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Abstract

Background: Alzheimer’s disease (AD) is a common progressive neurodegenerative disease characterized by
memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential
novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent
models of AD.

Methods: We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The out-
comes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version
2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk
of bias tool was used to assess study quality.

Results: We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of

NSPC groups of both mice studies (SMD= — 1.96,95% Cl —2.47to — 145, 1> =75%, P<0.00001) and rat stud-

ies (SMD= —1.35,95% Cl—2.11 to —0.59, > =77%, P=0.0005) was apparently improved. In mice studies, NSPC
group has lower AB deposition (SMD= —0.96,95% Cl —1.40to —0.52, P<0.0001) and p-tau level (SMD= —4.94,
95% Cl —7.29to —2.95, P<0.0001), higher synaptic density (SMD =2.02, 95% Cl 0.50-3.55, P=0.009) and BDNF
(SMD=1.69, 95% Cl 0.61-2.77, P=10.002). Combined with nanoformulation (SMD= —1.29, 95% C| —2.26 to —0.32,
> =65%, P=0.009) and genetically modified (SMD = — 1.29,95% Cl —1.92 to — 0.66, ?=60%, P<0.0001) could
improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cogni-
tive impairment of AD animal models.

Conclusions: Our results suggested that NSPC therapy could improve the cognitive function and slow down the
progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.
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Introduction

Alzheimer disease (AD) is a common, progressive, and
devastating neurodegenerative disease. The pathological
features of the disease are the presence of extracellular
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deterioration of cognitive function [1, 2]. AD can be
divided into familial Alzheimer disease (FAD) and spo-
radic AD (SAD) among the genetic factors. Most patients
with Alzheimer’s disease (>95%) have the sporadic form,
which is characterized by a late onset (80-90 years of
age) and is the consequence of the failure to clear the
amyloid-B (Af) peptide from the interstices of the brain
[3]. Familial Alzheimer’s disease (FAD) presents basic
similarities to sporadic AD, but with important differ-
ences. Onset is in mid-life or earlier, and the genetics
follows a dominant Mendelian pattern, with 100% pen-
etrance in most pedigrees [4]. The pathogenesis of AD
is complex, involving multiple molecular signaling path-
ways. Cholinergic deficiency, amyloid beta (Ap) toxicity,
tau protein hyperphosphorylation, synaptic dysfunction,
oxidative stress, and neuroinflammation, were proposed
to be responsible for AD development [5]. In 2018, Alz-
heimer’s Disease International estimated a dementia
prevalence of about 50 million people worldwide, pro-
jected to triple in 2050, with two-thirds living in low-
income and middle-income countries.

Today, only five drugs have been approved by the FDA
for AD treatment: donepezil, rivastigmine, galantamine,
tacrine and memantine. The first four drugs are acetyl-
cholinesterase inhibitors (AChEIs), while the last one is
an N-methyl-D-aspartate receptor (NMDAR) antago-
nist [6]. Clinical studies show some other approaches to
AD, such as acupuncture, behavioral training and brain
stimulation, including deep brain stimulation (DBS) [7],
repetitive transcranial magnetic stimulation (rTMS) [8]
and transcranial electrical stimulation (tDCS and tACS)
[8, 9]. But current treatments are unable to achieve sat-
isfactory therapeutic outcomes, new treatments are
urgently needed.

In recent years, stem cell therapy has received growing
attention as a potential regenerative therapy for neurode-
generative diseases including AD due to regeneration of
neural tissue, stabilizing the neuronal networks, provid-
ing neurotrophic support and alleviating neurodegenera-
tion at different neuronal circuitry levels [10]. In clinical
trials, researchers are conducting the safety and efficacy
of Mesenchymal Stem Cells and Autologous Adipose
Tissue Derived Mesenchymal Stem Cells. Phase I clini-
cal trials of human umbilical cord blood derived mesen-
chymal stem cells and Longeveron Mesenchymal Stem
Cells preliminary prove that MSC therapy was feasible,
relatively and sufficiently safe and well tolerated [11,
12]. As for other animal models, there are more types of
stem cells—induced pluripotent stem cells (iPSCs), neu-
ral stem cells (NSCs), mesenchymal stem cells (MSCs)
and embryonic stem cells (ESCs). Neural stem/progeni-
tor cells (NSPCs) are the multipotent stem cells that are
capable of proliferation, self-renewal and generation
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of new neurons, astrocytes and oligodendrocytes [13].
NSPCs were used for some animal models, which have
evaluated the safety and effectiveness of NSPC therapy.
But there is no meta-analysis to evaluate the efficacy
and synthesize evidence of NSPC therapy in AD mod-
els. Therefore, the aim of this systematic review and
meta-analysis is to assess the efficacy of NSPC therapy
of experimental AD rodents, and our study will provide
support for clinical treatment of NSPC for AD.

Methods
Data sources and search strategy
Four database (PubMed, Embase, Web of Science and
Cochrane Library) were searched for experimentally
controlled studies of the effect of NSPC therapies on AD
models from their inception to December 6, 2022. The
search strategy used a combination of terms from medi-
cal subject headings (MeSH) and free-text keywords. The
subject headings were "Alzheimer Disease" AND "Neural
Stem Cells" AND "Mice" OR "Rats." Combined with free
words: (Alzheimer Dementia OR Dementia, Alzheimer
OR Alzheimer’s Disease OR Alzheimer Syndrome) AND
(Neural Stem Cell OR Neural Progenitor Cell OR neu-
ral stem/progenitor cell) AND (mouse OR rat). Manual
search and other methods were used to identify other rel-
evant articles. Information of detailed search strategy is
shown in Additional file 1: Table S1.

