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Abstract 

Mesenchymal stem cell (MSC)-based therapy has been considered as a promising approach targeting a variety of 
intractable diseases due to remarkable multiple effect of MSCs, such as multilineage differentiation, immunomodula-
tory property, and pro-regenerative capacity. However, poor engraftment, low survival rate of transplanted MSC, and 
impaired donor-MSC potency under host age/disease result in unsatisfactory therapeutic outcomes. Enhancement 
strategies, including genetic manipulation, pre-activation, and modification of culture method, have been investi-
gated to generate highly functional MSC, and approaches for MSC pre-activation are highlighted. In this review, we 
summarized the current approaches of MSC pre-activation and further classified, analysed the scientific principles and 
main characteristics of these manipulations, and described the pros and cons of individual pre-activation strategies. 
We also discuss the specialized tactics to solve the challenges in this promising field so that it improves MSC thera-
peutic functions to serve patients better.
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Introduction
In recent decades, MSCs in cell-based therapy have 
spanned across various diseases in experimental and clin-
ical researches worldwide, exhibiting therapeutic efficacy 
over conventional treatments due to their distinctive bio-
logical properties [1–5]. They have isolated from perina-
tal tissues, such as umbilical cord, umbilical cord blood 
and placenta, and multiple biological tissues in adults, 
including bone marrow, adipose tissue, muscle, and 
lung [6, 7]. MSCs, as a kind of multipotent stromal cells, 
possess the potential for self-renewal and multilineage 

differentiation into adipocytes, muscles, chondrocytes, 
osteoblasts, and neuronal cells [8, 9]. In addition, increas-
ing evidence has revealed that MSCs exert immunomod-
ulation, reparative, and regenerative effects through high 
paracrine activity [10–12] (Fig.  1). More importantly, 
MSCs are immune privileged, which means alloge-
neic MSCs transplantation will not elicit inflammatory 
response, mainly due to their lack of class-II major histo-
compatibility complex (MHC-II) and costimulatory mol-
ecules [13, 14]. Their outstanding features jointly make 
MSCs the ideal seed cells in cell therapy after haemat-
opoietic stem cells.

However, MSCs from different individuals are hetero-
geneous in their biological effects. Moreover, the body’s 
internal environment (sick or not, youth or old) affects 
the quality of the isolated stem cells. For example, adi-
pose-derived MSCs (ASCs) isolated from obese and type 
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2 diabetes (T2D) individuals exhibit functional defec-
tives, such as increased apoptosis, reduced immunosup-
pressive activities, and loss of stemness [15–17]. And 
MSCs from old donors show impairment of proliferation 
and differentiation, depression of immunoregulation, and 
reduced secretion of bioactive molecules [18]. In addi-
tion, once administered in the body, MSCs may undergo 
apoptosis shortly because they exposed to the harsh host 
microenvironment, including hypoxia, oxidative stress as 
well as chronic inflammation. It reported that only about 
28% of the intravenously injected MSCs survived after 
one day, [19] and fewer than 1% of cells persisted more 
than a week [20, 21]. Even if transplanted in  situ, most 
MSCs lose their biological activities within one week 
[22]. Besides, most of the infused MSCs trapped in the 
lung microvasculature instead of the target tissues [23]. 
These adverse conditions will cause various problems, 
such as low survival rates of the transplanted cells, poor 
migration and homing of MSCs, and limit the function-
alities of the injected cells.

To achieve the desired therapeutic potential, it seems 
unreasonable to increase the dosage and frequency of 
transplanted MSCs, as this may increase the risk of pul-
monary embolism and the cost [24]. Optimizing the 
potency and therapeutic benefits of MSCs is a top prior-
ity. Several strategies attempted to optimize stem cells 
were proposed, which roughly divided into two catego-
ries, namely genetic modification and non-genetic modi-
fication (pre-activation).

In terms of genetic modification, MSCs will produce or 
overexpress functional genes that enable them to resist 
hostile microenvironment and apoptosis, increase migra-
tion and homing, and enhance paracrine effects. Several 
studies suggest that gene transfected MSCs have bet-
ter therapeutic potential than wild-type MSCs [25–27]. 
However, safety is the greatest barrier for the future 
clinical therapeutic use of genetically modified MSCs. It 
reported that viral expression systems can elicit immune 
and inflammatory responses in the host, and viral inte-
gration in the host genome poses a tumourigenic risk 

Fig. 1  Isolation sources and action mechanisms of MSCs. The diagram illustrates various sources of isolated MSCs and the biological characteristics 
related to the therapeutic effect
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[28, 29]. Additionally, the therapeutic potential and long-
term function improvements in genetically engineered 
MSCs need to fully elucidate. Therefore, the develop-
ment of highly efficient non-genetic modification meth-
ods, collectively referred to here as pre-activation, is an 
alternative and operational way to improve the treatment 
outcome of MSCs.

MSCs can be pre-activated to achieve the desired 
function and reverse their inactivation because they 
can recognize the stimuli in the microenvironment 
and remember them [3, 30]. Reviewing the current lit-
erature, the pre-activation of MSCs is mainly based on 
the in  vivo physiological microenvironment of MSCs 
survival and simulated in vitro, which is called "physi-
ological microenvironment simulation pre-activation." 
Or in vitro adaptive regulation of MSCs is based on the 
pathological microenvironment of the disease, known 

as "pathological microenvironment simulation pre-
activation." The primary goal of the review article is 
to provide specific methods involving in both types of 
pre-activation (Fig. 2).

Methods
The most relevant English papers were selected by 
the distinct keywords, including mesenchymal stem 
cell and pretreatment, in the database of Google 
Scholar, MEDLINE, PubMed, and Embase. We set 
dates of searching from 2010 to 2021. An initial repeat 
assessment of selected articles was performed using 
endonote. Titles, abstracts, and full-text articles are 
further screened independently by two reviewers, and 
articles relevant to the topic of the current review were 
included. We also studied the references of the relevant 
papers, according to the needs of the writing.

Fig. 2  An overview of currently available strategies for preconditioning MSCs to improve the beneficial therapeutic effects of MSCs



Page 4 of 21Li et al. Stem Cell Research & Therapy          (2022) 13:146 

Physiological microenvironment simulation 
pre‑activation
The number of MSCs in primary culture is limited. It 
needs to expand in  vitro to achieve therapeutically rel-
evant cell numbers, and excessive ex  vivo manipulation 
leads to senescence, decreased stemness, and impaired 
regenerative capacity [23]. Maintaining the “youthful-
ness” of MSCs in vitro is very important. Stem cells live 
in specific areas of tissues, named as stem cell niche. It 
is a multidimensional environment composed of both 
cellular and acellular components to manipulate stem 
cell proliferation, determine stem cell fate, and maintain 
stem cell homeostasis. The cellular and acellular compo-
nents involved in a number of necessary clues, namely 
other cells (cell–cell interactions), physical elements 
(temperature, osmotic pressure, stretch, and electrical 
signals), chemical factors (PH, oxygen, nutrients, ionic 
strength, metabolites cytokines, and chemokines), and 
extracellular matrix (composition, structure, topology, 
and stiffness) [31–33]. In this regard, recreating the com-
plex in vivo microenvironment in vitro would provide a 
powerful tool for MSC production and maintain their 
inherent biological properties. And hypoxic and three-
dimensional (3D) culture is by far the most intensively 
studied.

