur-
rent study was carried out to address this issue.

Many studies have been performed on lncRNA genes 
during proliferation and differentiation processes of 
hESCs by using bulk RNA analyses [11–13], but the char-
acteristics of lncRNAs at single-cell level are still poorly 
understood. Since one of the major challenges in scRNA-
seq analysis is batch effect, which will have an impact on 
downstream analysis and may lead to the false interpreta-
tion of the data. To minimize the batch effect, a pooling 
and deconvolution strategy was adopted to normalize the 
counts of all cells. According to the single-cell maps, the 
cluster results of cells from three samples of day 9 were 
highly comparable with the cells from different batches, 
which enabled us to conduct integrative analyses among 
these data. By utilizing computational analysis, we iden-
tified 7382 lncRNAs that were expressed in scRNA-seq 
data and on average 149 lncRNAs could be detected at 
single-cell level. Moreover, a portion of lncRNAs dis-
play stage-specific expression, while some lncRNAs 
are ubiquitous transcripts that were highly expressed 
across all time points during hESC differentiation such 
as MALAT1. Furthermore, Monocle was used to order 
cells from hESCs to day 9 and identified 52 pseudotime-
associated lncRNAs that grouped into three distinct 
expression patterns. These findings suggested that the 
lncRNAs involved in different expression patterns may 
be dynamically regulated to make contribution to hESC 
differentiation.

To unveil the functional roles of lncRNAs in regu-
lating hESC differentiation based upon our scRNA-
seq data, we adopted network-based method (gene 
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co-expression network) that has been proved to be an 
effective way to mine the functions of unknown genes 
[25, 26]. In comparison with bulk RNA sequencing, it 
is a challenging task to accurately evaluate the correla-
tions for each gene pair at single-cell level, due to the 
variance of RNA capture efficiency and technique noise 
among cells from scRNA-seq data. To address this 
issue, we used MetaCell algorithm that partitioned the 
scRNA-seq data into metacells [24], which enabled us to 
more robustly and accurately analyze the gene expres-
sion levels, especially for those lowly expressed lncR-
NAs. The normalized gene expression values across all 
metacells were applied to construct the “coding–non-
coding” co-expression network. Although the true bio-
logical relationship between connected genes involved 
in the network is still unclear, it has been shown that 
highly correlated genes generally have similar functions, 
implying the functional association of co-expressed 
genes. Therefore, the connections between lncRNAs 
and protein-coding genes can be considered putative 
biological interactions, and the putative functions of 
lncRNAs could be predicted by their co-expressed pro-
tein-coding genes. Accordingly, both module- and hub-
based methods were adopted to annotate the lncRNA 
functions and a number of results obtained from the 
two methods were coherent, strengthening the accu-
racy of the prediction results. The functions of several 
lncRNAs have been validated in previous studies. For 
example, an endoderm-specific lncRNA DEANR1 can 
positively regulate expression of the endoderm factor 
FOXA2 and plays a key role in human endoderm dif-
ferentiation [46]. Nevertheless, among the 464 lncRNAs 
with assigned functions, 49 were pseudotime-associ-
ated lncRNAs identified in this study, whose regulatory 
mechanisms are worth further validating by biological 
experiments.

Overall, we provide a detail map of single-cell profiling 
of the early stage of hESC differentiation and systematic 
analyses of lncRNA roles in this process. Of note, our 
scRNA-seq data were generated by droplet-based tech-
nology with oligo-dT-primer that could only be used to 
analyze polyadenylated (ployA) transcripts. However, 
the polyA(-) lncRNAs that remain largely unexplored 
were absent in current studies. Therefore, the sequenc-
ing data of 77,382 single cells as valuable resource lay 
the ground work for further studies. The functions and 
interactions of lncRNAs, which were associated with 
hESC differentiation, would be beneficial in designing 
experiments to further validate their regulatory mecha-
nisms. Our findings will facilitate to comprehensively 
understand models of cellular network and enable us to 
navigate the regulatory landscape underlying the differ-
entiation of hESCs.

Conclusion
In this study, we conducted scRNA-seq experiments of 
77,382 cells to comprehensively characterize the tran-
scriptome of the early stage of hESC differentiation at 
single-cell level and further performed computational 
analysis to identify the expression patterns as well as 
putative functions of lncRNAs.
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