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Abstract 

Endothelial progenitor cells (EPCs), which are a type of stem cell, have been found to have strong angiogenic and 
tissue repair capabilities. Extracellular vesicles (EVs) contain many effective components, such as cellular proteins, 
microRNAs, messenger RNAs, and long noncoding RNAs, and can be secreted by different cell types. The functions 
of EVs depend mainly on their parent cells. Many researchers have conducted functional studies of EPC-derived EVs 
(EPC-EVs) and showed that they exhibit therapeutic effects on many diseases, such as cardiovascular disease, acute 
kidney injury, acute lung injury, and sepsis. In this review article, we comprehensively summarized the biogenesis and 
functions of EPCs and EVs and the potent role of EPC-EVs in the treatment of various diseases. Furthermore, the cur‑
rent problems and future prospects have been discussed, and further studies are needed to compare the therapeutic 
effects of EVs derived from various stem cells, which will contribute to the accelerated translation of these applica‑
tions in a clinical setting.
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Introduction
In recent years, many research studies have revealed the 
different roles of stem cells and proposed their appli-
cations in the treatment of various diseases. Among 
the various classes of stem cells, which mainly include 
embryonic, haematopoietic, mesenchymal, and neu-
ral types, one class named endothelial progenitor cells 
(EPCs) has specifically attracted interest. Initially dis-
covered by Asahara et al. in 1997, EPCs can be recruited 
to ischaemic tissue sites where they enhance collateral 
vessel growth [1]. EPCs can differentiate into mature 

endothelial cells (ECs) and directly participate in angio-
genesis and revascularization [2]. Further studies have 
revealed that EPCs are involved in the repair and regen-
eration of damaged tissues [3–5]. Specifically, EPCs 
were found to be involved in the regeneration of ischae-
mic organs, playing important roles in the treatment of 
ischaemic brain injury [6] and repair of ischaemic renal 
tissue [7]. Additionally, the results from animal experi-
ments and clinical studies have revealed that EPC-medi-
ated therapy alleviates pulmonary arterial hypertension 
[8].

Extracellular vesicles (EVs), which are small intralu-
minal vesicles derived from different types of cells, are 
involved in the transport of endocellular contents such 
as cellular proteins, microRNAs (miRNAs), messenger 
RNA (mRNA), and long noncoding RNAs (lncRNAs) to 
the cell exterior [9]. EVs were previously described as 

Open Access

†Ke Chen, Yang Li, and Luwei Xu have contributed equally to this study

*Correspondence:  ruipengj@163.com; geyuzheng@njmu.edu.cn

Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 
68 Changle Road, Nanjing 210006, Jiangsu, People’s Republic of China

http://orcid.org/0000-0003-1615-9473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-022-02921-0&domain=pdf


Page 2 of 16Chen et al. Stem Cell Research & Therapy          (2022) 13:238 

“garbage bags” used by mature reticular cells to dispose 
of transferrin receptors [10], but their potential as car-
riers of intercellular communication is gradually being 
revealed [11]. Originating from bone marrow (BM), 
EPCs circulate in the peripheral blood (PB) and then 
migrate to the sites of both pathological and physiologi-
cal angiogenesis [12]. EPC transplants were shown to 
stimulate angiogenesis by triggering angiogenic events 
or by differentiating into mature ECs [2]. However, 
EPC transplantation has some disadvantages, such as 
the potential for immunogenicity, malignant transfor-
mation, and embolus formation [13]. Most cell types, 
including EPCs, can release EVs [14]. Recent lines 
of evidence have demonstrated that stem cells likely 
achieve their effects through exosome secretion [15]. 
Some researchers have focused on EPC-derived EVs 
(EPC-EVs) because they are easier to manipulate than 
EPCs and have a stronger effect on skin wound heal-
ing and angiogenesis [16]. Moreover, due to the specific 
biological structure and features of these cells, anaphy-
lactic reactions to EPC-EVs and their rejection by the 
body are seldom reported [17]. In this review article, 
we summarize the relationships between EPC-EVs and 
various diseases and then discuss current problems 
and future prospects related to their use for disease 
treatment.

Biogenesis and function of EPCs
EPCs are mainly derived from BM, PB, or cord blood 
(CB) and usually selected on the basis of certain cell 
surface antigen markers, such as vascular endothelial 
growth factor receptor 2 (VEGFR-2), CD34, and CD133 
[18]. Additionally, culture and colony assays can be used 
to isolate EPCs [19]. These cells are usually classified as 
early or late EPCs according to their biological properties 
and culture time. Early EPCs appear after 5–7 days of cul-
ture and have a low proliferation rate, whereas late EPCs 
derived from mononuclear cells appear after 14–21 days 
of culture and have a high proliferative potential [20].

As presented in Fig.  1, EPCs repair damaged vessel 
walls through four steps: mobilization, homing, invasion, 
and differentiation/paracrine effects [21]. First, ischae-
mia promotes the transcription of molecules related to 
angiogenesis, such as adhesion molecules on ECs and 
vascular endothelial growth factor (VEGF), the latter of 
which is known to mobilize EPCs for differentiation [22]. 
Injured vasculature also induces EPC mobilization via 
other cytokines [23]. Once in the bloodstream, EPCs are 
affected by the concentration of chemokines and home to 
the vascular injury site. Upon reaching the site where the 
chemotactic agent is produced, the EPCs attach to the 
activated ECs of the damaged blood vessel wall via adhe-
sion molecules and then enter the extracellular matrix 

Fig. 1  Biogenesis and function of EPCs. Bone marrow-derived EPCs can differentiate into ECs; or stimulate the proliferation, migration, and tube 
formation of ECs through release of EVs, which contain proteins, RNAs, and lipids. (Created with BioRender.com)
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from the vascular lumen via the endothelial intima, 
where they undergo differentiation into ECs. Addition-
ally, EPCs can initiate vascular repair through paracrine 
signalling [24].