Pre‑activation with hypoxia
Under in  vitro culture conditions, MSCs commonly 
exposed to an environment where the average oxygen 
tension is approximately 21% [34]. However, MSCs gen-
erally reside in a hypoxic microenvironment with physi-
ological oxygen concentrations ranging from 1 to 11% 
in vivo [35, 36]. Several studies have illustrated that high 
oxygen concentration causes environmental stress in cul-
tured MSCs, and then induces DNA damage and senes-
cence [37, 38], and decreases their activities [39, 40]. 
Therefore, hypoxia is a crucial component of the physi-
ological microenvironment for MSCs. Hypoxia-inducible 
factors (HIFs), especially HIF-1, are the crucial modula-
tor of cellular response to hypoxia [41]. HIF-1 is a heter-
odimer containing two subunits, HIF-1α and HIF-1β. The 
lack of O2 allows oxygen labile protein HIF-1α accumu-
lation and translocates into the nucleus, and then binds 
with HIF-1β to form the heterodimer, which further 
binds to a hypoxia-response element (HRE) in the target 
genes with co-activators such as CBP/p300 and then reg-
ulates the transcription of numerous genes [42–44].

Hypoxic pre-activation has multiple beneficial effects 
on MSCs. For example, a hypoxic culture environ-
ment maintains undifferentiated states of MSCs. Several 
reports showed that low oxygen tension increased the 
expression of multipotent stem cell markers (Oct4, Sox2, 

and Nanog) in ASCs without changing their surface 
markers and morphology [45, 46].

In addition, hypoxia facilitates the proliferation and 
survival of MSCs, leading to a higher expansion and 
more yield ASCs compared to normoxic state (20% O2) 
[45–48]. And the hypoxia priming seems to promote the 
mobilization of MSCs in vitro in migration assay [47, 49] 
and improve homing of MSCs in vivo [50, 51]. Lee et al. 
group demonstrated that hypoxia promoted the prolifer-
ation and migration potential of MSCs through the HIF-
1α-GRP78-Akt signal axis [34]. The results of Rosová 
et  al. showed that MSC cultured in hypoxia augmented 
the expression of hepatocyte growth factor (HGF) and its 
major receptor cMet, and HGF/cMet was the main sig-
nalling for MSC migration [51]. Another study found that 
hypoxic pre-activation promoted the migration of bone 
marrow-derived mesenchymal stem cells (BMSCs) by 
ways of increasing potassium Kv2.1 channel expression 
and FAK activities [50].

Besides, hypoxia priming could protect MSCs against 
the hostile microenvironment and maintain gene stabil-
ity [37, 52]. The accumulation of HIF-1α under hypoxia 
activates normal cellular prion protein, which protects 
MSCs from oxidative stress-induced apoptosis via the 
activation of superoxide dismutase and catalase to inacti-
vate cleaved caspase-3 [53]. Furthermore, when exposed 
to hypoxia, MSCs show a prolonged life span and avoid 
replicative senescence, and express fewer senescence-
associated β-galactosidase compared to normoxic culture 
[53]. Hypoxia-conditioned MSCs exhibit gene stabil-
ity with decreased DNA damage and less chromosomal 
aberration [37].

Moreover, the secretion profile of MSCs changes and 
the paracrine function is enhanced, after hypoxic culture. 
For instance, under hypoxia, the secretion of pro-angio-
genic factors such as VEGF, HGF, and fibroblast growth 
factor-basic (bFGF) increased in MSCs. In contrast, anti-
angiogenic factors such as thrombospondin-1 and plas-
minogen activator inhibitor-1 decreased in MSCs [3]. 
Furthermore, the immunosuppressive characteristics 
of MSCs improved under hypoxia with upregulation of 
anti-inflammatory factors including interleukin-6 (IL-6), 
IL-10, and indoleamine 2,3-dioxygenase (IDO) [54, 55]. 
And, hypoxia-cultivated MSCs inhibited the proliferation 
of CD4 and CD8 T lymphocytes and promoted the gen-
eration of Treg cells more effectively than MSCs exposed 
to normal oxygen [56, 57].

Significantly, numerous experimental studies found 
that MSCs pre-activated with hypoxia shows more prom-
inent therapeutic effects than untreated MSCs. Hypoxia-
pre-activated MSCs could obviously attenuate pulmonary 
oedema, alleviate pulmonary fibrosis, and improve lung 
function, compared to normoxic cultured MSCs in a 
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pulmonary fibrosis model [58]. In addition, transplan-
tation of hypoxic MSCs into a rat myocardial infarction 
model led to greater vascularization and smaller infarct 
size in injured sites compared to normoxic MSCs [59]. 
Furthermore, streptozotocin-induced diabetic mice 
received hypoxia-pre-activated MSCs caused signifi-
cantly lower random and fasting blood glucose as well as 
improved oral glucose tolerance compared to normoxic 
MSCs-treated diabetic mice [40].

Therefore, compared with normoxic MSCs, MSCs pre-
treated with hypoxia present more favourable proper-
ties and hold better therapeutic potential. Additionally, 
hypoxic pre-activation has the advantages of being sim-
ple, low cost, easy popularization, and suitable for large-
scale cell production. However, several issues need to be 
addressed before further application of hypoxic MSCs 
into the clinic. It is necessary to optimize the oxygen 
concentration in hypoxic pre-activation because the oxy-
gen concentrations in physiological niches where MSCs 
live vary by tissue origin (1% to 7% in bone marrow, 10% 
to 15% in adipose tissue, and 1.5% to 5% in birth-asso-
ciated tissues) is [58]. Moreover, the optimal duration 
for hypoxia also should be revealed. More importantly, 
biosafety is the most concerning issue of stem cell-based 
therapy and should be carefully determined before clini-
cal application.

Pre‑activation with 3D culture
Compared with the two-dimensional (2D) culture envi-
ronment, the 3D culture system imitates the natural 
MSC microenvironment in  vivo and provides enhanced 
cell–cell interactions or cell-ECM interaction, which can 
significantly improve the biological behaviours of MSCs, 
such as proliferation, immune regulation, and commit-
ted differentiation [60]. The 3D culture systems of MSCs, 
including multicellular spheroids, scaffolds, and hydro-
gels, have attracted more and more attention.

Spheroid culture
Spheroid culture, a comparably easy method for strength-
ening the biological activities of MSCs, has established 
[61]. Various methods have developed for the generation 
of MSC spheroid, such as the hanging drop technique, 
low-attachment approach as well as forced aggregation 
techniques [62]. With the development of biomaterials, 
scaffold-based culture platforms to generate MSC sphe-
roid have developed.

The spheroid culture system can benefit the thera-
peutic potential of MSCs through increasing stemness 
and facilitating differentiation into different cell lineages 
[57, 63]. The results of Cheng et  al. showed that chi-
tosan film-based spheroid culture could dedifferentiate 
MSCs into more primitive state with downregulation of 

mesenchymal lineage markers CD29, CD90, and CD105 
and upregulation of pluripotency-related markers Sox2, 
Oct4, Nanog, and SSEA-4 [45, 64]. Moreover, Zhang 
et  al. employed a microgravity bioreactor to generate 
MSCs spheroids and found similar results [65]. Further-
more, spheroid-derived MSCs alter their differentiation 
preference and can transdifferentiate into non-mesen-
chymal lineage cells such as neural cells and hepatocytes 
[64, 65].