Criteria for consideration and extraction

Inclusion criteria (1) AD mice/rats treated by NSPCs;
(2) Studies provided data about MWM or Af level;
(3) Studies were published in English.

Exclusion criteria (1) No in vivo texting; (2) Review
or conference abstract; (3) No NSPC group or con-
trol group; (4) No outcome or incomplete data.

Study selection

The literature retrieved from each database was imported
into the NoteExpress, and the duplicated papers were
removed. Then, titles and abstracts were scrutinized to
determine the eligible studies after excluding the irrel-
evant articles. Then, full-text papers were obtained
reviewed for the final eligibility according to the inclu-
sion and exclusion criteria stated above. Two researchers
independently select the studies, and a third researcher
was consulted to resolve any disagreements.

Data extraction and quality assessment

Two researchers independently evaluated article quality
and extracted data, and disagreements were addressed
by discussion with a third reviewer. We extracted the
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following data from each study: first author, year, loca-
tion, sex, species, weight and year of animals, method of
AD model induction, source of NSPC, dose of cells, way
and location of administrated, groups of trials, assess-
ment time, immunosuppression or not and outcome.
If data were only shown by graphs, the GetData Graph
Digitizer software (version 2.26) was applied to extract
numerical values. When SD was not reported, it was cal-
culated by v/N x SE, and N means the sample size. If the
required information was not obtained, the study was
deleted. The SYRCLE risk of bias tool was used to evalu-
ate the quality of animal studies [14].

Statistical analysis

Cochrane Collaboration Software RevMan 5.3 and Stata
16 were used to analyze data. The combined effect size
was calculated as standardized mean difference (SMD)
with 95% confidence interval (CI) between treatment
group and control group. Heterogeneity was statistically
evaluated by Pvalue, I? <50% indicated homogeneity and
fixed-effect models were employed, or random-effect
models were used instead. Subgroup analyses were per-
formed to indicate statistical significance. Publication
bias was investigated by visual inspection of funnel plots.
All tests were two-sided, and P<0.05 was considered to
indicate statistical significance.

Results

Search results

A total of 2098 articles were initially retrieved from 4
databases, and 1316 records were obtained after remov-
ing 782 duplicates. Then after screening titles and
abstracts, 86 full-text articles were assessed for eligibility.
Fifty-six of them were excluded because of full text una-
vailable, Chinese paper, conference abstract or review, no
in vivo texting, no NSPC or AD model and no outcome
or incomplete data. Finally, 22 mice trials [15-36] and 8
rat trials [37—44] were selected (Fig. 1). Funnel plots were
used to evaluate publication bias (Additional file 2: Fig.
S1).

Study characteristics and quality

Of 30 studies, 22 were mice models and 8 were rat mod-
els. The location of studies included China, Korea, the
USA, Israel, Sweden, Iran, Japan and Egypt (Fig. 2a). The
gender of the experimental animal of all studies included
only male, or only female, or the mixed, except for 9 stud-
ies with no statements (Fig. 2b). Of all mice models, APP-
swe/PS1dE9 mice were used in 11 studies, Tg2576 mice
and APP/PS1/tau 3 x Tg AD mice were used in 3 stud-
ies, SAMPS8 mice were used in 2 studies, and Tg-tau mice,
NSE/APPsw transgenic mice and ICR mice infused with
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ibotenic acid were used in other studies. Sixteen stud-
ies used mice NSPC, 6 studies used human NSPC, and
3 studies used immunosuppression. As for rat model, 6
studies used SD rats and 2 used Wistar rats, while the
method of AD is different, such as infusing AF64A solu-
tion, ApB, okadaic acid (OA), IgG-saporin, ibotenic (IBO)
acid and nucleus basalis of Meynert (nbM) lesioning.
Four studies used rat NSPC, other 4 studies includ-
ing 2 used human NSPC and 2 used mice NSPC, and 3
of them used immunosuppression. Of all studies, there
were 14 studies combined with other treatment methods.
In almost all studies, NSPCs were stereotactically trans-
planted, only 1 was intranasally transplanted and 3 stud-
ies were intra-cerebroventricular injection. Information
on study characteristics, study quality and publication
bias is shown in Tables 1, 2, Additional files 3: Table S2,
and 2: Fig. S1.

Cognitive function

Cognitive function was assessed by Morris water maze
(MWM), and we extracted the data of escape latency
from the last day of the learning phase. Nineteen of mice
studies [15-23, 25-30, 32, 33, 35, 36] included MWM
testing, we used a random-effect model to compare
NSPC group (205 mice) and control group (190 mice),
and the analysis showed that compared with the control
group, NSPC could improve cognitive function appar-
ently (SMD= —1.96, 95% CI—2.47 to —1.45, >=75%,
P<0.00001) (Fig. 3a). Eight rat studies [37—44] included
MWM texting, we also used a random-effect model,
and the outcome showed that cognitive function com-
pared with control group (83 rats) and NSPC group (84
rats) improved apparently (SMD= —1.35, 95% CI—2.11
to —0.59, I*="77%, P=0.0005)(Fig. 3b).

