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Abstract 

Stem cell differentiation is of great interest in medical research; however, specifically and effectively regulating stem 
cell differentiation is still a challenge. In addition to chemical factors, physical signals are an important component 
of the stem cell ecotone. The mechanical microenvironment of stem cells has a huge role in stem cell differentiation. 
Herein, we describe the knowledge accumulated to date on the mechanical environment in which stem cells exist, 
which consists of various factors, including the extracellular matrix and topology, substrate stiffness, shear stress, 
hydrostatic pressure, tension, and microgravity. We then detail the currently known signalling pathways that stem 
cells use to perceive the mechanical environment, including those involving nuclear factor-kB, the nicotinic acetyl-
choline receptor, the piezoelectric mechanosensitive ion channel, and hypoxia-inducible factor 1α. Using this informa-
tion in clinical settings to treat diseases is the goal of this research, and we describe the progress that has been made. 
In this review, we examined the effects of mechanical factors in the stem cell growth microenvironment on stem cell 
differentiation, how mechanical signals are transmitted to and function within the cell, and the influence of mechani-
cal factors on the use of stem cells in clinical applications.
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Background
Stem cells have unquestionable importance in medicine 
and are receiving increasing attention due to their role 
in several diseases [1, 2]. Stem cell renewal [3], migra-
tion [4], adhesion [5], and differentiation [6] are integral 
to the proper functioning of living organisms, and their 
dysregulation can lead to multiple diseases. The major-
ity of research on stem cell differentiation concerns how 
chemical stimulation affects differentiation [7]. However, 
there is growing evidence of the importance of physical 

signals in stem cell fate [8]. The application of specific 
physical factors can propel the differentiation of stem 
cells in a more clinically favourable and specialized direc-
tion [9–11].

The microenvironment in which stem cells grow con-
tains not only a variety of biochemical molecules, but 
also a variety of mechanical factors [12]. The mechani-
cal microenvironment of stem cells alters the fate of 
stem cells [13] and regulates multiple signalling cascade 
responses involved in stem cell differentiation [14]. And 
different types of stem cells will differentiate in different 
directions and show different fates when responding to 
the same microenvironmental signals. The effect of these 
mechanical signals on stem cell differentiation has an 
important role in clinical application [15] (Table 1).
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Table 1  Role and application of mechanical signals on stem cell differentiation

ECM extracellular matrix, BMSCs bone marrow mesenchymal stem cells (MSCs), hESCs human embryonic stem cells, hASCs human adipose stem cells, hMSC human 
MSC, rAMSCs rat adipose MSCs, VPC vascular progenitor cell, rBMSC rat bone marrow MSC, 3D MT-dASC 3D microtissue-derived adult stem cell, mESC mouse 
embryonic stem cell, NSPC neural stem progenitor cell, EPCs endothelial progenitor cells

Physical signal Mechanical signal Responsive cell Effectiveness of 
mechanical signal

Application References

ECM dECM BMSC Enhancing osteogenic and 
angiogenic potential

Optimization of cell culture 
conditions

[20]

3D Microenvironment hESC Promoting gene expres-
sion associated with dif-
ferentiation to neural crest 
stem cells and osteoblasts

Optimizing artificial scaf-
folds as culture conditions

[23]

ECM and artificial scaffolds hASC Corresponding cell-
derived ECM promotes 
corresponding differentia-
tion

Improving the regenera-
tive capacity of unmodi-
fied scaffolds

[26]

Substrate topology Low pore size fibres hMSC Enhancing osteogenesis Inducing stem cell-
directed differentiation

[32]

Large pore size fibres rAMSC Promoting differentiation 
into islet-like clusters

[33]

Porous topology NSPC Promoting differentia-
tion into astrocytes and 
neurons

[34]

Composite microstructure 
of nanofibres

rBMSC Enhancing osteogenic 
differentiation

[35]

Substrate hardness High hardness 3D-printed 
ECM

BMSC Differentiating into sweat 
gland cells and hair follicle 
cells

[38]

Hard alginate shells hMSC Promoting osteogenic 
differentiation

[39]

Soft hydrogel VPC Inducing differentiation 
towards endothelial cells

[40]

Shear stress Oscillatory shear stress rBMSC Promoting osteogenic 
differentiation

Bone tissue engineering [48]

Intermittent shear stress rBMSC Enhancing osteogenic 
differentiation

[49]

Perfusion culture 3D MT-dASC Changing in direction of 
osteogenic differentiation 
to lipogenic differentiation

[55]

Hydrostatic pressure Circulating hydrostatic 
pressure

MSC Enhancing osteogenic 
response

Changing the direction of 
stem cell differentiation

[59]

Circulating hydrostatic 
pressure and decalcified 
bone matrix scaffold

MSC Reducing osteogenic 
properties and enhancing 
chondrogenic properties

[60]

Tension Cyclic mechanical draft 
force

Human periodontal stem 
cells

Promoting osteogenic 
differentiation

Dental tissue engineering [61–63]

Cyclic stretching EPCs Differentiating towards 
endothelium and angio-
genesis

Vascular regeneration 
project

[64]

Bone marrow-derived cells Expressing smooth muscle 
cell markers

[65]

Microgravity Microgravity hBMSC Inhibiting osteogenic dif-
ferentiation and promoting 
adipogenic and chondro-
genic differentiation

Treatment of diseases 
related to bone loss in 
space

[75, 76]

Nanostands and micro-
gravity

hBMSC Mitigating microgravity-
induced osteoblast 
dysfunction

[77]

Simulation of microgravity mESC Differentiating towards the 
stereotyped endoderm

Contribution to the study 
of regeneration engineer-
ing

[79]
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The cytoskeleton plays an indispensable role in the 
cell’s perception of the mechanical environment. Actin 
senses the stiffness of the environment and controls the 
persistence of the platelet foot through a specific cluster 
of actin/proto-myosin filaments, which in turn assembles 
a focal adhesion [16]. The focal adhesion then binds to 
extracellular matrix (ECM) ligands as well as intracellular 
proteins [17]. The mechanical signal is then transmitted 
to the nucleus via stress fibres [14]. Fibre stiffness in turn 
acts on ligand density at the cell surface and promotes 
the formation of the focal adhesion and associated sig-
nalling [18]. In addition to the transmission of perceived 
mechanical signals through the cytoskeleton to regulate 
stem cell differentiation, cells also transform mechanical 
signals into cell-recognizable chemical signals through 
various mechanosensors and transduction mechanisms 
[17], which in turn regulate stem cell differentiation.