The spheroid culture system can benefit the therapeu-
tic potential of MSCs by enhancing proliferation, migra-
tion, and homing efficiency. Compared to monolayer 
MSC culture, spheroid-derived MSCs exhibited higher 
proliferative activity [66]. The SDF-1/CXCR4 signalling 
pathway plays crucial role in the migration and engraft-
ment of transplanted MSCs. Culturing of MSCs as sphe-
roid restores the loss of CXCR4 expression caused by 
2D culture [67]. Beside, increased expression of matrix 
metalloproteinases MMP-9 and MMP-13 has found in 
spheroid-derived MSCs, facilitating cellular invasion via 
the basement membrane [66].

The spheroid culture system can benefit the therapeu-
tic potential of MSCs through promoting the secretion 
of therapeutic factors, including immunomodulatory 
and pro-angiogenic cytokines. Bartosh et  al. reported 
that MSCs in a hanging drop model secreted higher 
levels of the anti-inflammatory factors such as tumour 
necrosis factor-inducible gene 6 protein (TSG-6) and 
stanniocalcin 1, and more effective suppressed lipopoly-
saccharides (LPS)-stimulated macrophage secretion 
of tumour necrosis factor-alpha (TNF-α) than control 
MSCs [68]. Several studies have demonstrated that other 
anti-inflammatory cytokines such as prostaglandin E2 
(PGE-2), transforming growth factor-β1 (TGF-β1) as well 
as IL-6 also exhibited a greater levels in spheroid derived 
MSCs [69–72] than 2D cultured MSCs. Furthermore, the 
pro-angiogenic and pro-regenerative function enhanced 
in spheroid derived MSCs due to the significantly 
increased secretion of VEGF, HGF, bFGF, and angiogenin 
(ANG) [67, 73].

Spheroid culture optimized the biological properties 
of MSCs and enables them better therapeutic effects 
in vivo. Bartosh et al. proved that spheroid-derived MSCs 
were more effective than monolayer MSCs in suppress-
ing inflammatory responses in a zymosan-induced peri-
tonitis model of mouse. Spheroid-derived MSCs treated 
group showed substantially decreased neutrophil activ-
ity and proinflammatory molecules in serum [70]. Cheng 
et al. reported that spheroid-derived MSCs injected into 
the impaired healing wounds significantly promoted 
healing rates by increasing cellular engraftment and 
enhancing angiogenesis [66]. The study of Bhang et  al. 
demonstrated that compared with the control group, 
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more significant angiogenesis and less fibrosis were 
observed in the ischemic region in the spheroid-derived 
MSC transplantation group [74].

However, some disadvantages of the spheroid culture 
system limit the large-scale production of MSC spheroids 
for in  vivo applications [75]. For example, the spheroid 
culture technique affects the spheroid size, and the vari-
ability of spheroid size impacts the therapeutic perfor-
mance of MSCs. Therefore, it is necessary to discriminate 
the clinical needs, develop a reproducible spheroid cul-
ture system, and utilize animal models and clinical trials 
to confirm its safety and effectiveness before using sphe-
roid-derived MSC in clinical practice.

Scaffold‑based culture
Extracellular matrix (ECM) is one of the critical acellular 
components of stem cell niche, which can considered as 
the “soil” for stem cells. Cells in the niche are mechani-
cally anchored to the ECM through transmembrane pro-
teins known as integrins [76]. The primary function of 
ECM is to provide the necessary scaffold for cell growth 
and transduction of mechanical sensing signals to cells 
through cell-ECM interaction. And it also supplies essen-
tial nutrients and growth factors to cells [61, 77]. There-
fore, it is necessary to build engineered niches to simulate 
native ECM in vivo. Recent advances in biomaterials have 
contributed to the development of artificial ECM culture 
systems for MSCs, and a variety of natural and synthetic 
biomaterials have emerged [61]. They should fulfil the 
properties of matrix mechanics, degradability, and bio-
compatibility. And the design principles of engineered 
ECM mainly depend on the native microenvironment of 
the stem cells type of interest or the desired phenotypic 
output. The existing engineered ECM could improve the 
biological properties of MSCs such as proliferation, hom-
ing, lineage differentiation, and paracrine [78–81].

Engineered ECM in the forms of scaffold, film, hydro-
gel, and sponge has been developed and used to amplify 
MSCs and enhance their biological properties [82–84]. 
Alginate has extensively used as a biocompatible car-
rier in tissue engineering. The work of Ewa-Choy et  al. 
documented that the 3D alginate hydrogels created a 
microenvironment that facilitated the differentiation 
of ASCs into chondrogenic-like cells in ASCs and nasal 
chondrocytes co-cultured system. The efficiency of ASC-
chondrocyte differentiation depended on alginate con-
centration [85]. Of note, the addition of specific inducers 
to the ECM scaffold will further increase the differentia-
tion efficiency of MSCs into desired cell types. Several 
studies have shown that hydroxyapatite (HAp) is similar 
to pre-existing minerals during the bone remodelling 
process and possessing superior osteoinductive activity 
[86, 87]. BMSCs were implanted into the porous sponge 

constructed from duck’s feet-derived collagen (DC)/ with 
or without hydroxyapatite (HAp) to observe their osteo-
genic differentiation. Under the induction of an osteo-
conductive regulator dexamethasone, BMSCs in DC/
HAp sponge tended to show higher proliferative activity 
and greater osteogenic differentiation [88].

The paracrine profile and immunomodulatory roles 
of MSCs seeded on engineered ECM scaffolds are also 
significantly altered. MSCs seeded in biomaterials 
showed up-regulation of anti-inflammatory regulators 
such as PGE2 and TSG-6, and down-regulation of anti-
inflammatory regulators such as monocyte chemoat-
tractant protein-1 (MCP-1), IL-6, and receptor activator 
of nuclear factor κ-B (NF-κB) ligand (RANKL) [60, 89]. 
Alginate-encapsulated MSCs attenuate TNF-α secre-
tion and enhance PGE2 production more effectively than 
MSCs in 2D in an LPS-stimulated model of organotypic 
hippocampal slice culture [90]. In addition, ASCs cul-
tured in alginate hydrogels showed significant inhibition 
on the proliferation of phytohaemagglutinin-stimulated 
peripheral blood mononuclear cells compared to mon-
olayer culture [91]. Moreover, alginate hydrogel encapsu-
lated MSCs promoted the conversion of macrophages to 
the anti-inflammatory M2 phenotype in vitro. And they 
played a similar immunomodulatory role in a rat model 
of spinal cord injury (SCI) as a greater percentage of the 
M2 subsets at the site of injury compared to control [92, 
93].

Therefore, scaffold-based 3D culture endowed MSCs 
with more excellent biological activities and outstand-
ing therapeutic efficacy than 2D culture. With people’s 
understanding of biomaterials, their biological perfor-
mance is also constantly expanding. Using only biological 
materials, biomimetic composite materials with mul-
tiple functions can be manufactured. For example, Jiao 
et  al. developed a double-phase biomimetic procallus 
with gelatin-reduced graphene oxide (GOG) and photo-
crosslinked gelatin hydrogel, which provide hypoxic 
microenvironment and mediated bidirectional differ-
entiation of BMSCs to osteogenesis and angiogenesis, 
thereby promoting the regeneration of bone defects [94]. 
Therefore, a new generation of scaffold-based MSC cul-
ture techniques should not only simulate stem cell niches 
from multiple aspects simultaneously, provide as many 
stem cell niche components as possible, but also release 
bioactive molecules to target effector cells and activate 
"self-repair" mechanisms at damaged sites.