Pathological features

A deposition

In mice studies, 9 studies [15, 16, 18, 24, 26, 28, 32, 35,
36] reported the difference of NSPC group (52 mice)
and control group (52 mice) about AfS deposition. We
used a fixed-effect model for low heterogeneity (P=0.14,
P =35%). Meta-analyses showed that AS deposition after
NSPC treatment was significantly lower than AD mod-
els (SMD= —0.96, 95% CI—1.40 to —0.52, P<0.0001)
(Fig. 4).

Synaptic density

We used synaptophysin (SYP) expression to evaluate syn-
aptic density to ensure if synaptic loss had been amelio-
rated, and 7 mice studies [16, 18, 20, 27-29, 32] reported
it. Because of high heterogeneity (P<0.00001, I>=82%)
(Additional files 4: Fig. S2), we used a random-effect
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2098 records identified through
database searching:

0 additional records identified
through other sources

PubMed: n=711
Embase: n=688
Web of science: n=695

Cochrane library. n=4

!

‘782 records after duplicates removed ’

‘ 1316 records screened ’

1230 records excluded based
on title or abstract screening

56 full-text articles excluded:

Full texts unavailable (n=1)

Chinese paper (n=9)

Conference Abstract or Review (n=13)
No in vivo texting (n=1)

Not NSC/NPC (n=3) Not AD model (n=1)

No outcome or incomplete data (n=28)

‘86 full-text articles assessed for eligibility ’

‘ 30 studies included in qualitative synthesis

30 studies included in quantitative
synthesis (meta-analysis)

Mice trials (n=22)
Rats trials (n=8)

and 8 rat studies were included

Fig. 1 PRISM flowchart of study selection process. A total of 2098 records were retrieved; after application of the inclusion criteria, 22 mice studies

model, which showed that SYP expression of NSPC
group (44 mice) was significantly higher than control
group (44 mice), suggesting that NSPC promotes syn-
aptic density recovery (SMD=2.02, 95% CI 0.50-3.55,
P=0.009). Sensitivity analysis showed that high hetero-
geneity could be explained by the work of McGinley et al.
[18]. After it was excluded, the level of heterogeneity
decreased (P=0.07, > =51%) (Fig. 5).

Anti-inflammatory effect

IL-1f5 expression was used to assess anti-inflamma-
tory effect of NSPC treatment, and 4 mice studies
[18, 26, 32, 33] reported it. A random-effects model
was used for the analysis because of the high hetero-
geneity (P=0.002, I>’=80%), and the results indicated
that IL-15 expression did not change significantly
(SMD = — 1.37, 95% CI — 3.13 to 0.39, P=0.13) (Fig. 6).




Zhou et al. Stem Cell Research & Therapy (2023) 14:3 Page 5 of 17
A Iran Egypt B
3% 3%

Israel

4%_\(
Swe

Fig. 2 Mapping of study characteristics included in the systematic review. A Location of studies. B Gender of animals

P-tau

A total of 3 mice studies [25, 31, 32] compared p-tau level
between NSPC group (19 mice) and control group (21
mice), and we used a random-effects model for the analy-
sis because of the high heterogeneity (P=0.08, I =60%).
The outcome showed that the p-tau level of NSPC
group is lower (SMD = —4.94, 95% CI —7.29 to—2.59,
P<0.0001) (Additional files 5: Fig. S3). Sensitivity analysis
showed that high heterogeneity could be explained by the
work of Zhang et al. [25]. After it was excluded, the level
of heterogeneity decreased (P=0.55, I*=0%) (Fig. 7). But
due to the small number of data, we need more studies to
make a conclusion.

Brain-derived neurotrophic factor (BDNF)

A total of 10 mice studies [16, 19, 24, 28, 30, 32-34, 36,
45] reported BDNF level, we used a random-effect model
to compare BDNF level between NSPC group (55 mice)
and control group (55 mice) because of high heterogene-
ity (P=0.0003, ?=71%). BDNF level of NSPC group was
higher than control group (SMD=1.69, 95% CI 0.61—
2.77, P=0.002) (Fig. 8).

Effect of NSPC combined with other treatment

A total of 14 studies used NSPC combined with other
treatment, we divided them into 3 group: a: NSPC com-
bined with nanoformulation (4 studies) [15, 33, 41, 42],
b: genetically modified NSPC (7 studies) [15-17, 30, 36,
37, 40], and c: NSPC administration with other drug (4
studies with 5 drugs) [29, 35, 43, 44]. We used a subgroup
analysis to compare the effect between combination group
with NSPC group on cognitive function (Fig. 9). The

outcome proved that both combined with nanoformula-
tion (SMD= —1.29, 95% CI —2.26 to—0.32, *=65%,
P=0.009) and genetically modified NSPC (SMD = —1.29,
95% CI—1.92 to — 0.66, >=60%, P< 0.0001) can enhance
the effect of NSPC therapy. But consolidated analysis sug-
gested that there was no statistically significant difference
in cognitive function between NSPC treatment and NSPC
administration with other drug (SMD= —0.74, 95%
CI —2.12 to 0.64, > =89%, P=0.29).