Biology of EVs
Biogenesis and release of EVs
EVs are produced in the form of apoptotic bodies (500–
2,000  nm in diameter), exosomes (50–150  nm), and 
microvesicles (100–1,000  nm) [25], with the exosomes 
being distinguished from the other two EV types on the 
basis of surface protein expression and mode of biogene-
sis [26] (Fig. 2A). EVs are characterized by specific mark-
ers, such as membrane proteins (CD9, CD63, and CD81), 
major histocompatibility complex (MHC), Alix, TSG101, 
and HSP70 [27]. Exosomes also contain other proteins, 
DNA, and different types of RNA including miRNAs, 
mRNAs, and lncRNAs [28]. The processes of EV forma-
tion are complicated. In general, early endosomes are 
formed by cell membrane invagination, after which they 
will transform into late endosomes. Multivesicular bod-
ies containing intraluminal vesicles are formed by inward 
budding of the limiting membrane, whereupon some 

are transported for cargo degradation in the lysosomes, 
some are transferred to the trans-Golgi network, and 
some release their intraluminal vesicles extracellularly as 
exosomes through fusion with the plasma membrane [25, 
28, 29]. Target cells absorb EVs by endocytosis and fusion. 
Receptors on the membrane can facilitate EV uptake and 
regulate the cell signalling pathway [28, 30]. Although 
microvesicles have higher densities than exosomes, both 
types of EVs may overlap in size [31]. Microvesicles are 
formed through outward budding and fission of the 
plasma membrane and then shed [32]. Apoptotic bod-
ies, the largest of the three types of EVs, contain nuclear 
material, organelles, membranes, and cytosolic content. 
Apoptotic bodies are released during the late stage of 
cell death through the membrane blebbing of apoptotic 
cells, a process induced through the phosphorylation of 
myosin light chain by Rho-associated kinase 1 (ROCK1), 
which in turn is activated by caspase-3 [33–35].

Isolation and characterization of EVs
EVs can be isolated by several different methods (Fig. 2B). 
Differential centrifugation is a classic strategy. EVs are 
separated by gradually increasing centrifugation time and 

Fig. 2  Isolation and characterization of EVs. A EVs have three subtypes: apoptotic bodies (500–2,000 nm), exosomes (50–150 nm), and microvesicles 
(100–1000 nm). B Isolation methods. C Characterization of EVs. (Created with BioRender.com)
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centrifugal force according to the different sedimenta-
tion rates of protein molecules, cells, and cell fragments 
in uniform suspensions [36]. Density gradient centrifu-
gation is based on density differences in sample com-
ponents, causing them to move to different locations 
[37]. The most widely used method is ultracentrifuga-
tion, which is relatively rapid, has a high efficiency, and 
results in a high purity [38]. However, there is no stand-
ard method for isolating EVs by centrifugation. PEG can 
also be used to change the solubility of EVs for precipita-
tion because it can bind to the hydrophobic lipid bilayer 
due to its size and properties [39]. This method has the 
advantages of few devices needed, a high yield rate, and 
simple operation, but the purity of the EVs is low [40]. 
EVs can be differentiated on the basis of size, such as with 
ultrafiltration and size exclusion chromatography (SEC). 
The former method results in an unsatisfactory purity 
[41], while the latter method is time-consuming [42]. 
Having been widely used to separate biopolymers, gel fil-
tration can be applied to isolate EVs [43], but this method 
is limited because it requires pretreatment to concentrate 
the EV samples [44]. Other approaches, such as methods 
involving lectins, antibodies, and lipid-binding proteins, 
use intermolecular interactions to capture EVs. Although 
their products are highly pure, these materials are expen-
sive and difficult to process in large quantities [45].

As shown in Fig. 2C, transmission electron microscopy 
(TEM) and scanning electron microscopy can evalu-
ate the morphology and structure of EVs [46]. Since the 
sizes of most of them are smaller than the minimum opti-
cal resolution, electron microscopes are the only way to 
visualize EVs [47]. Nanoparticle tracking analysis (NTA) 
can measure the particle concentration and size distribu-
tion [48] and occasionally the zeta potential [49]. In most 
studies, Western blotting (WB) is adopted to detect the 
surface markers of EVs [50] as WB can reveal the pres-
ence and amount of target proteins [51].

Potential biological functions of EVs
Emerging evidence has shown that EVs can act as bio-
markers and therapeutic targets for various diseases. 
Additionally, these molecules play a vital role in cell 
communication.