Pathological microenvironment simulation 
pre‑activation
Since MSC enters the body, it will face the pathologi-
cal microenvironment caused by the disease. There are 
a variety of destructive factors in this setting that can 
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cause oxidative stress and apoptosis of transplanted 
cells, and significantly compromise the inherent thera-
peutic properties of MSCs. Researchers are committed 
to fine-tune the characteristics of the cells against hos-
tile environments and suited for the targeted diseases. 
Based on the plasticity and memory ability of MSCs, 
cues in the trauma microenvironment, such as envi-
ronmental factors (hypoxia), chemical factors (inflam-
matory factors and cytokines), will be the primary 
consideration for in  vitro manipulation of MSCs [95]. 
In addition, new approaches have constantly explored, 
such as drugs, Traditional Chinese medicine and small 
molecule compounds have also become emerged for 
MSC priming [28, 96, 97]. Another concern is that 
the biological characteristics of endogenous MSCs 
in patients will change with the disease development, 
showing the loss and decline their function [98–100]. 
Therefore, it is meaningful to improve the biological 
activities of MSCs and enhance their therapeutic effi-
cacy, especially to develop patient-customized thera-
peutic MSCs.

Pre‑activation of MSCs with hypoxia
It has mentioned in the previous sections that hypoxia is 
an important component of the stem cell niches. Actu-
ally, MSCs always delivered into the injury site of ischae-
mia and hypoxia in animal experiments and clinical 
studies. Therefore, hypoxia is also a crucial component of 
the pathological setting [34]. And hypoxic culture in vitro 
can induce the memory of MSC to injury microenviron-
ment for better therapeutic efficiency, which have been 
discussed in previous sections. However, there is a differ-
ence in oxygen concentrations between stem cell niches 
and damaged tissue. Furthermore, local oxygen concen-
trations in damaged tissues vary during different repair 
periods. Thus, the oxygen concentration of stem cell 
pretreatment was varied by purpose. For example, the 
in  vitro culture of MSCs refers to physiological oxygen 
concentrations and further pretreated with pathologic 
oxygen concentrations prior to their in vivo application.

Pre‑activation of MSCs with inflammatory factors
The pre-activation with inflammatory factors and 
cytokines is considered the most common means to 
mimic the inflammatory microenvironment in  vivo and 
play a significant role in regulating the immunomodula-
tory function of stem cells [3]. In contrast with others, 
the proinflammatory cytokines such as TNF-α, INF-
γ, and IL-1β are frequently observed in the traumatic 
microenvironment and are extensively studied for preac-
tivating MSCs [3].

Pre‑activation of MSCs with TNF‑α
Increasing evidence suggests that appropriate priming 
of MSCs with disease-related stimuli improves their 
biological function and plays better therapeutic roles 
[101]. TNF-α is expressed in ischemic and injured tis-
sues and commonly used to mimic the acute inflam-
matory environment [102]. Pre-activation of gingival 
tissue-derived MSCs (GMSCs) with TNF-α enhanced 
exosomal CD73 expression, which was essential for 
inducing anti-inflammatory M2 macrophage polari-
zation [103]. Exosomes derived from TNF-α preacti-
vated GMSC exhibited stronger anti-osteoclastogenic 
activity than control, thereby reducing periodontal 
bone resorption in a mice model of ligature-induced 
periodontitis [103]. Furthermore, TNF‐α- pre-activated 
MSCs showed improved proliferation, migration, and 
survival under H2O2‐-induced oxidative stress. And 
they exerted better endothelial protective functions 
through the massive secretion of HGF, VEGF and other 
cytokines than control MSCs [104]. Additionally, MSCs 
primed with TNF-α accelerated local vascularization of 
the injured sites in the ischemic hindlimb and cutane-
ous wound via secretion of pro-angiogenic cytokines, 
such as IL-6 and IL-8 [105, 106].

Pre‑activation of MSCs with interferon (IFN)‑γ
The proinflammatory cytokine IFN-γ is also a repre-
sentative factor used for MSC pre-activation [107]. 
In response to IFN-γ, MSCs had a distinctive immu-
nosuppressive profile, with the increased expression 
of several anti-inflammatory factors such as HGF, 
TGF-β1, IDO, prostaglandins, and cyclooxygenase 2 
(COX-2) [108–110]. Prostaglandins and IDO secreted 
from the IFN-γ-stimulated MSCs were the main effec-
tors in suppressing NK activation [109]. In addition, 
IL-2/15-activated NK cells induced less cytotoxicity 
to IFN-γ stimulated MSCs than nonstimulated MSCs 
due to their upregulation of inhibitory MHC Class I 
molecules, while IFN-γ-priming MSCs inhibited the 
proliferation of PBMCs more strongly than did the 
nonpriming MSCs [111], accompanied by upregulation 
of PD-L1 and increased secretion of COX-2-derived 
PGE2 [112]. The therapeutic potential of MSCs after 
IFN-γ pre-activation was significantly improved and 
demonstrated in models of CCl4-induced liver cirrhosis 
[113], obliterative bronchiolitis [114], and renal fibro-
sis [115]. This evidence illustrated that MSCs could be 
activated by inflammatory signalling, and sufficient to 
strengthen their immunoregulatory profile and thera-
peutic efficacy [110].
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Pre‑activation of MSCs with IL‑1β
IL-1β is also a prevalent inflammatory cytokine in 
inflamed tissues produced by monocytes and mac-
rophages [116]. It has shown that IL-1β pre-activation 
increases the expression of many adhesion molecules 
in MSCs, such as integrin LFA-1, thereby promoting 
adhesion to HUVECs through interaction with ICAM-
1, which facilitates MSC cross-endothelium and hom-
ing [117]. In addition, Nie et al.’s study found that IL-1β 
pre-activated MSCs showed elevated CXCR4 expres-
sion and increased their migration towards SDF-1, 
leading to better therapeutic performance than naive 
MSCs in acute liver failure [118]. In addition, exosomes 
derived from IL-1β-pre-activated MSCs could induce 
macrophage polarization into M2 phenotype and atten-
uated the symptoms in the septic mice model more 
effectively than exosomes produced by naïve MSCs 
[119].

Pre‑activation of MSCs with other proinflammatory cytokines 
and TLR ligands
In addition, some other inflammatory factors such as IL-
17A and IL-25 were recently reported as alternative pre-
activated means and acquired promising results. IL-17A 
is produced predominantly by CD4+ T helper 17 cells 
and plays regulatory roles in developing autoimmune 
and inflammatory diseases [120]. The results of a com-
parative study demonstrated that MSCs stimulated with 
IL-17A exhibited superior immunosuppressive proper-
ties than untreated MSCs [121]. IL-17A-treated MSCs 
showed the highest suppression of mitogen-activated 
CD3+ T cells compared with MSCs treated by IFN-γ, 
TNF-α, or IL-1β. And they also induce the generation 
of CD4+CD25highCD127lowFoxP3+ Tregs [121]. IL-25 is 
a member of the cytokine IL-17 family and has recently 
used to enhance MSC regulated immune response 
[122, 123]. Infusion of IL-25-primed MSCs significantly 
reduced IL-17-positive cells and increased FoxP3 positive 
cells, thereby alleviating intestinal inflammation in a rat 
model of DSS-induced colitis compared with unprimed 
MSC [122].