Effect of NSPC xenogeneic and allogeneic transplant

for cognitive function

Nineteen of mice studies and 8 rat studies included
MWM testing, and we divided them into 2 groups: xeno-
geneic transplant group (7 studies) [17, 18, 32, 35-37,
44] and allogeneic transplant group (20 studies) [15, 16,
19-23, 25-30, 33, 38-43]. We used a subgroup analy-
sis to evaluate the effect of NSPC xenogeneic transplant
and allogeneic transplant on cognitive function (Fig. 12).
The outcome proved that both xenogeneic transplant
(SMD= —1.10, 95% CI —1.86 to—0.35 I*=73%,
P=0.004) and allogeneic transplant (SMD = —2.01, 95%
Cl —250 to —1.53, P=74%, P< 0.00001) treatment
could improve cognitive function apparently.

Sensitivity analysis

To evaluate the stability of the results, we further per-
formed a sensitivity analysis through the sequential
omission of each study. For the pooled SMD, outcome of
cognitive function, A deposition and BDNF level were
not significantly affected by any study.
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A NSCNPC Control Std. Mean Difference Std. Mean Difference

Study or Subgrou Mean SD_Total Mean SD _Total Weight IV, Random, 95% CI IV, Random, 95% Cl

Chen 2014 16 45 10  21.25 5 10 5.8% -1.06 [-2.01,-0.11)

Huang 2021 2836 1214 8 4268 1241 8 5.5% -1.10[-2.18,-0.03]

Lee 2012 108.26 49.54 9 141.28 4855 7 5.6% -0.64 [-1.66, 0.38) - 1

Lee 2015 115 10.39 12 135 712 10 6.1% -0.21 [-1.05, 0.63] ]

Li2017 11.92 267 10 238 388 10 4.5% -3.42[489,-195 —

Lilja 2015 3029 2647 9 4912 1765 9 5.8% -0.80[1.77,017) R

Mathew 2009 1373 73N 18  26.27 2085 9 6.1% -0.90 [-1.74,-0.06] I

McGinley 2018 21.83 11.07 10 3767 2003 10 5.9% -0.94 [-1.87,-0.00]

Ofra 2014 74.03 7.3 9 9697 6.78 9 4.5% -3.10[-4.57,-1.63] -

Park 2020 51.06 42.61 10 164.54 4485 10 5.1% -2.481[-3.71,-1.26) -

Wu 2016 59.47 27.47 12 9515 11.45 12 5.8% -1.64 [[2.58,-0.69]

Zhang 2013 13.01 318 10 2257 3898 10 5.1% -2.54 [-13.78,-1.30] —

Zhang 2014 1232 258 20 2404 417 20 5.7% -3.31 [4.30,-2.33] e

Zhang 2015 12.07 448 10 2483 241 10 46% -3.40[-4.86,-1.93]

Zhang 2016 1242 492 10 2287 398 10 5.3% -2.26[-3.43,-1.08] —

Zhang 2017 10.61 3.061 10 2408 429 10 4.5% -346[495-198) —

Zhang 2021 3473 965 8 6512 835 6 4.0% -312[484,-139) ——

Zhao 2016 58.47 875 10 7245 904 10 5.6% -1.51[-2.52,-0.49] I —

Zhou 2018 57.07 455 10 7828 657 10 4.4% -3.59[-5.12,-2.07)

Total (95% Cl) 205 190 100.0% -1.96 [-2.47, -1.45] ‘

Heterogeneity: Tau®= 0.93; Chi*= 70.95, df= 18 (P < 0.00001); F= 75% 4 2 : 2 4

Test for overall effect. Z=7.53 (P < 0.00001) Favours NSC/NPC  Favours control
B NSC/NPC Control Std. Mean Difference Std. Mean Difference

Study or Subgrou Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI

Chen 2015 30.81 7.56 8 4826 2083 8 126% -1.05[-2.11,0.02]

Cui 2016 19.77 5.23 15  36.34 6.1 15 12.7% -2.84[-3.89,-1.79)

Hu 2016 4112 1426 18 5664 1536 18 147% -1.02[1.72,-0.32] -

Moghadam 2009 20.74 3.73 6 2917 3.72 6 10.0% -2.09[-3.61,-0.57] S

Park 2012 22333 15433 7 23333 14552 7 0127% -0.06 [-1.11, 0.99] . E—

Shaymaa 2022 30.59 2.66 10 40.03 29 10 10.6% -3.25[-4.67,-1.82) I

Tang 2008 31.66 8.14 8 4003 7.61 7 125% -1.00[-2.09,0.10) I

Wu 2008 59.46 21.24 12 6192 1593 12 14.2% -0.13[-0.93, 0.67] T

Total (95% Cl) 84 83 100.0% -1.35[-2.11, -0.59] -

Heterogeneity: Tau®= 0.89; Chi*= 30.33, df= 7 (P < 0.0001); F=77% ») 3 5 $ i

Test for overall effect: Z= 3.47 (P = 0.0005) Favours NSC/NPC  Favours control
Fig. 3 Forest plot shows the mean effect size and 95% confidence interval (Cl) for cognitive function of mice studies A and rat studies B between
NSPC treatment group and control group