This review aims to summarize the impact of mechani-
cal factors in the stem cell growth microenvironment on 
stem cell differentiation, describe how stem cells sense 
and respond to mechanical signals to function, and fur-
ther explore the clinical implications of the influence of 
mechanical factors on stem cells.

Mechanical microenvironment for stem cell growth
The stem cell microenvironment refers to all the environ-
mental factors surrounding stem cells in tissues as they 
proliferate, self-renew, and differentiate into tissue cells 
at their residency sites, including soluble biomolecules, 
solid ECM with supporting cells, and the mechanical 
and physicochemical environment surrounding the stem 
cells. The mechanical microenvironment is an integral 
part of the stem cell microenvironment and includes 
the mechanical support of the ECM, the forces exerted 
on the cell by the environment, and the forces caused by 
the interaction of the cell with the surrounding support 
cells [19]. In vivo, the development, growth, proliferation, 
and differentiation of stem cells are inseparable from the 
mechanical environment in which they are embedded. In 
the usual physiological mechanical environment, stem 
cells can perform their functions normally; when the sur-
rounding environment changes, the various functions 
of stem cells also change. Multiple aspects of the influ-
ence of the mechanical microenvironment of stem cell 
growth on their differentiation can be studied, including 
the extracellular matrix, substrate topology, substrate 
stiffness, shear stress, tension, hydrostatic pressure, and 
microgravity.

Extracellular matrix and topology
ECM is a three-dimensional network of various extra-
cellular macromolecules, such as collagen, elastin, 

fibronectin, and laminin proteins, which provide a good 
environment for cells to survive. Cells cultured in  vitro 
secrete ECM and the cell-derived ECM (dECM) pro-
duced after cell removal has great application in cell cul-
ture. For example, culturing bone marrow mesenchymal 
stem cell (MSC) (BMSC) with different combinations of 
distinct cell types of dECM showed that dECM enhanced 
the osteogenic and angiogenic potential of BMSC com-
pared to tissue culture polystyrene; the different behav-
iour of the BMSC is related to the different proportions 
of cells that make up the dECM [20]. In addition, the 
natural living environment of cells is three-dimensional 
and 3D culture better simulates the realistic living envi-
ronment of the cells. When cells are cultured in 3D, their 
biological behaviour and morphological size are altered, 
thus changing their surrounding mechanical microenvi-
ronment. Morphological changes and geometry of cells 
can modulate nanostructures and lipid assembly within 
cell membranes, thereby regulating stem cell signalling 
and differentiation fate [21]. The study of 3D materials 
will contribute to the development of tissue engineering 
and regenerative medicine [22]. Artificial scaffolds can 
be used to replace natural ECM as a cell culture medium. 
β-tricalcium phosphate (β-TCP) scaffolds with ECM-like 
properties provide a 3D microenvironment for human 
embryonic stem cell (hESC) and promote the expres-
sion of genes associated with neural crest stem cells and 
osteoblast differentiation [23]. Therefore, the continu-
ous optimization of artificial scaffolds as culture condi-
tions will help to further explore how ECM affects stem 
cell differentiation. Osteogenic differentiation of stem 
cells was significantly increased when 3D scaffolds were 
combined with heparin and bone morphogenetic pro-
tein 2 (BMP-2) [24]. Osteogenic differentiation was also 
significantly enhanced in MSCs growing on alginate/gra-
phene oxide-printed 3D scaffolds [25]. Other groups have 
attempted to combine artificial stents with ECM, com-
bining cell-derived ECM with 3D-printed polycaprolac-
tone (PCL) scaffolds to culture human adipose stem cells 
(ASCs) (hASCs). Chondrocyte-derived ECM promoted 
cartilage differentiation and osteoblast-derived ECM was 
able to stimulate hASCs towards osteogenic differentia-
tion [26]. Cell-derived ECM therefore has great potential 
to enhance the regenerative capacity of unmodified PCL 
stents and warrants further study, offering the possibil-
ity of determining the fate of stem cell differentiation. 
Interestingly, the effects of the 3D environment on stem 
cells are not static, but diverse. Induced pluripotent stem 
cell (iPSC) differentiates into a typical MSC-like pheno-
type on tissue culture plastic or on the surface of fibrin 
hydrogels. In contrast, iPSCs embedded in a 3D environ-
ment do not differentiate towards MSC and have reduced 
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differentiation potential for osteogenic and lipogenic lin-
eages [27].

The topology of the substrate is a physical charac-
teristic of the microenvironment in which the cells are 
anchored and affects stem cell differentiation in many 
ways. Nanoscale materials have been widely used to 
model ECM and their topology has a significant impact 
on the fate of stem cells [28, 29]. For example, Jaswal et al. 
investigated electrospun nanofibre scaffolds for periph-
eral nerve regeneration [30] and found that precisely 
controlled concentrations of reduced graphene-encapsu-
lated gold nanoparticles in PCL fibre scaffolds provided 
a microenvironment that mimicked natural ECM, and 
that their uniformly distributed topology might increase 
the stimulation of cell differentiation and could promote 
neuronal network formation. In addition, the nano-
topography enhances the hydrophilicity of 3D-printed 
polylactic acid (PLA) scaffolds and significantly enhances 
osteogenic differentiation on the scaffold [31]. The study 
of how scaffold topology regulates cell behaviour can be 
considered from several perspectives, including pore size, 
porosity, fibre morphology, fibre diameter, and orienta-
tion. When human MSC (hMSC) were inoculated in 3D 
ECM-like fibrous structures, the smaller pore size exhib-
ited higher overall stiffness and significantly enhanced 
hMSC collagen and mineral deposition, enhancing oste-
ogenesis [32]. A 3D electrospun nanofibre scaffold with 
a large pore size supported the differentiation of rat adi-
pose MSCs (rAMSCs) into islet-like clusters [33]. The 
addition of different copolymers to PCL produced micron 
fibres with a porous topology that allowed cultured rat 
neural stem progenitor cell (NSPC) to differentiate into 
astrocytes and neurons in the absence of any growth fac-
tors, demonstrating the role of the porous topology of 
the fibres [34]. Electrostatic spinning scaffolds of calcium 
phosphate nanoparticles with a composite microstruc-
ture of microbeads and nanofibres can enhance the oste-
ogenic differentiation of rBMSCs by promoting scaffold 
biomineralization and protein adsorption through the 
exposure of bioactive components [35], which has poten-
tial in bone regeneration. The highest expression of insu-
lin-differentiated cells was found on 300  nm-diameter 
fibres when mouse ESCs were cultured in a reticulated 
fibrous medium formed from polyamide (PA) fibres [36].