Lipopolysaccharide (LPS) is a component of the outer 
membrane of gram-negative bacteria that elevated in var-
ious diseases. Recent studies have shown that LPS serves 
as an essential mediator in the regulation of apoptosis in 
numerous cell types [124]. It has demonstrated that the 
biological effects of LPS on MSCs were closely associated 
with the concentration LPS used. MSCs treated with LPS 
at high-dose induced their apoptosis, and MSCs treated 
with low-dose of LPS enhanced their ability to resist oxi-
dative stress and inhibit apoptosis, possibly depending on 
the upregulation of cellular FADD-like IL-1β-converting 
enzyme inhibitory protein. Furthermore, transplantation 

of low-dose LPS preactivated MSCs significantly 
improved MSC-mediated cardio-protection in an I/R 
injury model through MyD88-dependent activation of 
stat3 [124–126].

Pre‑activation of MSCs with a combination 
of proinflammatory cytokines
The biological activities of MSCs are varied after pre-
activated with various proinflammatory factors, so sci-
entists conceived whether MSCs can be pretreatment 
by the combination of different inflammatory cytokines 
to compensate for the lower efficiency and maximize the 
therapeutic effect. After licensing with IFN-γ and TNF-α, 
MSCs retained their anti-apoptotic ability, which inhib-
ited T cell proliferation and promoted CD14+ mono-
cytes differentiated into anti-inflammatory CD206+ M2 
macrophages more effectively than single-factor-induced 
MSCs. Moreover, pre-activation of ASCs with a combi-
nation of IFN-γ, TNF-α, and IL-17 dramatically enhanced 
their immunosuppressive effect and effectively cured 
concanavalin A (ConA)-induced liver injury in mice 
through an iNOS-dependent manner [127].

Therefore, inflammatory cytokines pre-activation can 
not only improve the ability of MSCs to resist oxidative 
stress, but also largely enhance the immunosuppres-
sive properties of MSCs and strengthen their therapeu-
tic efficacy. Nevertheless, some questions still need to 
be answered. Intensive studies need to further explore 
and identify the optimal concentration and action dura-
tion of inflammatory cytokine pre-activation alone or in 
combination. Alternatively, the possible side effects of 
inflammatory pre-activation, such as undesirable upreg-
ulation of class I and II HLA molecules, should also be 
concerned.

Pre‑activation of MSCs with growth factors or regenerative 
cytokines
Priming MSCs with growth factors or regenerative 
cytokines have recently emerged and have proved to 
be an appealing approach. bFGF is one of potent pleio-
tropic cytokines and serves critical roles in regulating 
bio-properties of various stem cells and tissue regenera-
tion [128]. bFGF-primed dental pulp stem cells derived 
from deciduous teeth (DPMSCs) show the highest angi-
ogenic potential with the highest secretion of HGF and 
VEGF compared to control or hypoxic pre-activated 
MSCs [129]. Moreover, stimulation of canine MSCs with 
bFGF enabled their generation of cartilage tissue [130]. 
SDF-1 is also known as chemokine ligand 12 (CXCL-
12), and its receptors CXCR4 and CXCR7 constitute the 
chemokine signalling critical for recruiting stem cells and 
organ repair after injury [131]. MSCs pre-activated with 
SDF-1 exhibited a significant anti-apoptotic capacity and 
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proliferative potential, induced by a marked activation of 
Akt and ERK signalling pathways [132]. And angiogen-
esis also enhanced in preacitvated MSCs and was partly 
associated with their increased VEGF [132]. SDF-1α, the 
main spliced isoforms of SDF-1, has been used to priming 
MSCs [133]. SDF-1α pre-activation could augment the 
survival of MSCs in the infarcted myocardium, lessen the 
scar size, and enhance the cardiac systolic function [134]. 
In addition, infusion of MSCs pre-activated with TGF-α 
also obtained similar therapeutic effects in a rat model of 
acute myocardial I/R injury due to elevated VEGF secre-
tion via a p38 mitogen-activated protein kinase (MAPK)-
dependent mechanism [135].

Preactivating MSCs with a cocktail of growth factors 
revealed synergistic effects to enhance their biologi-
cal function. Simultaneous pre-activation of MSCs with 
bFGF, IGF-1, and BMP-2 enhanced their plasticity and 
significantly upregulated myocardial transcription fac-
tors in the myocardial cells and MSCs co-culture model. 
Moreover, transplantation of these pre-activated MSCs 
resulted in reduced infarct size and improved cardiac 
function compared to transplantation of untreated MSCs 
[136]. However, selecting optimal cytokines to pre-acti-
vated MSCs and confer the desired biological function is 
a major step. Whether to choose cytokines that change 
in common in various diseases or to use disease-specific 
cytokines as a pre-activated condition is a question that 
needs to be thoroughly studied. Alternatively, the method 
of cytokine pre-activation is not economical enough 
because significant amounts of cytokines required for the 
large-scale production of pre-activated MSCs.

Pre‑activation of MSCs with bioactive compounds
Bioactive compounds are a promising pre-activation 
method for strengthening biological properties of MSCs 
[28, 96, 137]. At present, the bioactive compounds used 
stimulation of MSCs can divided into natural (such as 
extracted from Traditional Chinese medicine (TCM)) 
and synthetic compounds according to their original; in 
terms of the screening principle of bioactive compounds, 
they either have a biological regulation effect on MSCs or 
have a therapeutic effect on target diseases; given their 
biological mechanisms for MSCs, bioactive compounds 
can classified as follows: promotion of the survival and 
migration, enhancement of the secretory activity, and 
reversion and reparation of disabled MSCs.

Bioactive compound for promoting the survival 
and migration of MSCs
Practically, exerting the inherent therapeutic properties 
of MSCs requires the transplanted cells to survive and 
function in a harsh and damaged setting [28]. A number 
of studies have focused on modifying MSCs to enhance 

their anti-apoptosis and migration capacity by using bio-
active compounds. Trimetazidine (1-[2,3,4-trimethoxy-
benzyl]piperazine; TMZ) can lower the tissue damage 
caused by ischaemia and usually used to treat angina. It 
protected MSCs from hydrogen peroxide (H2O2)-induced 
oxidative stress by increasing the expression of pro-sur-
vival factors such as HIF-1α, Akt, survivin, and Bcl-2. 
And a significant improvement in cardiac function was 
observed after transplantation of TMZ pre-primed MSCs 
in a myocardial infarction model [97]. Tadalafil belongs 
to the long-acting PDE5 inhibitor group and has been 
applied to treat heart failure [138]. It improved ex  vivo 
MSCs proliferation and survival via up‐regulation of 
miR‐21 to suppress Fas [138, 139]. It also prolonged MSC 
survival in  vivo and promoted MSC mobilization and 
homing into the infarcted myocardium partly through 
SDF‐1α/CXCR4 cascade [139]. In addition, atorvastatin 
played a beneficial impact on endothelial function [140], 
which facilitated the survival of MSCs and promoted the 
therapeutic action of MSCs in infarcted hearts via eNOS/
NO and SDF-1/CXCR4 pathways [140]. Vitamin E is a 
well-known antioxidant for its radical scavenging activ-
ity [141]. Vitamin E- pre-activated MSCs were resistant 
to H2O2-induced oxidative stress along with upregulation 
of proliferative markers (proliferating cell nuclear anti-
gen and Ki67) and pro-regenerative markers (TGF-β and 
VEGF). Moreover, implantation of MSCs with Vitamin E 
served to repair the damaged cartilage in a rat model of 
osteoarthritis [142].