Biomarker function
EVs are detectable in various bodily fluids, such as urine 
[52], blood [53], breast milk [54], and saliva [55]. They 
carry specific molecules from the parental cells and can 
also reflect current disease status. For example, microves-
icles derived from human nipple aspirate fluid and blood 
are considered sources of nonintrusive molecular bio-
markers for the early detection of various cancer types 
[56]. In the development of methods for EV detection, 

researchers have demonstrated that target membrane 
proteins can be used. Logozzi et  al. was the first to 
develop a new enzyme-linked immunosorbent assay 
for detecting Rab-5b/caveolin-1 double-positive EVs in 
melanoma patients [57]. Shao et  al. developed a rapid 
and sensitive analytical microfluidic chip platform that 
can distinguish patients with glioblastoma multiforme 
from healthy individuals [58]. The same research group 
also developed a high-throughput screening method that 
distinguishes ovarian cancer patients with a high degree 
of accuracy by targeting epithelial cell adhesion molecule 
(EpCAM) and CD24 on EVs in ascites [59]. Overall, EV-
associated proteins can be used for disease detection, as 
they are more likely to be cancer related.

RNA is another important molecule found within 
EVs. Valadi and colleagues were the first to propose 
that mRNA- and miRNA-containing EVs might exert 
specific functions in recipient cells [11]. According to 
Ogata-Kawamata et  al., colorectal cancer patients have 
high levels of seven miRNAs, which are decreased after 
tumour resection [60]. Matsumura et  al. suggested that 
miR-19a-3p carried in EVs could serve as a prognostic 
biomarker to predict the recurrence of colorectal cancer 
[61]. The detection of EV-related RNAs identifies a novel 
biomarker strategy for cancer diagnosis and prognosis.

Cell communication
Accumulating lines of evidence have indicated that cell 
communication occurs through paracrine and endocrine 
signalling pathways (Fig.  3). Raposo et  al. was the first 
to discover that antigen-specific T cell responses were 
induced by B cell-derived EVs with functional MHC II 
peptide complexes [62]. Samuelson et al. summarized the 
effect of EVs on cell-to-cell communication in metabolic 
regulation [63], and a similar role in exercise-induced 
adaptations was also reported [64]. According to Capra 
et al., EVs play important roles in various cell communi-
cation aspects, such as embryo–maternal crosstalk and 
oocyte maturation, fertilization, and implantation [65].

In cancer patients, EVs were shown to mediate tumour-
to-stroma, stroma-to-tumour, and tumour-to-tumour 
communication [66]. EVs secreted by tumours can 
modulate the tumour microenvironment [66], thereby 
establishing cell communication pathways to support 
tumorigenesis [67]. The induction of tumour-promoting 
stroma by tumour-related EVs has been demonstrated 
[68] in prostate cancer, osteosarcoma, breast cancer, 
and colorectal cancer cells [69–72]. Conversely, stroma-
secreted EVs can promote the growth, invasion, and 
metastasis of tumour cells. For example, Richards et  al. 
demonstrated that EVs derived from cancer-associated 
fibroblasts enhanced the Snail protein level in pan-
creatic ductal adenocarcinoma cells, promoting their 
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proliferation and drug resistance [73]. The EV-mediated 
transfer of cancer cell-derived signals may also exert vital 
functions in different tumour cell subpopulations. For 
example, Al-Nedawi and colleagues showed that glioblas-
toma-derived EVs transferring the oncogenic EGFRvIII 
receptor led to oncogenic signalling activation in recipi-
ent tumour cells [74].

Therapeutic targets
To date, three types of EV-targeting therapeutic strate-
gies have been proposed [75]. One of these is to elimi-
nate the secretion of EVs, given that the molecules they 
carry can disturb cancer therapeutics and contribute to 
tumour progression, as reported for human epidermal 
growth factor receptor 2 (HER-2) located on EVs [76]. In 
this regard, Marleau et al. have already developed a sys-
tem that can target HER-2 to bind cancer cell-derived 
EVs [77]. Chen et al. discovered that programmed death-
ligand 1 (PD-L1), which acts in concert with programmed 
cell death protein 1 (PD-1) to suppress the antitumor 

immune response, was enriched in cancer-derived EVs 
and thus proposed the use of exosomal PD-L1 as a novel 
predictive biomarker for anti-PD-1 therapy [78]. Addi-
tionally, circulating EVs can be inhibited. For exam-
ple, the neutral sphingomyelinase inhibitor GW4869 is 
widely used to inhibit both the release of EVs and the for-
mation of intraluminal vesicles [79]. Blocking EV uptake 
is another way to suppress tumour progression, as shown 
in a study that used proteinase K to decrease the absorp-
tion of EVs by cancer cells [80]. All these studies demon-
strated that EV-targeted therapy may be a new strategy 
for cancer treatment.

Potential roles of EPC‑EVs in the treatment 
of various diseases
EPCs are widely considered a possible cell therapy source 
to promote tissue repair. However, the use of EPCs pre-
sents some concerns, such as ethical issues, cellular 
rejection, infusion toxicity, ectopic tissue formation, 
and possible tumorigenicity [81]. Therefore, EPC-EVs 

Fig. 3  EVs function as cell communication. Target cells absorb EVs by endocytosis and fusion, while receptors on the membrane can facilitate 
EVs uptake and regulate cell signal pathway. EVs are characterized by specific markers, such as membrane proteins (CD9, CD63, CD81), major 
histocompatibility complex (MHC), Alix, TSG101, and HSP70. (Created with BioRender.com)
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have emerged as novel alternatives other than EPCs. 
As summarized in Additional file 1: Table S1 and Addi-
tional file 2: Table S2, EPC-EVs carry multiple common 
exosome markers, such as CD9, CD63, and CD81 [82], 
and some EPC-specific molecules including VEGFR-2, 
CD133, and CD34. Since the initial discovery of EPC-
EVs, they have exhibited better therapeutic efficacy for 
various ischaemic diseases than traditional treatments. 
With continuing research, EPC-EVs have been shown to 
have various therapeutic roles in other diseases. In the 
following sections, we discuss the potent role of EPC-EVs 
in the treatment of various diseases and the current prob-
lems in their application as well as future perspectives 
(Additional file 1: Table S1).