Substrate stiffness
Under physiological conditions, cells in vivo are anchored 
to tissue substrates of varying stiffness, and their specific 
stiffness influences the cells that grow on them. Substrate 
stiffness has a role in a wide range of stem cell differen-
tiation profiles [37]. Cells perceive the stiffness of ECM 
through cytoskeletal contractility, and the relatively high 
stiffness of 3D-printed ECM facilitates the differentiation 

of BMSCs towards sweat cells and hair follicle cells [38]. 
The harder alginate shell promotes osteogenic differen-
tiation of hMSCs [39], whereas the softer hydrogel will 
direct the differentiation of vascular progenitor cells 
(VPCs) towards endothelial cells (ECs) [40]. In addi-
tion, stiffness and topology have a synergistic effect on 
the maintenance of stem cell characteristics and the adi-
pogenic or osteogenic differentiation of mouse MSCs 
(mMSCs) [41]. Matrix stiffness plays a dominant role in 
the maintenance of stemness on hard gels and hepatic 
differentiation on soft gels, whereas matrix morphology 
contributes to hepatocyte-like differentiation on soft gels 
[42]. MSC can interestingly no longer perceive the differ-
ence between soft and hard substrates after a period of 
incubation on a rigid substrate [43]. Therefore, in addi-
tion to the synergistic effect of substrate morphology 
and substrate hardness, incubation time also plays a role 
in regulating the differentiation of MSCs. The response 
of MSCs to substrate morphology varies depending on 
substrate stiffness and incubation time, and the effect 
of substrate stiffness and incubation time on MSCs also 
depends on the morphology of the substrate arrange-
ment [44].

Shear stress
All types of tissue cells in the normal human body are 
continuously exposed to shear stresses caused by fluid 
flow in the tissue interstices under load. Shear force treat-
ment of hESC simulated by the Microfluidic Dynamic 
Culture System promotes the expression of blood pro-
genitors in the hESC lineage, reducing the proportion of 
mono-competent erythroid and megakaryocyte lineages 
and increasing the number of bone marrow and bipotent 
megakaryocyte–erythroid progenitors. Shear force treat-
ment also promoted smooth muscle and cardiomyocyte 
production, suggesting a role for shear stress in both the 
haematopoietic spectrum and the arterial vascular sys-
tem [45]. Human pluripotent stem cell-derived endothe-
lial cells (hPSC-ECs) are more sensitive to low levels of 
shear stress and require prolonged exposure to shear 
stress to trigger stable phenotypic changes, exhibiting 
increased expression of arterial markers, suggesting that 
hPSC-ECs are transformed into an arterial phenotype 
[46]. Thus, shear stress influences the differentiation of 
stem cells.

Perfusion flow-induced shear stress in a fully automated 
bioreactor enhances osteogenic differentiation in hBMSC 
and modulates O2 concentration to improve osteogenic 
differentiation. This bioreactor is used to precisely con-
trol the fate of stem cells in terms of osteogenesis and 
has potential applications in the healthcare industry, for 
example in the prevention of osteoporosis [47]. How-
ever, although shear stress induced by perfusion flow was 
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demonstrated to have a role in inducing stem cell differ-
entiation, different patterns, sizes, and rates of fluid shear 
stimulation have different effects on stem cells. Osteo-
genic differentiation of rat bone marrow MSCs (rBM-
SCs) is more strongly promoted by 0.0225 Pa oscillatory 
shear stress [48]. Intermittent shear stresses of the order 
of 10 mPa can effectively enhance the osteogenic differ-
entiation of rBMSCs [49]. The rate of fluid shear stress 
can also control the fate of rBMSCs towards osteogenic 
or chondrogenic cell differentiation [50]. The effect of 
osteogenic differentiation of rBMSCs under different 
shear stresses could be useful for bone tissue engineering 
applications. Therefore, the study of different stresses on 
the induction of osteogenic differentiation of stem cells 
has great importance.

However, a single application of shear stress is not suf-
ficient. In practice, a combination of other culture con-
ditions should be considered to improve the efficiency 
of targeted differentiation. Shear stress combined with 
polymeric biomaterials can enhance the osteogenic dif-
ferentiation of MSCs [51]. This combination has driven 
improvements in the clinical approach to treating bone 
defects. High levels of cardiac-related gene expression 
were not observed in either of the 5-azacytidiner (5-Aza) 
or shear stress groups, whereas BMSCs cultured with 
5-Aza in concert with shear stress showed significantly 
increased cardiac-related gene expression [52], which is 
expected to promote cardiac differentiation of stem cells. 
In addition to shear stress combining with biochemical 
conditions to regulate stem cell behaviour, shear stress 
can also work in concert with other physical conditions. 
Shear-stressed groove structures can promote the differ-
entiation of BMSCs into myofibroblasts [53]. The hBM-
SCs embedded in the 3D scaffold are subjected to shear 
stress to produce a typical tendonogenic phenotype and 
promote the expression of tendon gene markers [54]. 
Osteogenic differentiation of 3D microtissue-derived 
human stem cells on bone bionic electrospun nanocom-
posites was evident, but shear stress led to lipogenic dif-
ferentiation of 3D microtissue-derived human stem cells 
under perfusion culture [55]. This result not only links 
the 3D environment and composite materials to stem 
cell differentiation, but also contributes to changing the 
direction of stem cell differentiation.

Hydrostatic pressure
Hydrostatic pressure (HP) is a mechanical force that is 
widely present in the environment in which cells live. 
Using autologous platelet-rich fibrin (PRF) membranes 
as a growth factor-rich scaffold and culturing BMSCs 
pre-conditioned with HP prior to transplantation greatly 
enhanced the chondrogenic potential of the BMSC/PRF 
constructs. Further studies showed that the pressurized 

pretreated BMSC/PRF graft group showed a significant 
improvement in the integration of the regenerated car-
tilage with the host cartilage environment [56]. HP is 
therefore worth considering in the application of stem 
cell differentiation.

HP combined with the stromal microenvironment can 
induce directed differentiation of stem cells. Intermit-
tent HP (IHP) and 3D microenvironments modified with 
ECM proteins, especially collagen, have a synergistic 
effect on the expression of chondrogenic genes by MSCs 
[57]. HP and piezoelectric scaffolds also have a syner-
gistic effect on promoting chondrogenic differentiation 
in MSCs [58]. Circulating HP (CHP) increases the MSC 
osteogenic response through cytoskeletal reorganiza-
tion [59]. However, when CHP was applied to hBMSCs 
in a decalcified bone matrix (DBM) scaffold, it reduced 
osteogenic properties and favoured chondrogenic prop-
erties [60], suggesting that HP combined with different 
induction conditions could alter the direction of stem cell 
differentiation.