In recent years, TCM or its extracts has been investi-
gated for their beneficial effects on MSCs [143]. Salvia 
miltiorrhiza (SM) is a widely known herb commonly 
found in many prescriptions of TCM for treating various 
diseases, including cardiovascular disease, Alzheimer’s, 
and ischemic stroke [144–146]. SM effectively enhanced 
the viability and reduced cellular damage of MSCs under 
hypoxic condition. The infusion of SM modified MSCs 
showed the infarcted areas recovery and positive behav-
iour changes in the rat middle cerebral artery occlusion 
model [147]. Curcumin, an active component of turmeric 
(Curcuma longa), possesses pleiotropic effects such as 
antioxidant and anti-inflammatory [148, 149]. It exerts 
cytoprotective effects against oxidative stress-induced 
injury in ASCs by regulating PTEN/Akt/p53 pathway 
and haeme oxygenase-1 expression [150, 151]. Prior cur-
cumin treatment significantly increased VEGF secre-
tion in MSCs, and these pre-activated MSCs resulted in 
more neovascularization and functional recovery than 
naïve ASCs in ischemic myocardium [152]. In addition, 
curcumin pre-activated MSCs improved their thera-
peutic potential in acidic burn wounds as exhibited by 
improved microcirculation, pronounced granulation and 
hastened wound closure compared with wild type MSCs 
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[153]. There are many other extracts of TCM, such as 
rosmarinic acid (RA) and gigantol, which protected the 
MSCs against H2O2-induced apoptosis via attenuating 
the expression of caspase-3, caspase-9 and Bax/Bcl-2 
by regulating the PI3K/Akt and ERK1/2 signalling path-
ways [154–156]. These results indicate that they may 
developed as cytoprotective agent for successful MSC 
transplantation.

Bioactive compound for enhancing the immunomodulatory, 
paracrine and therapeutic potential of MSCs
In fact, the immunomodulatory and paracrine properties 
of MSCs are closely related to their therapeutic efficacy. 
Recent data demonstrate that pharmacological stimulus 
can boost the paracrine and immunoregulation potential 
of MSCs. Iron chelator deferoxamine (DFX) is a hypoxia 
mimetic agent with antioxidant properties. DFX used to 
pre-activate MSCs resulted in enhanced the secretion of 
anti-inflammatory (IL-4, IL-5 and COX2), pro-angiogenic 
factors (VEGFα and Angiopoietin-1), as well as neuro-
protective factors (nerve growth factor, glial cell-derived 
neurotrophic factor, and neurotrophin-3) in MSCs [157]. 
The secretome of DFX- pre-activated MSCs could effec-
tively reprogram LPS-induced macrophage DH82 into 
M2 phenotype [158]. And it also showed neuroprotective 
potential of dorsal root ganglion (DRG) neurons under 
high-dose glucose-induced injury [157]. Treprostinil, a 
prostacyclins analogue, was used to stimulate MSCs and 
produce proangiogenic effects by increasing VEGF-A 
production [159]. Overexpression of pro-survival, angio-
genic, and pro-migration related genes, including COX‐2, 
HIF‐1, CXCR4, CCR2, VEGF, Ang‐2 and Ang‐4, has been 
found in All-trans retinoic acid (ATRA) ‐treated MSCs 
[160]. Moreover, wounds injected with ATRA‐treated 
MSCs showed significantly higher levels of vasculariza-
tion, collagen deposition and re-epithelialization, result-
ing in accelerated wound closure compared to wounds 
injected with untreated MSCs [160]. Resveratrol (RSV) 
is a plant polyphenolic compound, which can protect 
MSCs from inflammation and oxidative injury [161, 
162], potentiating their paracrine function, preventing 
their ageing and so on [163, 164]. For example, RSV pre-
activation enhanced the secretion of PDGF-DD in MSCs 
that further activated the ERK signalling pathway in renal 
tubular cells, promoted angiogenesis in endothelial cells, 
and preferably repaired cisplatin-induced renal injury 
[164]. Buyang huanwu decoction (BHD) is a famous for-
mula in TCM for supplementing Qi and activating blood 
and has been used to treat central nervous diseases [165]. 
Compared with untreated BMSCs, exosomes derived 
from BHD- pre-activated rat BMSCs contained more 
angiogenetic miRNA and elevated angiogenesis in rat 
brain after bilateral carotid artery ligation [166].

The development of high-throughput technologies 
brings us a new perspective for screening bioactive com-
pounds to target specific genes in MSC, thus regulating 
the expression profile of MSCs and specifically enhanc-
ing their desired biological functions. For example, 
tetrandrine was selected to specifically upregulate PGE2 
expression in MSCs through the NF-κB/COX-2 signal-
ling pathway. Tetrandrine- pre-activated MSCs showed a 
significant reduction in TNF-α secretion after co-culture 
with mouse macrophages (RAW264.7) and attenuation of 
TNF-α level in mouse inflamed ear [167].

Bioactive compound for reversing and repairing of disabled 
MSCs
MSCs from perinatal tissues will undergo replicative 
ageing with the large-scale amplification in  vitro, and 
MSCs from aged donors generally present premature 
senescence phenotype, and MSCs from patients showed 
the decline of MSC biological functions. These MSCs 
generally present downregulated cell function in prolif-
eration, mobility, differentiation, and immunoregulation 
with impaired therapeutic capability [98–100]. Therefore, 
reversing the functions of these MSCs, namely the reju-
venation of MSCs, is vital for MSC-based therapy. For-
tunately, recent studies have shown cellular functional 
decline or premature senescence can be rescued [168]. In 
general, approaches to rescue MSCs can broadly defined 
as reducing the level of intracellular oxidative stress, 
reprograming MSCs through adjustment of epigenetic 
modifications, as well as usage of senolytic drugs.

Inhibition of  excessive oxidative stress  Data show that 
ROS, as natural by-products produced by cell metabolism, 
is maintained at a low level in MSCs and is essential for 
the proliferation and differentiation of MSCs [169, 170]. 
High levels of ROS-induced under chronological ageing 
or pathological conditions will cause severe cytotoxicity 
and cell damage [168]. Several studies have reported that 
malfunctioned MSCs can be reversed by modulation of 
intracellular ROS aggregation and oxidative metabolism 
[168]. Antioxidants have become the natural choice, and 
several antioxidants used for anti-ageing studies of MSCs. 
N-acetylcysteine (NAC), a ROS scavenger, can signifi-
cantly attenuate ROS accumulation due to overactivation 
of Wnt/β-catenin signalling in MSCs, thereby lessen-
ing ROS induced DNA damage and downregulating the 
expression of senescence-associated marker p16 (INK4A), 
p53 and p21 [171]. Another free radical scavenger, edara-
vone, rescued the functions of elderly AT-MSCs by reduc-
ing ROS level and β-gal-positive cells. Moreover, it could 
also protect BMSCs from the intracellular accumulation 
of ROS caused by hypoxia and upregulation of antioxidant 
enzymes in UC-MSCs [172, 173]. More importantly, pre-
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activation with edaravone restored the elderly AT-MSCs’ 
in vivo therapeutic functions as decreased necrotic area in 
an ischemic flap mouse model [174].

Overall, ROS can act as intracellular messengers and 
help perform vital biological functions, so it is essential 
to control the optimal concentration of ROS by adjusting 
the amount of antioxidants. After all, high doses of anti-
oxidants can cause DNA damage and premature senes-
cence [175].