Role in treatment of kidney disease
Under most circumstances, acute kidney injury (AKI) 
is caused by ischaemia–reperfusion injury (IRI) [83]. 
Recent studies, including ours, have shown that renal IRI 
can be repaired by EPCs through differentiation into ECs 
or endocrine/paracrine pathways [84–90]. Given these 
findings, Cantaluppi et  al. postulated that EPC-EVs can 
exert a protective effect in AKI [91]. They found that 
EPC-EVs were localized within tubular cells and peritu-
bular capillaries when injected following ischaemia–rep-
erfusion. This process enhanced tubular cell proliferation 
and reduced leukocyte infiltration and cell apoptosis, 
which in turn conferred morphological and functional 
protection against AKI. In addition, EPC-EVs prevented 
the progression of chronic kidney damage by inhibiting 
glomerulosclerosis, capillary thinning, and tubulointer-
stitial fibrosis. Mechanistically, the renoprotective effect 
of EPC-EVs was exerted via transferring miR-126 and 
miR-296. AKI can also be induced by sepsis [92], a seri-
ous condition caused by a dysfunctional inflammatory 
response to infection [93]. Using a mouse model of sep-
sis-induced AKI mediated by lipopolysaccharide (LPS) 
treatment, He et  al. found that EPC-EVs could inhibit 
apoptosis and inflammation by transferring miR-93-5p. 
In addition, miR-93-5p was found to directly target and 
inhibit KDM6B, induce H3K27me3, and inhibit TNF-α 
activation, thereby attenuating cell injury [94]. In another 
mouse model of sepsis-induced AKI constructed with 
caecal ligation and puncture (CLP) treatment, EPC-EVs 
were demonstrated to alleviate sepsis-induced AKI by 
releasing miR-21-5p to silence Runt-related transcrip-
tion factor 1 (RUNX1). In the in  vivo experiments, the 
researchers found reduced tubular degeneration and 
monocyte infiltration in the rats treated with miR-21-5p 
[95].

Glomerulonephritis, an inflammatory disease that 
affects the filtration of the glomeruli, can cause pro-
gressive fibrotic damage and chronic renal failure [96]. 

Cantaluppi et  al. discovered that EPC-EVs could reduce 
proteinuria, suppress mesangial cell activation, leucocyte 
infiltration, and apoptosis, and inhibit glomerular injury 
by transporting specific RNAs. However, they did not 
determine the effective component of EPC-EVs [97]. In 
a follow-up study, these researchers demonstrated that 
EPC-EVs could protect the integrity of the glomerular fil-
tration barrier from cytokine- and complement-induced 
injury, indicating that they may have a role in glomeru-
lonephritis treatment [98]. Using a mouse model, Yang 
et  al. showed that EPC-EVs could decrease pericyte–
myofibroblast transition in renal fibrosis, thereby attenu-
ating the injury [99].

Role in treatment of lung disease
Acute lung injury (ALI) is characterized by the infiltra-
tion of neutrophils in the alveolar–capillary barrier [100]. 
During ALI, inflammation causes sustained injury to 
the capillary endothelial barrier, resulting in pulmonary 
oedema, increased pulmonary vascular permeability, 
and hypoxemia [101]. With an ALI animal model gen-
erated via intratracheal administration of LPS, Wu et al. 
observed that histopathological ALI changes were signifi-
cantly weakened, shown as reduced interstitial oedema, 
bleeding, alveolar wall thickness, and neutrophil infiltra-
tion in the lung parenchyma and alveolar space, and the 
arterial blood PaO2 was improved in the group treated 
with EPC-EVs [102]. Through further in  vitro experi-
ments, the authors found that the knockdown of miR-126 
inhibited the phosphorylation of RAF and extracellular 
signal-regulated kinases 1/2 (ERK1/2), whereas the EPC-
EV transfer of this miRNA into target cells led to the 
downregulation of Sprouty-related Ena/vasodilator-stim-
ulated phosphoprotein homology-1 domain 1 (SPRED1) 
expression and promotion of the RAF/ERK1/2 signalling 
pathways, which subsequently improved the function of 
ECs [102]. Similarly, using a combination of next-gen-
eration sequencing, an ALI mouse model, and in  vitro 
transfection assays, Zhou et  al. proved that EPC-EVs 
containing miR-126 could reduce the damage of ALI, 
whereas NIH3T3 cell-derived EVs carrying little miR-126 
could not [103].

Role in treatment of bone disease
Long-bone defects are common conditions presented by 
patients in orthopaedic departments. For patients with 
long-bone defects attributed to postsurgical infections 
and complications or trauma, distraction osteogenesis 
(DO) is the primary treatment option [104]. Although 
DO can induce neo-osteogenesis, it requires a long con-
solidation period and has an increased risk of subse-
quent complications [105]. Jia et  al. evaluated the effect 
of EPC-EVs in a rat model of unilateral tibial DO; bone 
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regeneration was strongly accelerated, as shown by his-
tological, X-ray, and micro-computed tomography anal-
yses in the EPC-EVs-treated group [106]. Additionally, 
the EPC-EV group had a higher vessel density than the 
control group. The results demonstrated that EPC-EVs 
strengthened EC migration, proliferation, and angiogen-
esis in a miR-126-dependent manner. Qin and Zhang 
observed that BM stromal cells treated with EPC-EVs 
showed decreased calcium deposition but increased 
colony-forming unit fibroblasts. The results indicated 
that EPC-EVs suppressed the expression of osteogenic 
genes and increased the proliferation of BM stromal 
cells, thereby regulating their osteoblastic differentiation 
in  vitro [107]. Cui and colleagues proved that lncRNA-
MALAT1 contained in EPC-EVs could promote bone 
repair by enhancing the recruitment and differentiation 
of osteoclast precursors [108].