Tension
Tension is the force exerted on an object by means of 
pulling in a certain direction, such as the pulling force 
produced on the cells in the body by the tissues. For 
example, muscle contraction is a movement produced 
by the cells being subjected to traction. Multiple stud-
ies confirm that cyclic mechanical tension can promote 
osteogenic differentiation of human periodontal stem 
cells [61–63]. Further studies have elucidated the con-
tribution of tensile forces to stem cell differentiation. 
Circulating stretch not only promotes endothelial differ-
entiation and angiogenesis of endothelial progenitor cells 
(EPCs) [64], but also enhances the expression of smooth 
muscle cell markers by bone marrow-derived cells [65], 
which has applications in vascular regeneration engineer-
ing. Appropriate tensile strain promotes osteogenic dif-
ferentiation of BMSCs while inhibiting differentiation to 
adipocytes [66], and uniaxial cyclic stretch is even more 
significant in inducing MSC differentiation to osteoblasts 
in vitro [67]. This result also suggests that different types 
of tension act in different ways on stem cells.

In addition, the frequency and amplitude as well as 
the duration of stretching led to the differentiation of 
cells in different directions [68]. For example, the gene 
expression of type I collagen (Col I) and glycosaminogly-
can (GAG) was significantly upregulated in the 10% and 
15% stretch groups, whereas the gene expression of type 
II collagen (Col II) was downregulated, leading to differ-
entiation towards fibrochondrocytes. However, a higher 
stretch stimulus (15%) simultaneously promoted the syn-
thesis of α-smooth muscle actin. Therefore, 10% radial 
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stretch stimulation is the optimal intensity to induce dif-
ferentiation of BMSCs into fibrochondrocytes [69].

Microgravity
A microgravity environment is one in which the appar-
ent weight of a system is much less than its actual weight 
in the presence of gravity. Microgravity is not common 
in daily life, but it has a major impact on astronauts con-
ducting space operations. Microgravity can up- or down-
regulate differentiation-related genes [70, 71], which 
may lead to a range of related disorders in astronauts, 
such as bone loss [72] and cardiovascular disease [73]. 
In addition, simulated microgravity conditions may also 
disrupt the homeostasis of the immune system and lead 
to dynamic changes in hematopoietic stem cells (HSC) 
and lineage cells [74]. These results contribute to a bet-
ter understanding of immune regulation and its changes 
during spaceflight, thus providing possible directions for 
the prevention or treatment of immune system disorders 
in astronauts.

Many studies have demonstrated that microgravity 
inhibits the osteogenic differentiation of hBMSCs while 
promoting adipogenesis and chondrogenic differentia-
tion [75, 76]. However, growth on a nanocrystalline mag-
nesium-doped hydroxyapatite/type I collagen composite 
scaffold (MHA/Coll) can attenuate microgravity-induced 
osteoblast dysfunction in hBMSCs and promote cell dif-
ferentiation along the osteogenic lineage [77]. In addi-
tion, nanocomplexes loaded with BMP2 and BMP7 in 
simulated microgravity can also promote osteogenic dif-
ferentiation of human adipose-derived stem cells (hAD-
SCs) [78]. These results indicate the possibility of treating 
diseases associated with bone loss in space.

Microgravity has a positive effect in some ways. Mouse 
embryonic stem cell (mESC) cultured in a rotating bio-
reactor under simulated microgravity conditions can 
differentiate towards stereotyped endoderm, and these 
cells can further differentiate into cells from other related 
organs such as the pancreas, liver, and thyroid [79]. Simu-
lated microgravity also promoted the proliferation and 
matrix production of tissue-engineered human chon-
drocyte-like cells [80]. MSCs cultured with a liver induc-
tion medium are more conducive to liver differentiation 
under long-term microgravity conditions [81]. Micro-
gravity is therefore useful for regenerative engineering 
studies and has potential applications for disease preven-
tion and treatment.

Mechanisms for perceiving the mechanical 
environment
As described in the previous section, mechanical stim-
uli, or the mechanical properties of the pericellular 
matrix material, play an important role in regulating 

the morphological development and function of stem 
cells. However, the exact mechanisms of how mechani-
cal signals are sensed by and transmitted to and within 
stem cells, ultimately leading to a range of biological 
effects in stem cells, need to be further explored. There 
are two main mechanisms regarding the cellular percep-
tion of mechanical signals: transmission and transduc-
tion mechanisms. Signal transmission mechanisms occur 
when changes in the microenvironment are transmit-
ted via sensors into the cell to cause rearrangement of 
the cytoskeleton, which in turn transmits signals to the 
cytoskeleton in the nucleus. Signal transduction mecha-
nisms occur when changes in the microenvironment alter 
the permeability of ion channels or the activity of associ-
ated intracellular receptors, transducing mechanical sig-
nals into chemical signals to regulate the expression of 
associated genes. The two mechanisms work in synergy 
to transmit and convert mechanical signals. The cytoskel-
eton, integrins, and ion channels, among others, play 
important roles in perception [40]. In addition, various 
cellular sensory transduction pathways have been asso-
ciated with mechanical stimulation, including signalling 
pathways such as NF-κB, nAChR, PIEZO, and HIF-1α.

NF‑κB signalling pathway
Nuclear factor κ-B (NF-κB) is a ubiquitous, inducible 
nuclear transcriptional activator that binds to enhancer 
elements in many different cell types and can also be 
activated by pathogenic stimuli. RANKL is a ligand for 
NF-κB receptor activator (RANK), which binds specifi-
cally to and activates RANK. RANKL-stimulated cells 
exhibit marked translocation of p65 from the cyto-
plasm to the nucleus, phosphorylating and activating 
NF-κB pathway-associated proteins. Activated NF-κB/
p65 translocation to the nucleus reduces the expression 
of runt-related transcription factor 2  (RUNX2), alkaline 
phosphatase (ALP), and osteoprotegerin (OPG). At the 
same time, OPG is a decoy receptor for RANKL, which 
competitively inhibits the binding of RANKL to RANK, 
inhibiting osteoclast production and its survival time. 
Therefore, the relative ratio of RANKL/OPG, which 
coordinates osteoblast/osteoclast production, is of great 
importance [82].