NSC/NPC Control Std. Mean Difference Std. Mean Difference

Study or Subgrou| Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% CI

Huang 2021 94 1.67 4 1369 095 4 3.5% -2.75[-5.09,-0.40]

Lee 2015 0.8 0.55 3 119 045 3 6.6% -0.62 [-2.33,1.09] -1

Lilja 2015 5.68 218 9 791 259 9 19.9% -0.89 [-1.87, 0.09) ]

Lu 2021 156.32 56.54 5 351.72 87.39 5 57% -2.40 [-4.23,-0.57) =

McGinley 2018 1.24 0.087 10 157 0.22 10 16.0% -1.89 [-2.98,-0.80) ==

Park 2020 150.25 55.077 5 21552 96.38 5 11.2% -0.75 [-2.06, 0.56) =

Wu 2016 0.67 0.34 5 1 015 L 9.8% -1.13 [-2.53, 0.26] =T

Zhang 2014 181.21 1208 5 18255 12.08 5 124% -010[-1.34,1.14] .

Zhang 2016 4545 1.1 6 4545 27.27 6 149% 0.00[1.13,1.13] I

Total (95% CI) 52 52 100.0% -0.96 [-1.40, -0.52] L

Heterogeneity: Chi*=12.31, df= 8 (P = 0.14); F= 35% 10 5 ) 5 1:0

Testfor overall effect Z= 4.30 (P < 0.0001) Favours NSC/INPC Favours control
Fig. 4 Forest plot shows the mean effect size and 95% confidence interval (Cl) for AB deposition of mice studies between NSPC treatment group
and control group
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NSCNPC Control Std. Mean Difference Std. Mean Difference

Study or Subgrou Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI

Lee 2015 15 0.2 3 1 025 3 145% 1.73[-0.58, 4.05) 7

McGinley 2018 068 0074 10 074 0N 10  0.0% -0.61 [-1.51, 0.29]

Wu 2016 1.4 016 B 1 0.3 6 239% 1.54[0.18, 2.89] —

Zhang 2013 1.19 0.098 6 073 0.2 6 196% 2.70[0.96, 4.43] —

Zhang 2014 112 0024 5 0.72 0024 5 1.7% 15.05 [6.49, 23.62) =k

Zhang 2017 1.36 023 4 074 047 4 146% 2.67 [0.37, 4.96] —

Zhou 2018 069 0028 10 057 0.062 10 257% 2.39[1.18,3.59] =

Total (95% Cl) 34 34 100.0% 2.40[1.27, 3.54] Ry

Heterogeneity: Tau®= 0.94; Chi*=10.27, df= 5 (P = 0.07); F= 51% 0 + ; t Py

Test for overall effect: Z=4.14 (P < 0.0001)

and control group

Favours control
Fig. 5 Forest plot shows the mean effect size and 95% confidence interval (Cl) for synaptic density of mice studies between NSPC treatment group

Favours NSC/INPC

Std. Mean Difference

IV, Random, 95% CI

Std. Mean Difference
IV, Random. 95% CI

NSC/NPC Control
Study or Subgroup Mean SD Total Mean SD Total Weight
Lee 2015 0.46 0.56 7 1 0.62 6 328%
Li2017 013 0.0075 4 0.24 00075 4 36%
McGinley 2018 7483 881.99 10 639.46 387.21 10 34.9%
Zhang 2016 2.08 0.71 B 357 04 6 28.8%
Total (95% CI) 27 26 100.0%

Heterogeneity: Tau®= 2.12; Chi*=14.85, df= 3 (P = 0.002);, F=80%
Test for overall effect: Z=1.52 (P=0.13)

-0.85 [-2.01, 0.30]

1275 [-21.63,-387) ¢

0.15 [-0.73,1.03]
-2.39 [-4.01,-0.76]

-1.37[-3.13, 0.39]

PR

-4

-2

0 2z 4

Favours NSC/INPC Favours control

Fig. 6 Forest plot shows the mean effect size and 95% confidence interval (Cl) for anti-inflammatory effect of mice studies between NSPC

treatment group and control group

NSCNPC Control Std. Mean Difference Std. Mean Difference
Study or Subgrou Mean SD Total Mean SD _Total Weight IV, Fixed, 95% Cl IV, Fixed. 95% CI
Armijo 2021 11 017 7 1.91909 0.26 7 B66.6% -3.49 [-5.34, -1.64) E B
Lee 2015 0.8 0.041 B 1 0.041 5 33.4% -4.46 [-7.07,-1.85] —a—
Zhang 2021 091 011 6 212 0186 9 00% -7.97[11.45,-4.49)]
Total (95% CI) 13 12 100.0% -3.81[-5.32,-2.30] <
Heterogeneity: Chi*= 0.35, df= 1 (P = 0.55); F= 0% _2=0 _1=0 i 1=0 2=0

Test for overall effect: Z= 4.95 (P < 0.00001)

control group

Favours NSC/NPC Favours control
Fig. 7 Forest plot shows the mean effect size and 95% confidence interval (Cl) for p-tau level of mice studies between NSPC treatment group and