Degenerative osteoporosis is usually a common issue 
in the elderly. However, the incidence of steroid-induced 
osteoporosis (SIOP) among younger individuals has 
shown an increasing trend [109]. There remain no effec-
tive treatment options for SIOP to date, simple and fea-
sible therapies for this condition are urgently needed. 
Lu et al. established a mouse model of SIOP using high-
dose dexamethasone and demonstrated through his-
topathological analysis that EPC-EVs treatment could 
increase the density and volume of the BM and trabecu-
lar bone [110]. Using Kyoto Encyclopedia of Genes and 
Genomes (KEGG) mapping, the authors further found 
that EPC-EVs partly reversed injury-induced changes in 
the ferroptosis pathway. Moreover, EPC-EVs reduced the 
dexamethasone-induced alterations in several oxidative 
injury markers.

Role in treatment of neurological injury
Stroke, a common ischaemic disease, is caused by the 
accumulation of inflammatory cells and the release of 
inflammatory factors due to local vascular tissue hypoxia 
and ischaemia, leading to local vascular EC necrosis and 
apoptosis [111]. Ischaemic stroke occurs when blood 
flow to the brain is disrupted. Restoration of flow or 
reperfusion can reduce injury but must be performed 
very early after ischaemia occurs [112]. Reactive oxygen 
species (ROS) and nitrogen are produced in the ischae-
mic penumbra during ischaemia and reperfusion [113]. 
Although ROS-induced vascular EC injury is known 
to play an important role in IRI, effective strategies to 
resolve this condition are lacking [114]. Wang et al. stud-
ied the relationship between hypoxia–reoxygenation 
(HR) injury and EPC-EVs in human brain microvascular 
ECs (hbECs). The authors concluded that EPC-EVs elic-
ited their effects by regulating ROS production and the 
phosphatidylinositol 3-kinase (PI3K)/endothelial nitric 

oxide synthase (eNOS)/nitric oxide (NO) pathway. They 
also found that caspase-3 and miR-126 were delivered 
to hbECs by EPC-EVs. Unfortunately, the researchers 
did not further explore the underlying mechanism [115]. 
Similarly, Ma et  al. overexpressed miR-210 in EPC-EVs, 
which resulted in significant reductions in HR-induced 
angiogenic dysfunction, EC apoptosis, and ROS pro-
duction. However, these researchers could not rule out 
the influence of downstream functional targets, such as 
Efan3, Ptp1b, ISCU, and COX10 [116]. Li et  al. found 
that miR-137 had neuroprotective effects against mito-
chondrial dysfunction and apoptosis, which might be 
dependent on the miR-137-cyclooxygenase 2 (COX2)/
prostaglandin E2 (PGE2) signalling pathway [117].

Amyotrophic lateral sclerosis (ALS) is a serious neuro-
logical disease that can also cause cardiovascular failure 
[118]. Garbuzova-Davis et  al. transplanted EPCs intra-
venously into a symptomatic superoxide dismutase 1 
(SOD1)G93A mouse model of ALS to replace their dam-
aged ECs, successfully restoring the blood–brain bar-
rier [119, 120]. Subsequently, the same research group 
demonstrated that EPC-EVs could reduce mouse brain 
EC damage, identifying a new cell-free treatment for 
endothelial repair in ALS [121]. However, whether the 
protective effects of EVs on damaged cells are durable 
and whether cellular damage is reversible remain unclear. 
Furthermore, these in  vitro results require EV adminis-
tration to a mouse model of ALS in vivo to confirm the 
endothelial repair effect of the EPC-EVs.

Role in treatment of myocardial infarction
Myocardial infarction (MI) is one of the main causes of 
mortality and morbidity worldwide [122]. Cardiac fibro-
blasts are crucial for cardiac cell proliferation, angio-
genesis, and cardiac tissue homeostasis and remodelling 
[123]. Ke et  al. discovered that human EPC-EVs could 
increase angiogenesis and proliferation in cardiac fibro-
blasts by decreasing the expression of high mobility 
group box  1 protein B1 (HMGB1) and promoting mes-
enchymal–endothelial transition [124]. Further research 
proved that treatment with Exo-miR-363-3p or Exo-miR-
218-5p improved the MI induced by left coronary artery 
ligation and recovered the integrity of the myocardial 
tissue. Compared with that of the control group, col-
lagen expression was downregulated, and the degree of 
myocardial fibrosis was reduced in the EPC-EVs group. 
However, there are still some problems to be solved, such 
as the localization of miRNAs in EPC-EVs and identifi-
cation of more potential miRNAs. Moreover, the role 
of EPC-EVs in the IRI model should be explored in the 
future, as the animal model in this study was a non-IRI 
model [125]. Huang et  al. manipulated EPC-EVs with 
miR-1246 or miR-1290 and found that the upregulated 
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expression of either miRNA could promote phenotypic 
changes of fibroblasts to ECs and angiogenesis in cardiac 
fibroblasts, whereas their downregulation produced the 
opposite effects. However, the phenotype changes should 
be interpreted with caution as more markers are needed 
to characterize fibroblasts and ECs [126]. Yue et al. used 
IL-10-knockout (KO) mice to mimic inflammation and 
then compared the protein levels and therapeutic effect 
of exosomes derived from IL-10-KO-EPCs and wild-type 
EPCs (WT-EPCs). WT-EPC-Exo treatment strongly sup-
pressed cell apoptosis, decreased MI scar size, improved 
left ventricular cardiac function, and facilitated post-MI 
neovascularization, whereas IL-10-KO-EPC-Exo treat-
ment produced the opposite effects [127]. Liu et  al. 
isolated circulating exosomes from mice with strepto-
zotocin-induced diabetes for use in in  vivo and in  vitro 
experiments and concluded that exosomal miR-144-3p 
may hinder the mobilization of EPCs, which was related 
to the neovascularization damage induced by ischaemia, 
suggesting a novel strategy to improve cardiac repair after 
MI by intervening in the enriched miR-144-3p [128].