Binding of NF-κB dimers to NF-κB inhibitor (IκB) 
in the cytoplasm renders NF-κB dimers inactive. IκB 
proteins are phosphorylated and degraded following 
physical or chemical stimulation of cells. Subsequently, 
NF-κB dimers are transformed into an activated state, 
released, and transferred to the nucleus, leading to 
nuclear localization of p65 and increased expression 
of RANKL mRNA, resulting in an increased RANKL/
OPG ratio, which in turn induces target gene transcrip-
tion [83]. Mechanical stretching reduces phosphorylated 
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IκB kinase and IκBα degradation is inhibited, resulting 
in increased IκBα, reduced phosphorylation and nuclear 
accumulation of P65, and downregulated activity, which 
in turn blocks NF-κB activity and promotes osteogenesis 
in hBMSCs [84]. The NF-κB signalling pathway provides 
a starting point for more precise regulation of stem cell 
differentiation at the molecular level.

NF-κB is expressed in rat growth plate chondrogen-
esis, stimulates chondrocyte proliferation and differentia-
tion, prevents apoptosis, and promotes longitudinal bone 
growth [85], whereas in hyperchondrogenesis or arthritic 
cartilage, interleukin (IL)-1β is highly expressed, induces 
upregulation of miR-381, and promotes cartilage matrix 
resorption by inhibiting type II collagen and inducing 
metalloproteinase-13 (MMP-13) [86]. In addition, IL-1β 
significantly upregulates NF-κB, promotes p65 nuclear 
translocation, and activates Rac1 and reactive oxygen 
species (ROS), which in turn activate NF-κB translation 
in chondrocytes, thereby reshaping the microenviron-
ment for the treatment of ROS and inflammatory factor-
related chronic diseases such as osteoarthritis [87]. The 
increase in miR-320c inhibited cyclin-dependent kinase 6 
(CDK6), attenuated IL-1β-induced chondrocyte inflam-
mation, inhibited the activation of NF-kB pathway, and 

regulated the chondrogenesis of hBMSCs [88]. In con-
trast, mechanical loading can reduce the levels of onco-
genes such as Rac1, MMP9, and IL-1β [89], which in turn 
reduces NF-κB expression and can modulate the bone 
microenvironment to reduce the growth and invasion of 
tumour cells (Fig.  1). Therefore, NF-κB signalling path-
way-related proteins may be effective targets for cancer 
therapy.

Bone formation requires a balance between bone for-
mation by osteoblasts and bone resorption by osteo-
clasts, the absence of either of which can cause specific 
corresponding diseases or abnormalities. Therefore, the 
effects of different mechanical forces on osteoblasts and 
osteoclasts were investigated. Fluid shear stress reduced 
RANKL expression and increased OPG expression in 
cells, which significantly reduced the RANKL/OPG ratio, 
upregulating the expression of osteoblast marker genes 
[90] (Fig. 1). Mechanical loading also inhibits osteoclas-
togenesis and promotes osteogenesis by downregulat-
ing NF-κB ligands and receptor activators of histone K, 
upregulating OPG, and downregulating peroxisome 
proliferators-activated receptor γ (PPARγ) [89]. However, 
circulating mechanical strain can stimulate more ALP 
and calcium deposition through activation of RANKL 

Fig. 1  Mechanical stimulation regulates the differentiation of stem cells into osteoblasts/osteoclasts and chondroblasts through the NF-κB 
pathway. Mechanical stretching can reduce phosphorylated IκB kinase, block NF-κB activity, and promote osteogenic differentiation of cells. 
Fluid shear stress also increases the expression of OPG, the decoy receptor for RANKL, upregulating the expression of osteoblast marker genes. 
Mechanical loading can reduce the levels of IL-1β, which in turn reduces NF-κB expression and regulates the chondrogenesis
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[91]. Certain circulating stresses can also induce osteo-
clast differentiation through upregulation of α 7 nAChR 
and activation of the classical Wnt pathway leading to 
increased RANKL expression and reduced expression 
of RUNX2, ALP, and OPG [92]. Exosomes are impor-
tant mediators in maintaining the balance between bone 
formation and bone resorption. Exosomes from cyclic 
mechanical stretch (CMS)-treated BMSCs inhibit actin 
ring formation and suppress osteoclast differentiation 
by attenuating the NF-κB signalling pathway, which also 
provides new insights into intercellular communication 
between osteoblasts and osteoclasts under mechanical 
loading [93].

The nAChR signalling pathway
The nicotinic acetylcholine (ACh) receptor (nAChR) is 
a ligand-gated ion channel that signals through endog-
enous ACh and its agonists to drive organoid growth 
and differentiation [94]. Among these, the α7 nico-
tinic ACh receptor (α7nAChR) has been the main focus 
of research [95]. Although most of the research on 
α7nAChR has involved neural tissue and the inflamma-
tory environment, and less on the stem cell and mecha-
nistic environment, the cholinergic system also involves 
mammalian non-neuronal cells, such as stem cells. 

Cholinergic signalling plays a key role in controlling 
stem cells behaviour [96]. The α7nAChR has also been 
associated with mechanical signals [92]. In view of this, 
the α7 nAChR signalling pathway is promising in terms 
of its relationship to stem cell perception of mechanistic 
stimuli.

Tumour necrosis factor-α (TNF-α) and IL-1β sig-
nificantly increased phosphorylated glycogen synthase 
kinase-3β (GSK-3β) levels in BMSCs and periodontal 
stem cells (PDLSCs), and increased expression of phos-
phorylated GSK-3β (p-GSK-3 β) upregulated α7 nAChR 
expression and promoted its function, which in turn 
upregulated RANKL, downregulated OPG, and 
decreased ALP, RUNX2, and OCN, leading to decreased 
osteogenic differentiation and increased osteoclast for-
mation [97] (Fig.  2). This was also verified in another 
study in which PDLSCs upregulated the expression of 
p-GSK-3β, α7nAChR, and active β-catenin and decreased 
the expression of RUNX2, ALP, and OPG under hydrody-
namic stress [92].

At the same time, the nAChR signalling pathway has 
synergistic effects with a variety of signalling pathways. 
Upregulation of α7nAChR activates the NF-κB signalling 
pathway. The receptor activator of RANKL is upregu-
lated, which in turn induces osteoclast effects [92]. The 

Fig. 2  Mechanistic effects attenuate stem cell osteogenic differentiation via the nAchR signalling pathway. Under stress, TNF-α and IL-1β increase 
phosphorylated GSK-3β in stem cells, which then promotes the expression of α7 nAChR. nAChR is activated by the ligand Ach, which in turn 
upregulates RANKL and downregulates genes related to osteogenic differentiation
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nAChR signal not only coordinates with Wnt signalling 
to regulate intestinal stem cell (ISC) function [94], but 
also balances ISC differentiation by activating the Hippo 
and Notch signalling pathways [98]. The nAChR signal-
ling activator nicotine blocks the osteogenic potential of 
hPDLC induced by cyclic tensile stress by binding to α7 
nAChR and activating the classical Wnt pathway [99]. 
nAChR signalling activators can also upregulate the 
downstream effectors of the Hippo and Notch signalling 
pathways, YAP1/ TAZ and Notch1/Dll1, regulating the 
expression of target genes [98].