Bioactive compound for modifying of epigenetic dysregula-
tion  Epigenetic regulation, an important mechanism for 
programming, changes the cellular phenotype by altera-
tion of gene expression rather than DNA sequence. It is 
characterized by heritability and reversibility, includes 
DNA methylation and histone modifications, and has 
profound influence on MSC fate [176, 177]. The epige-
netic dysregulation found in MSCs after routine culture 
expansion appears to be unrelated to changes in global 
histone acetylation level, but involves histone acetyla-
tion levels at the promoters of some genes, such as TERT, 
Soc2, Oct4, Runx2, and ALP, which ultimately leads to 
cellular senescence [178]. Moreover, a general decrease 
in DNA methylation has reported in MSCs derived from 
old compared with MSCs derived from young by using a 
BeadChip microarray [179]. Given the reversibility of epi-
genetic modification, it is a potential strategy to explore 
epigenetic targeted therapy for reprogramming old stem 
cells into youthful functional stem cells.

With current techniques, methods to reprogram age-
ing stem cells occur in two main ways, fully reprogram-
ming and partial reprogramming. The former is referred 
to the reset of the epigenetic clock for finally obtaining 
the induced pluripotent stem cells (iPSCs). Functional 
MSCs have successfully generated from iPSCs with reju-
venated gene signature and improved cell vitality, but 
their immunoregulatory function for suppressing T cell 
proliferation is incomplete [180–182]. Therefore, the 
therapeutic efficiency of iPSCs-derived MSCs, especially 
the immunomodulatory functions, needs to be thor-
oughly assessed. In addition, due to the low efficiency, the 
limited number of iPSCs, and high cost, fully reprogram-
ming is still only a means in the laboratory, and there 
is still a considerable distance from the bedside. Partial 
reprogramming involves incomplete dedifferentiation 
and is considered as epigenetic rejuvenation, which can 
achieved by regulating DNA methylation and histone 
modification using bioactive compounds [183].

DNA methyltransferase (DNMT) inhibitor, 5‐azacy-
tidine (5‐AZA), is readily incorporated into DNA and 
inhibits methylation patterns of specific gene regions, 
simultaneously activating relevant genes [184]. 5‐AZA 
pre-activation reversed the aged phenotype of ASCs and 

enhanced their proliferation, shortened population dou-
bling time, and increased extracellular vesicle secretion 
via reducing ROS accumulation, ameliorating superox-
ide dismutase activity, and increasing BCL-2/BAX ratio 
[185]. Moreover, RG108 is also known as a DNA meth-
yltransferase inhibitor. RG108-educated BMSCs showed 
a significantly reduction in β-galactosidase-positive cells, 
simultaneously with up-regulation of anti-senescence 
genes TERT, bFGF, VEGF, and ANG and down-regu-
lation of senescence-related genes ATM, p21, and p53 
[186].

Tetramethylpyrazine (TMP), the bioactive component 
extracted from the rhizome of the Chinese herbal medi-
cine Chuanxiong, can epigenetically alleviate senescent 
phenotype of BMSCs by regulating EZH2 (a histone-
lysine N-methyltransferase enzyme)-H3k27me3 [187]. 
EZH2 has found to repress transcription of both p16/p14 
by increasing H3K27me3 along the Ink4A locus [188]. 
Moreover, previous studies have revealed that TMP also 
possesses the capacity to significantly delay MSC senes-
cence by suppressing NF-κB signalling and positively 
regulating the proliferation, lineage commitment, and 
anti-apoptosis [189–191].

Increased histone acetylation, decreased DNA meth-
ylation and hydroxymethylation, and distinct changes 
in H3K27me3 in the genome are prevalent in senescent 
cells. However, reversing stem cell senescence by alter-
ing epigenetic modifications is still in infancy. It is nec-
essary to map out the detailed epigenetic alterations of 
MSCs during senescence, especially the epigenetic char-
acteristics associated with the altered behaviour in MSC 
biology. In addition, the universality or uniqueness of 
epigenetic changes in MSC ageing from different sources 
needs to be confirmed.

Usage of  senolytic drugs  Senotherapeutics refers to the 
application of senolytic drugs to selectively deplete senes-
cent cells or delay the onset of senescence, thereby rejuve-
nating tissues and reducing the occurrence of age-related 
pathologies [192]. Several compounds have reported to 
hold the perspective senolytic effects, such as navitas 
(ABT-263), quercetin, danazol, nicotinamide riboside, 
dasatinib and metformin [192, 193]. A comparative study 
found that ABT-263, instead of quercetin, danazol, and 
nicotinamide riboside, suggested possessing senolytic 
effects in a replicative senescence model of MSCs after 
long-term expansion [193]. In addition, abdominal fat-
derived MSCs in pregnant women with preeclampsia pre-
sent a senescent phenotype with decreased cell function 
and viability. Treatment of them with the anti-senescence 
drug dasatinib was both able to selectively promote apop-
tosis of senescent MSCs and dramatically improve the 
biological activities of MSCs, including an increase in 
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angiogenic potential, reduction in SA-β-gal positive cells, 
and downregulation of IL-6, IL-8, MCP-1, and p16 [194].

It is conceivable that combinations of different drugs 
may achieve a more pronounced senolytic effect. As 
shown in the study of Zhou et al., a senolytic cocktail of 
dasatinib and quercetin improved osteogenic potential of 
aged mouse-derived BMSCs in vitro or in vivo calvarial 
defect model, accompanied by a decrease in SA-β-gal-
staining cells, and a reduction in senescence-associated 
and inflammation markers including p16, p21, IL-6, 
MCP1, and CXCL1 [195]. Notably, several findings have 
shown that a cocktail of dasatinib and quercetin can 
reduce the burden of senescent cells and meliorate the 
function of vital tissues such as adipose, bone, aorta, and 
brain [195, 196]. However, more evidence is needed to 
support the effectiveness of senolytic cocktail therapies 
in rescuing the functions of MSCs.

Generally, these findings suggest that bioactive com-
pounds have properties to improve disabled MSCs and 
repair senescent MSC. Still, their dosage, combination, 
and suitability for MSCs from alternative sources require 
in-depth exploration and verification. In addition, the 
exploitation of more effective bioactive compounds to 
rescue MSCs is also the direction that scientists need to 
continue their efforts. Besides, the way to use bioactive 
compounds is also worth careful consideration. As dem-
onstrated in several studies, using bioactive compounds 
as concomitant agents for MSC transplantation also has 
a better therapeutic effect than stem cell transplanta-
tion alone [24, 95, 197]. Still, patients with chronic dis-
eases are also accompanied by multiple risk factors, such 
as age, diabetes mellitus, and cardiovascular diseases. 
Hence, the possible side effects and safety of concomi-
tant drugs for stem cell transplantation should be con-
sidered. As deficiency of MSCs can reversed, this area is 
a potential hotbed for increasing the longevity and bio-
logical properties of in vitro expanded MSCs, and repair-
ing patient-derived MSC for autologous transplantation 
[198]. However, the senescence of MSCs is a highly com-
plex process and a thorough understanding of the under-
lying mechanism of senescent will help us to find more 
effective ways to rejuvenate ageing MSCs.

Pre‑activation of MSCs with the disease‑associated effector 
cells or patient’s serum
“Individualized MSCs therapy” means that MSCs 
obtained by in  vitro pre-activation possess customized 
functions and can specifically target the disease of the 
patient, thus achieving a better therapeutic outcomes. 
Therefore, as an enhancement strategy for MSC-based 
therapy, direct use of effector cells or their released active 
substances was proposed as pre-activating conditions, 

rather than educated with typical proinflammatory fac-
tors, cytokines, or bioactive compounds.