Some studies have demonstrated the consistency of 
the therapeutic effect of cardiac transplant cells without 
engraftment, indicating that paracrine mechanisms could 
potentially be used for therapeutic effects [129, 130]. 
Chen et  al. delivered EPC-EVs within a shear-thinning 
gel to facilitate their exact localization and continuous 
delivery and succeeded in reproducing the advantageous 
effects of EPC treatment. In  vivo studies showed that 
the delivery of EVs within the shear-thinning gel led to 
preservation of the ventricular geometry, enhanced peri-
infarct vascular proliferation, and improved haemo-
dynamic function after MI, thereby increasing the 
EV-mediated myocardial preservation effect. Neverthe-
less, translating shear-thinning gel as an EV-delivered 
tool to treat acute MI still requires more animal studies 
to test this approach [131]. Similarly, Chung et  al. used 
a shear-thinning gel to deliver EPC-EVs and proved that 
such delivery at 4  days after MI preserved the holistic 
ventricular geometry and improved left ventricular con-
tractility [132].

Role in treatment of non‑MI cardiovascular injury
The incidence of cardiovascular disease continues to 
increase annually worldwide. Vascular endothelial injury 
may cause potential changes, such as thrombosis, inflam-
mation, and smooth muscle cell (SMC) proliferation, 
leading to neointimal hyperplasia, unfavourable arte-
rial remodelling, and restenosis [133]. Using a rat model 
of vascular injury, Li et  al. found that EPC-EVs acceler-
ated re-endothelialization at an early stage after injury, 
and in vitro analyses indicated that this treatment could 
strengthen the proliferation and migration of ECs [134]. 

SMC proliferation is believed to be a key factor for reste-
nosis following endothelial injury [135]. In a study by 
Kong et al. on the effects of exosomes on SMCs and ECs, 
in  vivo assays showed that the intimal-to-medial area 
ratio was significantly reduced and SMC proliferation 
was significantly lower in the exosome group than in the 
control group [136]. The in vitro study confirmed that the 
administration of exosomes could significantly enhance 
the migration and proliferation of SMCs and ECs, indi-
cating that EPC-EVs likely inhibited neointimal hyperpla-
sia in the rat model through the promotion of EC repair. 
Hu et al. proved that EPC-EVs were more efficacious than 
EC-EVs for vascular repair [137]. In another study, Hu 
et al. investigated the mechanism of EPC-EVs in endothe-
lial repair and concluded that the exosomal delivery of 
miR-21-5p may promote EC repair by inhibiting throm-
bospondin 1 (THBS1). However, the researchers could 
not rule out the effects of other EPC-EVs in EC repair. 
Therefore, further experiments are required to rule out 
the interference of other miRNAs [138]. Recently, EPCs 
expressing the bone matrix protein osteocalcin were 
found to be related to the severity of cardiovascular dis-
eases [139]. Subsequently, Yi et  al. proved that overex-
pressed osteocalcin (OCN) in EPCs had beneficial effects 
on EC proliferation, migration, and function through 
the exosomal pathway, participating in the promotion 
of angiogenesis and NO formation via the interaction of 
OCN and its receptor G protein-coupled receptor fam-
ily C group 6 member A (GPRC6A). Due to the lack of 
specific receptor antagonist of GPRC6A and the fact that 
OCN and GPRC6A are not specific to each other, the 
findings should be verified with further well-designed 
studies [140]. Cardiovascular homeostasis is regulated 
by the renin–angiotensin system, in which angiotensin 
II (Ang II) is the main peptide and is related to vascular 
dysfunction [141]. Wang et al. suggested that EPCs could 
repair EC injury through their exosomal effects on mito-
chondrial function and angiotensin-converting enzyme 
2 (ACE2) overexpression [142]. These researchers subse-
quently proved that ACE2 enhanced the effects of EPC-
EVs on the Ang II-induced inhibition of vascular SMC 
phenotypic modulation by restraining nuclear factor-
kappa B (NF-κB) signalling [143].