PIEZO signalling pathway
The piezoelectric mechanosensitive ion channel 
(PIEZO) acts as a mechanosensor and is a key receptor 
for sensing mechanical stimuli [100]. PIEZO strongly 
controls stem cell differentiation by coordinating WNT 
expression and ciliogenesis to link mechanical signals 
to intracellular signals [101]. Mechanical stretching 
can effectively stimulate osteogenic differentiation of 
stem cells by activating mechanosensitive ion chan-
nels [102] (Fig.  3). In human deciduous dentin stem 
cells, cyclic stress-induced ciliogenesis and the expres-
sion of WNT5b and WNT16, activating PIEZO1 and 

promoting nuclear translocation of RUNX2, which in 
turn promoted adult dentin cell differentiation [103]. 
In addition, stress loading increases PIEZO mRNA 
expression, which may be related to Ca2+ influx [104], 
which in turn is closely interrelated with cilia. The pri-
mary cilia are non-motile cilia and the influx of extra-
cellular Ca2+ usually occurs first in the cilia, but the 
exact mechanism is not known [105]. Increased expres-
sion of the PIEZO 1 protein ion channel allows more 
Ca2+ influx into the cell, acting as a second messenger 
and activating the Notch1 signalling pathway, upregu-
lating the expression of ALP, Runx2, and OCN, thereby 
promoting the osteogenic differentiation of human per-
iodontal stem cells (hPDLSC) [106].

Shear stress associated with local blood flow is a key 
piezoelectric channel activator [107], and stimulation 
of fluid flow in  vitro deflects primary cilia on osteo-
cytes, resulting in an immediate rise in cytosolic Ca2+. 
PIEZO 1 responds to shear stress-induced stretching 
of the cell membrane after mechanical loading, leading 
to the release of ATP in the extracellular environment. 
Sarcoplasmic reticulum (SR) Ca2+ ATPase 2 (SERCA2) 
is an ATPase that interacts with PIEZO 1 in the mem-
brane bilayer at the endoplasmic reticulum (ER)-plasma 

Fig. 3  Mechanical stimulation induces osteogenic differentiation of stem cells via the PIEZO pathway. Mechanical stimulation induces cilia, which 
causes Ca2+ to enter the cell via PIEZO, activating the Notch signalling pathway and upregulating osteogenic differentiation genes. Mechanical 
damage also phosphorylates p38 MAPK via the IL-1α receptor, activating the transcription factor CREBP, which binds to the PIEZO gene promoter 
and can upregulate PIEZO
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membrane junction and inhibits the mechanosensitivity 
of PIEZO 1. Specific mechanical forces can also transport 
cytosolic Ca2+ into the SR/ER for storage, maintain Ca2+ 
homeostasis, and regulate the PIEZO pathway [108].

Chondrocytes in articular cartilage are one of the ter-
minal cells of MSC differentiation, and PIEZO chan-
nels exhibit a key signal transduction role in the fate of 
chondrocytes. During endochondral ossification, PIEZO 
1 inactivation in chondrocytes impairs trabecular bone 
formation, resulting in reduced ossification [109]. PIEZO 
1 and PIEZO 2 also confer mechanosensitivity to chon-
drocytes by synergistic action. Mechanical stress induces 
apoptosis through Ca2+ influx from PIEZO to chondro-
cytes [110] (Fig.  3). PIEZO 2 plays a central role in the 
apoptotic response to chondrocyte injury [111]. In addi-
tion, articular chondrocyte IL-1α receptors can sense 
mechanical damage and activate transcription factors 
cyclic AMP (cAMP) response element (CRE)-binding 
protein 1(CREBP1) by phosphorylating p38 MAPK. 
CREBP1 binds directly to the proximal PIEZO1 gene 
promoter and upregulates PIEZO1 expression. PIEZO 1 
induces excess intracellular Ca2+, and elevated resting-
state Ca2+ in turn alters the F-actin cytoskeleton and 
amplifies mechanically induced trauma [112].

HIF‑1α signalling pathway
Hypoxia-inducible factor 1 (HIF-1) is a basic helix–loop–
helix transcription factor that plays a role in apoptosis, 
and TWIST is also a helix–loop–helix transcription fac-
tor that controls gene expression during embryogenesis 
and the epithelial-mesenchymal transition. The HIF-1α/
TWIST-mediated cellular response to oxygen affects 
stem cell differentiation and bone and cartilage histogen-
esis [113]. Natural cartilage formation requires hypoxic 
conditions, whereas bone formation is relatively nor-
moxic [114]. Increased HIF-1α stability under hypoxic 
conditions stimulates prechondrogenic, anti-bone-form-
ing, and anti-mast cell transcription. At higher oxygen 
concentrations, HIF-1α degradation promotes hypertro-
phy and osteoblast formation [115]. Hypoxia and HIF-1α 
also maintain the chondrogenic phenotype of cells by 
preventing cell hypertrophy or osteogenic differentiation 
[116] (Fig. 4). When HIF-1α is conditionally inactivated, 
the expression of the transcriptional regulator of chon-
drogenesis SOX9, and its downstream targets is reduced 
[117].

Under hypoxic conditions, HIF-1ɑ levels in bone mar-
row macrophages (BMM) are upregulated and can pro-
mote osteoclast formation [118]. HIF-1α increases 

Fig. 4  Maintenance of stem cell osteogenic factor homeostasis and maintenance of chondrocyte phenotype through the HIF-1 pathway. HIF-1α 
increases TWIST expression, which in turn regulates osteogenic differentiation. Mechanical stimulation also promotes TWIST and inhibits E2A; TWIST 
and E2A interact to activate p21. p21 has different regulatory effects on osteogenic factors. Also, p21 positively regulates the expression of TWIST 
and negatively regulates the expression of E2A. Hypoxia and HIF-1α maintain the chondrogenic phenotype of cells by preventing cell osteogenic 
differentiation
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TWIST expression, which in turn decreases RUNX2 and 
BMP2 expression [119] and regulates BMSC osteogenic 
differentiation [120]. However, the effect of cyclic ten-
sile stress on Hif-1α expression varies across the stretch 
range and, in turn, affects different osteogenic differentia-
tion capacities [121]. HIF-1α can also mediate the expres-
sion of RUNX2 in PDLSCs through the induction of 
vascular endothelial growth factor (VEGF) upregulation 
and promote early osteogenic differentiation [122]. YAP 
may also be involved in the mechanical stress-induced 
upregulation of HIF-1α [123].