Std. Mean Difference
IV, Random, 95% CI

NSC/NPC Control
Study or Subgroup Mean SD Total Mean SD Total Weight
Lee 2015 112 0.14 4 1 018 3 129%
Li 2017 0.34 0082 4 012 0053 4 96%
Li2018 0.33 0.05 3 011 0.0052 3 36%
Lu 2021 303.23 59.26 6 32419 395 6 14.8%
Ofra 2014 8,041.31 630.71 8 661947 757.01 8 14.4%
Park 2020 0.7 0.29 5 015 0075 5 11.9%
Wu 2016 9.8 1.41 12 531 2.83 12 15.4%
Zhang 2014 226 0028 5 099 0028 5 02%
Zhang 2019 3.0€19 0.63 5 2.53 0.57 6 14.4%
Zhao 2016 0.75 0027 3 055 0027 3 28%
Total (95% CI) 55 55 100.0%

Heterogeneity: Tau®= 1.70; Chi*= 30.68, df= 9 (P = 0.0003); F= 71%
Test for overall efiect Z= 3.07 (F = 0.002)

Fig. 8 Forest plot shows the mean effect size and 95% confidence interval (Cl) for BDNF level of mice studies between NSPC treatment group and

control group

Std. Mean Difference
IV, Random, 95% Cl

0.64 [-0.94,2.22]
2.77[0.41,5.13)
4.95[-0.09, 9.99]
-0.38 [-1.53, 0.76)
1.93 [0.68, 3.19]
2.35[0.53, 4.16]
1.94 [0.94, 2.94]
40.97 [17.87, 64.07]
0.75 [-0.50, 2.00]
5.93[-0.02,11.87]

1.69[0.61,2.77]

-4

Favours control Favours NSC/NPC

-2

0
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combine NSPC Std. Mean Difference Std. Mean Difference

Study or Subgroup _Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI

3.3.1 combine with Nanoformulation

Chen 2015 26.01 578 8 30.814 75582 8 B66% -0.68 [-1.69, 0.34] I~

Cui 2016 11.34 407 15 19.7674 5.2326 15 7.1% -1.75[-2.61,-0.89] Tem

Huang 2021 234 803 8 2836 1214 8 B6.7% -0.46 [-1.45, 0.54) Z. ]

Liz018 19.47 1.42 5 4935 1065 5 32% -3.55[-5.91,-1.20] S

Subtotal (95% Cl) 36 36 23.6% -1.29[-2.26, -0.32] -

Heterogeneity: Tau?= 0.60; Chi*= 8.57, df= 3 (P = 0.04); F= 65%

Test for overall effect: Z= 2.61 (P = 0.009)

3.3.2 genetically modified NSPC

Huang 2021 2354 857 8 2836 1214 8 6.7% -0.43 [-1.43, 0.56] T

Lee 2012 58.72 19.27 9 108.26 4954 9 66% -1.26 [-2.29,-0.22) o o

Ofra 2014 41.27 6.27 9 74.03 7.3 9  41% -4.59 [-6.52,-2.65)

Park 2012 55 39.69 7 16333 97.01 74 6.0% -1.37 [-2.57,-0.16) S TR

Park 2020 11.27 1113 10 51.06 4261 10 6.8% -1.22[-2.20,-0.29] o

Wu 2008 4469 13.79 12 59.46 21.24 12 7.2% -0.80 [-1.63, 0.04] ——

Wu 2016 3421 11.39 12 5947 27.47 12 71% -1.16 [-2.04,-0.28) T

Subtotal (95% CI) 67 67 44.3%  -1.29[-1.92,-0.66] >

Heterogeneity: Tau?= 0.42; Chi*= 15.03, df= 6 (P = 0.02); = 60%

Testfor overall effect: Z= 4.02 (P < 0.0001)

3.3.3 administration with other drug

Hu 2016 2571 8.82 18 4112 1426 18 7.5% -1.27 [-1.99,-0.55] T

Lilja 2015 48.82 23.02 5 30,29 26.47 9 6.3% 0.68 [-0.45,1.82] = -

Lilja 2015 5812 233 7 3028 26.47 9 6.3% 1.36 [0.23, 2.49] [T T R

Shaymaa 2022 1911 373 10 30.59 2.66 10 5.3% -3.39[-4.86,-1.93] e

Zhou 2018 5042 555 10 57.07 4.55 10 6.7% -1.26 [-2.23,-0.28] T

Subtotal (95% CI) 50 56 32.0% -0.74[-2.12,0.64] ’

Heterogeneity: Tau®= 2.16; Chi*= 35.13, df= 4 (P < 0.00001); F= 83%

Test for averall effect: Z=1.06 (P = 0.29)

Total (95% Cl) 153 159 100.0% -1.15[-1.68, -0.61] ’

;—_Iete;ogeneity; T?fu==§.85;20hi;= 600.09060, d)f= 15 (P < 0.00001); *= 75% 8, 5 5 $ f
estfor overall effect: Z= 4.21 (P < 0.0001 i - :
Testfor subaroun differences: Chi*= 0.53. df= 2 (P = 0.77). F= 0% Ftyours [espafianiull ‘Bavaues [onka]

Fig. 9 Forest plots of subgroup analysis by effect of NSPC combined with other treatment for cognitive function in preclinical rodent models

Discussion

Current treatments of AD are unable to achieve satisfac-
tory therapeutic outcomes, so an effective and safe treat-
ment is urgently required. We explored whether NSPC
could be used to treat AD. Our meta-analysis of 30 stud-
ies made a comprehensive summary about the effect of
NSPC therapy on the mice and rat model of AD. Pooled
analyses confirmed that NSPC therapy could improve
cognitive function in the preclinical models of AD. Our
analysis also suggests that inject NSPC with nanofor-
mulation and genetically modified boost the efficacy of
NSPC treatment. Therefore, the present meta-analysis
provides significant clues for human clinical trials on
NSPC therapy.