Cardiovascular diseases can be caused by many other 
diseases, such as bronchopulmonary dysplasia (BPD), 
a severe lung disease in extremely preterm infants 
[144]. Using an experimental model of BPD obtained by 
exposing pulmonary microvascular ECs to hyperoxia, 
Zhang et al. proved that the administration of EPC-EVs 
enhanced the bioactivity of ECs in  vitro and increased 
the expression levels of VEGF, VEGFR-2, and eNOS 
relative to those in the untreated hyperoxia group. How-
ever, the exact carriers of EPC-EVs and the molecular 



Page 9 of 16Chen et al. Stem Cell Research & Therapy          (2022) 13:238 	

mechanisms remain yet to be explored, and the in  vivo 
studies are warranted to validate the ex  vivo findings 
[145]. Atherosclerosis is a chronic inflammatory disorder 
characterized by endothelial dysfunction. Li et al. proved 
that EPC-EVs can suppress the ferroptosis of ECs and 
mitigate the occurrence of atherosclerosis by transferring 
miR-199a-3p to inhibit specificity protein 1 (SP1) [146].

Role in treatment of sepsis
Sepsis, which is a dysfunctional systemic inflammatory 
disease caused by infection, usually leads to organ fail-
ure and even death [147]. Previous studies have shown 
that EPCs have beneficial effects on organ dysfunction, 
vascular injury, and mortality in sepsis models [148]. 
Based on the assumption that EPC-EVs can transfer miR-
NAs to protect the microvasculature, Zhou et  al. used 
the CLP method to generate a mouse model of sepsis to 
test their hypothesis, and EPC-EVs treatment improved 
the survival rate of septic mice, inhibited renal and lung 
vascular leakage, and reduced kidney and liver dysfunc-
tion. The sepsis-induced increase in plasma cytokine and 
chemokine levels was also attenuated by EPC-EVs. The 
investigators explored the genome-wide miRNA expres-
sion patterns in EPC-EVs and focused on one specific 
miRNA: miR-126. However, they could not rule out the 
influence of additional miRNAs, lipids, and proteins 
[149]. Similarly, Hong and colleagues discovered that 
EPC-EVs improved heart function by suppressing oxida-
tive stress, inflammation, and apoptosis and attenuated 
the pathological damage of myocardial tissues in septic 
rats, providing a novel therapeutic strategy against myo-
cardial damage in sepsis [150].

According to a whole-blood transcriptomic study, 
lncRNA taurine upregulated gene 1 (TUG1) is one of the 
top five sepsis-relevant lncRNAs [151]. TUG1 alleviated 
sepsis-induced inflammation and apoptosis by targeting 
growth factor receptor-bound protein 2 (GRB2)-associ-
ated binding protein 1 (GAB1) and miR-34b-5p [152]. Ma 
et al. explored the effect of EPC-EVs-delivered TUG1 in 
septic mice and demonstrated that miR-9-5p could bind 
competitively with TUG1, which upregulated the expres-
sion of sirtuin 1 (SIRT1) and promoted M2 macrophage 
polarization. In a mouse model, EPC-EVs carrying TUG1 
were shown to reduce the organ damage induced by sep-
sis mainly through macrophage M2 polarization [153].

Role in treatment of diabetes
The global incidence of diabetes is increasing, and com-
plications have become serious public health prob-
lems [154]. Approximately 20% of patients develop 
diabetic wounds, the most common being leg or foot 
ulcers [155], which can reduce physical activity, result 
in chronic ischaemic skin lesions, and even lead to limb 

amputations in serious cases [156]. Li et  al. found that 
EPC-EVs could heal diabetic wounds in diabetic rats and 
enhance the proliferation, migration, and tube formation 
of vascular ECs in vitro. Moreover, ECs stimulated with 
these exosomes showed increased expression of angio-
genesis-related molecules. However, this study focused 
on the phenotype assays without exploring the active 
ingredients in EPC-EVs [157]. Similarly, Zhang et  al. 
discovered that the proliferation, migration, and tube 
formation of ECs could be enhanced by EPC-EVs. Fur-
thermore, the exosomal treatment altered the expression 
of genes related to the ERK1/2 signalling pathway, which 
was the pivotal mediator during the EV-induced angio-
genic responses of ECs by functional study confirmation 
[158]. Xu et al. treated diabetic mice bearing skin wounds 
with miR-221-3p, EPC-EVs, or phosphate-buffered saline 
and showed that wound healing was strengthened by 
EPC-EVs and miR-221-3p compared to that in both 
control and diabetic mice. In this study, EPC-EVs were 
directly spread onto wound sites, which was convenient 
and practical in the clinical settings [159].

Patients living with diabetes have a 3–4 times higher 
risk of suffering an ischaemic stroke than those without 
diabetes because the combination of decreased angiogen-
esis and impaired endothelial dysfunction aggravates cer-
ebral damage [160]. Wang found that EPC-EVs protected 
ECs against HR-induced dysfunction and injury [115] 
and enhanced the function and viability of EPCs in diabe-
tes [161]. In a subsequent study, these researchers found 
that EPC-EVs–miR-126 had better effects than EPC-EVs 
in increasing cerebral blood flow and microvascular den-
sity, decreasing the infarct size, and promoting neurogen-
esis and angiogenesis as well as neurological functional 
recovery. However, as different cell types including neu-
rons, vascular ECs, and neuroblasts can express VEGFR-
2, further research is needed to determine which brain 
cells are the main ones with increased VEGFR-2 expres-
sion [162]. Atherosclerosis is a main macrovascular com-
plication of diabetes and the leading cause of death in 
patients with diabetes [163]. Bai et  al. found that most 
of the top ten upregulated miRNAs in EPCs-derived 
exosomes were associated with atherosclerosis. Further 
in  vivo studies showed that treatment with EPC-EVs 
could reduce the production of inflammatory factors and 
diabetic atherosclerotic plaques. Nonetheless, the exact 
miRNA in EPC-EVs that plays an important role in dia-
betic atherosclerosis remains unclear [164].