Mechanical stimulation also induces osteogenic dif-
ferentiation of BMSCs via the TWIST/E2A/p21 axis. 
Mechanical cyclic strain promotes TWIST and inhib-
its E2A, and TWIST and E2A interact to activate p21 
expression. p21 has different regulatory effects on 
RUNX2 and BMP2, maintaining a relative balance 
between osteogenic factors. Meanwhile, p21 acts as a 
downstream gene of TWIST and E2A, regulating TWIST 
expression positively and E2A expression negatively 
[124] (Fig.  4). HIF-1 can also reduce the differentiation 
of peripheral blood MSCs (PBMSCs) into osteoblasts by 
increasing Notch1 expression [125].

Clinical applications of the mechanical 
environment of stem cells
Application of stem cells to treat diseases
Stem cells are receiving increasing attention in the fields 
of regenerative medicine and tissue engineering and are 
important for a wide range of diseases [1, 2]. Osteoarthri-
tis, diabetes, osteoporosis, and blood-related diseases are 
specifically discussed below.

Human adipose mesenchymal progenitor cells 
(haMPCs) are stem cells with multiple differentiation 
potentials and immunomodulatory functions. Significant 
improvements in joint function, pain, quality of life, and 
cartilage regeneration were observed in patients with 
knee osteoarthritis after receiving intra-articular injec-
tions of ex  vivo-expanded haMPCs from their own adi-
pose tissue [126]. MSCs have also shown great potential 
for differentiation [51] and have applications in the clinic 
[127]. Injecting MSCs into the joint cavity provided sig-
nificant relief of osteoarthritis symptoms and no serious 
adverse effects were observed [128]. Therefore, the appli-
cation of stem cells in the field of osteoarthritis treatment 
is of interest. However, further integration and analy-
sis of the efficacy and safety of stem cell therapy are still 
needed [129], and more research is needed. More types 
of stem cells are being studied which hold great promise 
for therapeutic use [130].

Diabetes mellitus (DM) is a serious metabolic disease 
characterized by hyperglycaemia and beta-cell dysfunc-
tion. Although medication is available to control the 

progression of the disease, it is difficult to cure it, so there 
is a real need for new and effective treatment modalities 
for DM. Stem cell therapy holds great promise for peo-
ple with DM [131]. Stem cell-derived islets are a prom-
ising potential treatment for insulin-dependent diabetes 
[132]. Islet-like organs from progenitor cells are glucose-
responsive and insulin-secreting and can reverse disease 
after transplantation in diabetic mice [133]. Tissue engi-
neering of stem cells derived from adipose tissue can 
reduce hyperglycaemia and extend lifespan. There is also 
an opportunity for tissue-engineered islets in future stem 
cell therapy [33].

Osteoporosis is a widespread progressive bone disease 
that can pose a serious risk to people’s health and qual-
ity of life. Not only does it appear in older adults, but it 
also commonly afflicts space people who work in outer 
space. Researchers were inspired by the fact that exercise 
reduces the risk of osteoporosis in the population. Stud-
ies have shown that BMSCs can accelerate bone healing, 
ossification, and restoration of bone mechanical proper-
ties in osteoporotic fractures [134]. BMSCs have there-
fore become the subject of extensive research. Exosomes 
from cyclic mechanical stretch (CMS)-treated BMSCs 
inhibit osteoclastogenesis and ameliorate mechanical 
unloading-induced bone loss by attenuating NF-κB sig-
nalling pathway activity [135]. This result suggests that 
appropriate mechanical stimulation promotes osteogenic 
differentiation in BMSCs and provides a theoretical basis 
for why physical exercise prevents osteoporosis [136].

To overcome the limitations of the small amount of 
umbilical cord blood stem cells (UCB), intra-bone trans-
fer of UCB (IB-UCB) is used. Intact haematopoietic stem 
cells were maintained by direct delivery of UCB into 
hypoxic HSC ecotopes, with rapid haematopoietic recov-
ery and low incidence of graft-versus-host disease [137]. 
In addition, infusion of umbilical cord MSCs (UC-MSCs) 
may improve the efficacy of immunosuppressive therapy 
in children with severe aplastic anaemia and is safe [138]. 
Also, autologous stem cell transplantation therapy is safe 
and effective in newly diagnosed multiple myeloma [139]. 
Stem cells therefore have promising applications in a 
wide range of blood disorders.

In addition to these common diseases, stem cells have a 
wide range of applications, including periodontitis [140], 
acute liver injury [141], liver transplantation [142], and 
hereditary neonatal hyperammonemia [141], as well as 
those still waiting to be investigated.

Regulating the mechanical force of stem cells for disease 
control
Mechanical signals act as important influences on the 
fate of living organisms in a number of areas, including 
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the circulatory system [143], neural tissue [144], tendon 
tissue engineering [145], periodontal tissue engineering 
[146], cartilage tissue engineering [15], and others. The 
effects of several mechanical forces on disease are speci-
fied below.

The external force generated using an in vitro mechani-
cal device increases the stiffness of adipose tissue, thus 
affecting the migration and differentiation of ASCs. 
Different tissue stiffnesses have different effects in pro-
moting the regeneration of adipose tissue. The use of 
mechanical devices to expand soft tissue holds promise 
for treating large soft tissue defects that are difficult to 
reconstruct through surgery [147]. Mechanical modula-
tion of stiffness contributes to the use of MSCs in vascu-
lar tissue engineering [44].

Shear stress can cause a variety of clinical conditions. 
Platelet activation induced by shear stress is thought 
to be an important mechanism in acute coronary syn-
dromes [148]. Shear stress is also associated with higher 
white matter lesion volume in migraine patients, which 
increases with lower endothelial shear stress [149]. Based 
on the effect of shear stress on disease, corresponding 
devices have also emerged that have good prospects for 
application in the medical industry. A fully automated 
bioreactor system (fABS) enhances the osteogenic dif-
ferentiation of hBMSCs by generating shear stress on the 
one hand, and the hypoxia induced by fABS enhances the 
chondrogenic differentiation of hBMSCs on the other. 
Thus osteogenesis or chondrogenic differentiation can be 
balanced by regulating O2 concentration and controlling 
shear stress [47]. Also, a microfluidic dynamic culture 
system with shear treatment that promotes the expres-
sion of blood progenitors by mesenchymal cells and also 
differentiation towards smooth muscle and cardiomyo-
cytes, acting in the haematopoietic spectrum and arte-
rial vascular system, is promising for the simulation of 
human embryonic blood formation [45].