Alzheimer’s disease is a progressive neurodegenera-
tive disorder, which is a major cause of dementia [46],
so we chose cognitive function as outcome indicate.
The pathological features of AD include the presence of
extracellular AS-containing senile plaques and intracel-
lular hyperphosphorylated tau-containing NFT, neuroin-
flammation and synaptic loss, so we used Af deposition,
synaptic density, anti-inflammatory effect and p-tau level
as pathological indication. We found that BDNF was

observed in several studies, so we analyzed the change of
BDNF to evaluate the function of NSPC therapy.

Morris water maze (MWM) experiment is widely used
in scientific research to assess the learning and memory
of animals [47]. Almost all studies use MWM experiment
as behavioral experiments to observe whether cogni-
tive function has improved. In this analysis, we used the
data of escape latency from the last day of the learning
phase to evaluate the cognitive function. Compared to
control group, almost all data of NSPC treatment group
were lower, which means that NSPC therapy could
improve the learning and memory function of AD model
and ameliorate the deterioration of cognitive function.
The subgroup analysis of assessment time in mice trials
showed that after 3 months, NSPC therapy still has effec-
tiveness (SMD= —1.18, 95% CI —2.07 to 0.30, ?=6%,
P=0.009) (Fig. 10). But in rat studies, after 1 month,
NSPC does not work (SMD= —1.62, 95% CI—4.74 to
1.50, =92%, P=0.31) (Fig. 11).

Ap is one of the key initiating factors of AD pathogene-
sis. Accumulation of Af results in loss of synapses, neuro-
inflammation and ultimately cognitive deficits [48]. Our
analysis collected the data about Af3 expression of NSPC
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Experimental Control Std. Mean Difference Std. Mean Difference
Study or Subgroup Mean SD_Total Mean SD_Total Weight IV, Random, 95% Cl IV, Random, 95% CI
2.1.1 xenogeneic transplant
Lee 2012 108.26  49.54 9 141.28 4855 739% -0.64 [-1.66, 0.38] —
Lee 2015 115 1039 12 135 712 10  4.2% -0.21 [-1.05, 0.63] -1
Lilja 2015 30.29 26.47 9 4812 17.65 9 4.0% -0.80 [-1.77,0.17] I
McGinley 2018 2183 11.07 10 3767 20.03 10 41% -0.94 [-1.87,-0.00] ]
Park 2012 223.33 15433 7 23333 14552 7 3.9% -0.06 [-1.11, 0.99] T
Park 2020 51.06 4261 10 164.54 4485 10 36% -2.48[-3.71,-1.26] e
Shaymaa 2022 30.59 2.66 10 4003 29 10 3.2% -3.25[-4.67,-1.82]
Subtotal (95% CI) 67 63 26.9% -1.10 [-1.86, -0.35] s
Heterogeneity: Tau®= 0.75; Chi*= 2215, df= 6 (P = 0.001); F=73%
Test for overall effect: Z= 2.85 (P = 0.004)
2.1.2 allogeneic transplant
Chen 2014 16 45 10 21.25 5 10  4.0% -1.06 [-2.01,-0.11]
Chen 2015 3081 7.56 8 4826 2093 8 3.8% -1.05[-2.11,0.02] -
Cui 2016 19.77 5.23 15  36.34 6.1 15 3.9% -2.84[-3.89,-1.79]
Hu 2016 4112 1426 18 56,64 1536 18 4.5% -1.02[1.72,-0.32] R
Huang 2021 2836 1214 g 4268 1241 g  38% -1.10[-2.18,-0.03]
Li2017 11.92 2.67 10 238 3.88 10  3.2% -3.42[-4.89,-195) —
Mathew 2009 13.73 7.9 18 2627 2085 9 4.2% -0.90 [-1.74,-0.06] -
Moghadam 2009 20.74 3.73 6 2917 3.72 6 31% -2.09[-3.61,-0.57]
Ofra 2014 74.03 7.3 9 96.97 6.78 9 3.2% -3.10[-4.57,-1.63]
Tang 2008 31.66 8.14 g 4003 7.61 7 38% -1.00 [-2.09, 0.10] i
Wu 2008 59.46 21.24 12 6192 1593 12 4.3% -0.13[-0.93,0.67) [
Wu 2016 59.47 2747 12 9515 11.45 12 41% -1.64 [-2.58,-0.69]
Zhang 2013 13.01 319 10 2257 3.98 10  3.5% -2.54 [-13.78,-1.30] -
Zhang 2014 12.32 2.58 20 2404 417 20 4.0% -3.31 [[4.30,-2.33]
Zhang 2015 12.07 4.48 10 2483 4 10 32% -3.40[-4.86,-1.93) —  —
Zhang 2016 12.42 492 10 2297 3.98 10 3.7% -2.26[-3.43,-1.08]
Zhang 2017 10,61 3.061 10 24.08 4.29 10 31% -3.46 [-4.95,-1.98]
Zhang 2021 3473 9.65 8 6512 8.35 6 2.8% -3.12[-4.84,-1.39]
Zhao 2016 58.47 8.75 10 7245 9.04 10 3.9% -1.51 [2.52,-0.49]
Zhou 2018 57.07 455 10 78.28 6.57 10  31% -3.59[5.12,-2.07]
Subtotal (95% CI) 222 210 73.4%  -2.01[-2.50,-1.53] <>
Heterogeneity: Tau®= 0.88; Chi*= 73.43, df= 19 (P < 0.00001); = 74%
Test for overall effect: Z=8.09 (P < 0.00001)
Total (95% CI) 289 273 100.0% -1.78 [-2.20, -1.35] <&
Heterogeneity: Tau?= 0.93; Chi*= 107.58, df= 26 (P < 0.00001); = 76% » g a . H
Test for overall effect: Z=8.16 (P < 0.00001) NSO . < [
Test for subaroun differences: Chi*= 3.94. df=1 (P = 0.05). F=74.6% Favours INSGINRC] Fevaurs (Caniol
Fig. 10 Forest plots of subgroup analysis by effect of NSPC allogeneic transplant and NSPC xenogeneic transplant for cognitive function in
preclinical rodent models