Future perspectives and conclusions
With the development of regenerative medicine and 
stem cell therapy, various stem cells have been proven 
to be effective in tissue damage repair [165, 166]. EPCs 
are one class of stem cells that are known to repair and 
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regenerate various tissues [81, 167] and have attracted 
increasing attention for their stem cell-specific functions 
as well as the regulatory function of their EVs. EPC-EVs 
have exhibited better effects than EPCs in some preclini-
cal studies [131]. EVs are less immunogenic than their 
parental cells and can be transported and stored for a 
long time [168]. Moreover, aside from their abilities to 
deliver various molecules that regulate angiogenesis, 
fibrosis, and cell proliferation, EPC-EVs can be utilized as 
cell-free drug carrier systems, which have the advantages 
of availability and reproducibility [169]. The feasibility of 
loading or enriching EVs with specific regulatory mole-
cules has been proven [170, 171], and the application of 
modified EPC-EVs as vehicles for delivering regulatory 
factors may elicit better therapeutic effects.

However, some issues should be addressed before the 
translational application of EPC-EVs in the clinical set-
tings. Firstly, the differential therapeutic effects of EVs 
derived from various stem cells including EPCs remain 
to be determined. To date, various classes of stem cells 
and their EVs were applied in disease treatment, among 
which adipose-derived stem cells (ADSCs) and bone 
marrow stem cells (BMSCs) were studied extensively 
[172–175]. As summarized in Additional file 2: Table S2, 
the EVs from ADSCs and BMSCs exhibited similar char-
acteristics and exerted protective functions in a wide 
array of diseases like EPC-EVs. Recently, Miyasaki and 
colleagues compared the efficiency of EVs from mesen-
chymal stem cells and EPCs in treating chronic kidney 
disease and found similar improvement in renal func-
tion in terms of serum albumin, cystatin C, crystals in the 
renal tubules, and fibrosis, rather than staining of alpha-
smooth muscle actin [176]. However, the direct compari-
son between different types of EVs was rare, and further 
studies are needed.

Secondly, a consensus on the source, identification, and 
culture conditions of EPCs is needed. As stated before, 
EPC-EVs isolated from PB [91], CB [94], and BM [177] 
exhibited protective effect on kidney injury, through dif-
ferent mechanisms. The number of EPCs in BM (0.05%) 
and PB (0.01%) is relatively low [178], while CB-derived 
EPCs have a higher proliferative potential and higher fre-
quency than other EPC types [179, 180]. Although posi-
tivity for CD133, VEGFR-2, and CD34 is widely accepted 
when referring to EPCs, two distinct classes (early or 
late EPCs) were reported with different combinations of 
defining markers, which needs standard protocols for the 
detection of EPCs [19]. Regardless of the cell source and 
identification process, the number of EPCs was too low 
for further applications, while ex  vivo culture can con-
tribute to the matureness of stem cells and a reduction 
in cell number [178]. Hence, the head-to-head compara-
tive studies on EVs derived from EPCs with different cell 

source, definition, and culture conditions should be per-
formed, which might conclude a consensus and guideline 
for the clinical application.

Thirdly, the exact effective molecules within EPC-EVs 
remain to be explored comprehensively. Most of the 
cited studies focused on the phenotype changes under 
EPC-EVs treatment, which lacked validation from dif-
ferent levels and detailed investigation of the specific 
active ingredients in EPC-EVs. Different components 
have been reported in EPC-EVs, such as miRNAs, lncR-
NAs, proteins (Additional file 1: Table S1), and mRNAs 
[181]. Among which, miRNAs have been explored widely, 
and most of the candidate molecule was selected with-
out high-throughput screening. Mounting evidence has 
indicated the existence of lipids [182], circRNAs [183], 
and DNA [184] in the EVs derived from different stem 
cells, which remain yet unknown in EPC-EVs. Further 
well-designed studies with substantial verification are 
warranted to examine the effective components in a com-
prehensive and unbiased manner.

Lastly, the EV extraction process is complicated and 
has yet to be standardized. The quality standard of the 
entire production process must be medically satisfied 
and certified, which affects economic sustainability [185]. 
Importantly, the mass production of EPC-EVs is critical 
for clinical needs [186]. Moreover, the establishment of 
the dose and delivery route of EPC-EVs requires more 
research, as the amount and content of exosomal cargo 
are different under different pathophysiological condi-
tions. Most studies simply analysed the amount and 
content of exosomes at a single time point and did not 
completely investigate all exosomal contents that were 
differentially expressed.

Because the complexity and high off-target rate of 
EVs are the main obstacles to clinical application, a new 
strategy for comprehensively simulating EVs is needed 
[187]. Although artificial EVs are easier to mass-produce 
and more uniform [188], additional research is needed 
in the preclinical setting. Hopefully, with the continued 
development of tissue engineering and nanotechnology, 
transporting EPC-EVs to the right place can be achieved, 
which may result in more effective treatment of different 
diseases. Given our limited understanding of EPC-EVs, 
their long-term therapeutic safety is difficult to predict. 
Therefore, extra care is required during the transition of 
this treatment strategy to the clinic.
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