Intermittent shear flow has the potential to induce 
both circumferential stretch caused by HP of the fluid 
and shear stress caused by flow at the inner surface, 
while having a role in the simultaneous differentiation 
of MSC into epithelial and muscular lineages. Intermit-
tent shear flow is more effective than steady shear flow 
for the development of oesophageal tissue engineering 
scaffolds [150]. The intermediate filament (IF) network 
under cyclic HP undergoes disruption and reorganiza-
tion, translocating towards the perinuclear region, and 
is a potent mediator of cytoskeletal reorganization and 
increased osteogenic response in the MSC [59], which 
also demonstrates a potential new therapy for bone loss 
diseases such as osteoporosis.

The high HP in the periodontal ligament generated by 
the orthodontic force recruits the tooth cells and leaves 

a resorption pit on the root surface. Root resorption is 
more likely to occur when HP exceeds capillary blood 
pressure [151]. This finding offers new opportunities to 
combat orthodontically induced root resorption. In addi-
tion, low-intensity vibration therapy as a prophylactic 
strategy may have the potential as a non-pharmacological 
alternative to anti-resorptive and anabolic agents without 
adverse side effects [152], which also offers the possibility 
of non-pharmacological treatment of degenerative bone 
disease.

Microgravity has many well-known adverse effects 
on the human body. Prolonged exposure to micrograv-
ity during spaceflight can lead to severe osteoblast dys-
function, resulting in bone loss and causing conditions 
similar to osteoporosis [72] and disc herniation [153]. In 
addition, nearly half of the astronauts who landed after 
a long mission had reduced Hb and developed anaemia, 
and the magnitude of recovery depended on the dura-
tion of space exposure [73]. Astronauts in microgravity 
also suffer from immune system dysregulation [154] and 
elevated intracranial pressure (ICP) [155]. With so many 
adverse symptoms, there is an urgent need to understand 
the mechanisms by which microgravity causes disease in 
order to take preventive and remedial measures.

Conclusions
This paper summarises the impact of mechanical signals, 
including structural and force signals, in the microen-
vironment in which stem cells grow on stem cell differ-
entiation and the mechanisms of how stem cells sense 
mechanical signals, and further discusses how mechani-
cal factors affecting stem cells can be modified for clinical 
and disease applications. Existing studies on stem cell dif-
ferentiation mostly ignore the role of mechanical cues in 
the environment. This review provides a timely summary 
of the impact of mechanical cues from the microenviron-
ment in which stem cells reside. Mechanical signalling is 
an integral part of the study of stem cell differentiation 
that cannot be ignored and provides an important basis 
for future studies on the specialized differentiation of 
stem cells. However, the environmental components of 
stem cell growth are complex, and the mechanical sig-
nals generated by the interactions are also complex and 
diverse [150]. This article only summarises some of the 
clues, and more mechanistic factors will be discovered in 
the future. For example, differentiated daughter cells of 
stem cells are also a component of the stem cell ecotone 
[156] and daughter cells may also generate some sort of 
mechanical signal to participate in the composition of 
the mechanical microenvironment. Additionally, these 
mechanical cues do not have a single effect on stem cells 
[157, 158]. And the combination of different mechanical 
factors is more conducive to the differentiation of stem 
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cells in a more favourable direction [159]. Therefore, 
how mechanical signals can better cooperate with each 
other to synergistically influence cell fate should also be 
considered. In addition, there are a variety of mecha-
nosensing pathways [59, 160, 161], and in future both 
currently known (but not linked to mechanotransduc-
tion) pathways and undiscovered signalling pathways 
will increasingly be found to play a role in mechano-
sensing and deserve further investigation. Furthermore, 
cell membrane tension has an impact on cell fate [162]. 
Studies have shown that reduced cell membrane tension 
is a necessary but not sufficient condition for cell fate to 
shift from self-renewal to differentiation [160]. Therefore, 
whether cell membrane tension may act as a transmitter 
in the process of cells sensing the mechanical signals of 
the extracellular environment and mediate the effects of 
mechanical changes in the extracellular environment on 
cell fate deserves further study.

In addition, the performance of implanted stem cells 
depends not only on differentiation but also on migra-
tion, adhesion, proliferation, and paracrine secretion, 
which deserve to be explored in depth in the future. 
Different ECM stiffness affects cell-ECM adhesion, cell 
spreading and migration [163]. The directional migra-
tion of cells needs to be guided by certain signals, such 
as rigidity and topological chemotaxis. Cells have the 
ability to sense differences in base stiffness and migrate 
by migrating towards or away from areas of higher stiff-
ness. In addition to this, cells can also sense topographi-
cal features of the surrounding environment, known as 
topological chemotaxis [164]. In addition, genetically 
reducing the stiffness of the basement membrane in the 
stratified epidermis increases membrane tension, leading 
to loss of membrane integrity and enhanced invasiveness 
of cancerous cells [165]. During tumorigenesis, the ECM 
undergoes remodelling, which is manifested by changes 
in molecular composition. The reconstituted ECM exhib-
its increased tension and stiffness, leading to hyperprolif-
eration, poor differentiation, and invasion and metastasis 
of tumour cells. When tumour cells grow, the limited 
space generates compressive mechanical stress, limiting 
cell proliferation. During epithelial-mesenchymal tran-
sition, epithelial cells lose their polarity and cell-to-cell 
adhesion and acquire the ability to migrate. At the same 
time, epithelial–mesenchymal transition may promote 
cell morphological changes and promote proliferation 
[166]. In addition, different polymers were mixed in any 
ratio to make microstrip structures and cross-linked into 
3D scaffolds to culture MSCs. These mixed microstrips 
could induce synergy through paracrine signalling to 
accelerate cartilage regeneration of MSCs [167].

Experiments in which stem cells respond to a 
mechanical environment sometimes show results that 

are contrary to previous studies [168], possibly because 
the cells have a memory of past mechanical cues and 
this memory remains useful for the behaviour of the 
stem cells over time [169]. By storing and removing 
proteins associated with mechanical memory [170], it 
is possible to alter cell fate, which also provides a direc-
tion for stem cell research. The role of stem cell dif-
ferentiation in medicine is no longer in doubt. In the 
future, not only will stem cells play a role in the treat-
ment of more diseases, but stem cell-based mechanical 
microenvironments are expected to be used in a variety 
of models [77, 171]. Mechanical microenvironments 
of stem cells will also become increasingly relevant to 
clinical applications.

In conclusion, this review summarizes the effects of the 
mechanical microenvironment of stem cell growth on 
stem cell differentiation and the corresponding mecha-
nisms, which have important implications for clinical dis-
ease treatment.
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