group and control group; compared to control group,
ApB deposition of NSPC group was significantly lower,
so we can conclude that NSPC decreases AfS accumula-
tion. Tau proteins are microtubular neuronal proteins.
The tau proteins have a microtubule binding domain,
which is involved in polymerization and stabilization of
the microtubule assembly to maintain the integrity of the
cytoskeleton. Hyperphosphorylation results in decreased
affinity of the tau proteins to microtubules. The hyper-
phosphorylated tau forms NFTs and gets deposited in the
cytosol and can no longer perform the function of main-
taining the structure of the cell [46]. Moreover, it would
impair cognitive function. Of all studies, 3 studies [25, 31,
32] reported p-tau level and suggested that NSPC treat-
ment would reduce p-tau aggregation (Fig. 12).

A synaptic damage in the neocortex and limbic system
causes memory impairment and generally is observed
at the early stages of AD [49]. SYP is a specific protein

on the membrane of synaptic vesicles, which may be
involved in the formation of synaptic vesicles and den-
drite spine. Here, we used SYP to evaluate synaptic
density. The data of NSPC group were higher than con-
trol group, and it can prove that NSPC transplantation
enhances synaptic density, attenuated the synaptotoxic
properties of A and promoted synaptic plasticity [32].
Electrophysiological recording of 2 studies [31, 45] also
proved that NSPC transplantation promoted synaptic
plasticity.

Many studies now point to the involvement of neuro-
inflammation playing a fundamental role in the progres-
sion of the neuropathological changes that are observed
in AD [50]. Unlike other risk factors and genetic causes
of AD, neuroinflammation is not typically thought to be
causal on its own but rather a result of one or more of
the other AD pathologies or risk factors associated with
AD and serves to increase the severity of the disease by
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Fig. 11 Forest plots of subgroup analysis by assessment time for cognitive function in mice model

ot

exacerbating S-amyloid and tau pathologies [51, 52]. cortex and hippocampus [54, 55]. BDNF is a neurotro-
IL-1p has been described as a “master regulator” within  phin that modulates the survival of stem cells and pro-
the brain inflammatory cascade, and disruptions to IL-18  genitors, neurogenesis and neuronal differentiation, the
can delay the onset of neuroinflammation and neuro- branching and survival of differentiated neurons and the
degeneration [53]. We used IL-15 expression to evalu- formation and maturation of the dendritic spine and syn-
ate neuroinflammation, though the data we collected of apses. Thus, BDNF influences learning and memory [56].
NSPC group were lower than control group, and there  And our analysis demonstrated that NSPC treatment
was no statistical significance between two groups. One  could improve BDNF level to ameliorate the condition of
study quantified the density of microglia and astrocytes ~ AD.
and proved that NSCs transplantation reduced the den-
sity of astrocytes and microglia, suggesting that NSCs  Limitations
inhibit neuroinflammation [24, 54]. Several potential limitations of our meta-analysis should
In the brain, BDNF is expressed by glutamatergic neu- be considered. First, although we performed stratified
rons and glial cells, such as astrocytes isolated from the and sensitivity analyses, the heterogeneity among studies
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Fig. 12 Forest plots of subgroup analysis by assessment time for cognitive function in rat model

could not be remarkably reduced. This may influence
the stability of the results. Second, data of Af deposi-
tion, SYP expression, tau level and more indicators were
lacked in several studies, and role of NSPC in AD allevia-
tion requires further evaluation. Third, our meta-analysis
only observed mice and rat models, which are not able to
well simulate the physical conditions of human suffered
from AD.

Conclusion

The data of our meta-analysis revealed, NSPC transplan-
tation may enhance the cognitive function and reduce
AD burden, while the nanoformulation and genetically
modification may promote the effect of NSPC therapy.
Which would provide the theoretical foundation and
guide for clinical trials of NSPC for AD. Both xenogeneic
and allogeneic transplant of NSPC could improve the
cognitive function of AD animals. More animal studies
and human trials are needed for further investigation.
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