Mast cells (MCs) have a central role in immedi-
ate hypersensitivity and allergic reactions and are also 
the principal effector cells in the pathogenesis of atopic 
dermatitis (AD). Activated MCs release granules that 
contain a large number of bioactive substances, such 
as proinflammatory cytokines, protein mediators, lipid 
mediators, and growth factors, that can trigger allergic 
reactions [199]. Several studies have demonstrated that 
MSCs suppress MC activation and degranulation and 
induce MC apoptosis in a co-cultured system [200–202]. 
Then, pre-activated MSCs with MC granules could be a 
promising strategy to enhance the MSC-targeted treat-
ment of AD. The study of Lee et  al. showed that MC 
granule-primed UC-MSCs exhibited more immunosup-
pressive than non-primed cells, which are mediated by 
interrupting proliferation and degranulation of MCs via 
upregulating the COX-2/PGE2 signalling pathway [201]. 
In addition, in a dermatophagoides farina-induced AD 
model, subcutaneously infusion of MC granule-educated 
UC-MSCs showed a more significant decreased number 
of MCs and alleviated the infiltration of lymphocytes in 
the skin than that of naïve cells [201]. Therefore, MSCs 
pre-activated with effector cells or their derived active 
substances can accurately target the main pathogenic 
factors in disease development, and react and respond 
quickly in  vivo to achieve more efficient treatment 
outcomes.

Alternatively, the alteration of inflammatory factors, 
chemokines, growth factors, cytokines, and microvesi-
cles in blood circulation has found in a variety of dis-
eases, including Alzheimer’s disease, renal diseases, and 
heart disease [203–205]. They serve as indicators for 
disease diagnosis, treatment, and prognosis, along with 
inter-individual variations. Pre-activated expanded MSCs 
with patient-derived serum may allow MSCs to respond 
positively to the host microenvironment [203]. As Tang 
et  al.’s study showed, compared with rats injected with 
control serum- pre-activated MSCs, rats injected with 
stroke serum- pre-activated MSCs showed a signifi-
cantly improved behaviour with attenuated inflammatory 
cytokines, decreased brain lesion and apoptosis cells, 
and increased trophic growth factors in the cerebral I/R 
injury model [206]. In addition, strengthening the thera-
peutic effect of MSCs with disease-derived serum have 
also revealed in dextran sodium sulphate-induced colitis 
rat models. After MSCs pre-activated with serum derived 
from colitis rats or normal rats, the conditioned medium 
of both pre-activated cells was collected for treating coli-
tis. The former shows more effectively impede the disease 
progress, better improvement in the clinical features, and 
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much lower histological damage scores in colitis rats than 
the latter [207].

Therefore, disease-specific pre-activation may be a 
promising means to achieve "MSC customized clinical 
treatment." And accurate capturing of disease specific-
ity is an essential prerequisite for this strategy, which 
requires comprehensive and in-depth exploration and 
analysis of the biological mechanism of diseases.

Perspective
In addition to pre-activating MSCs by a recreation of 
the physiological and pathological microenvironment, 
there are other means for MSC pre-activation, includ-
ing photostimulation, magnetoelectric stimulation, and 
heat shock (HSP), etc. Low levels of lasers therapy (LLLT) 
is beneficial for regulating the biological functions of 
a variety of cells [208, 209]. For example, the biologi-
cal activities of ASCs stimulated by low-level laser were 
enhanced, manifested by increasing survival rate, aug-
menting secretion, and accelerating regenerative healing 
compared with unstimulated ASCs [210, 211]. Moreover, 
pulsed electromagnetic fields have recently demonstrated 
to play a protective effect on BMSCs through regulating 
the Akt/Ras signalling pathway and upregulation of sur-
vival proteins such as Bad and Bcl-xL [212]. In addition, 
studies have shown that HSP can induce cytoprotective 
proteins and increase the ability to resist a poor external 
environment [213, 214]. HSP pre-activation enhanced 
MSCs autophagy and increased their resistance to 
H2O2-induced apoptosis. Besides, HSP-MSCs showed 
enhanced homing and survival following transplanta-
tion in a hepatic I/R injury model compared with control 
MSCs [215]. Furthermore, intraovarian injection of HSP-
MSCs rescued the damaged ovarian structure and ame-
liorated endocrine function [216].

Generally, the purpose of existing pre-activating 
approaches is to take full advantage of the functional 
plasticity of MSCs and assign the desired properties to 
MSCs in advance so that when MSC reencounters simi-
lar environment, the cell protection mechanism initiated, 
the response mechanism activated rapidly, and the cor-
responding biological response acted quickly.

Notwithstanding, the application of the pre-activated 
MSCs confronted with several challenges. The first is 
to choose reasonable and effective MSC pre-activating 
methods. To date, so many complementary methods 
have been proposed for improving the therapeutic effi-
cacy of MSCs, and finding the best pre-activation way is 
an essential pursuit in our future research. Each pretreat-
ment targets improving a specific aspect of MSCs, and 
the optimal combinations of diverse strategy are conceiv-
able to maximize the therapeutic outcome of MSCs. For 
example, MSCs were inoculated into an injectable gel of 

collagen microcarriers cross linked with bFGF or TGF-β1 
to promote expansion and chondrogenic differentiation 
[217]. Furthermore, effector cell-based or patient serum-
based pre-activation of MSCs may be relatively more 
targeted for disease treatment, which requires amounts 
of comparative studies to further determine this infer-
ence. Definitely, novel enhancement strategies to gener-
ate therapeutically effective MSCs are still demanded and 
will undoubtedly receive constant attention.

The second is the heterogeneity of MSCs that mainly 
manifested in two aspects: one is that the biological char-
acteristics of MSCs from diverse origins appear to vary 
in terms of differentiation, phenotype panel, and secre-
tion profile, which means that as a novel cellular drug, 
MSCs from different tissues have inconsistent thera-
peutic effects on the same disease. As demonstrated in 
Liu et al.’s study, ASCs held the most pronounced effect 
on promoting re-epithelialization and wound closure 
compared with BMSCs and amnion MSCs (AMSCs). 
Furthermore, ASCs had the most excellent impact on 
enhancing the migration of dermal fibroblasts and the 
expression of pro-repair cytokines such as VEGF, bFGF, 
and TGF-β in contrast with BMSCs and AMSCs [218]. 
Therefore, it is necessary to gain insight into the unique 
biological characteristics of each tissue-derived MSCs 
and to determine the disease trophic properties of each 
MSCs in combination with different disease models. 
The other is the discrepancy of MSCs from different tis-
sue in responsiveness to the same precondition, suggest-
ing an optimal pre-activation way for various MSCs. For 
example, TNF-α-educated BMSCs showed significantly 
higher level of IL-10 than TNF-α-primed UC-MSC [219]. 
Further, response mechanisms of MSCs derived from 
different tissues vary when faced with the same pre-acti-
vating condition. For instance, co-culture of stimulated/
unstimulated UC-MSCs with phytohaematoagglutinin-
activated lymphocytes resulted in early activation of a 
negative co-stimulatory molecule CTLA4 in UC-MSCs, 
whereas changed IL-12 expression in co-cultured BMSCs 
[219]. These discrepancies could be partly determined by 
the functional heterogeneity between MSCs from differ-
ent tissues. This may require a deeper understanding of 
their developmental processes and signalling regulatory 
networks, and a combination of high-throughput tech-
niques and basic research can provide possible clues to 
determining the optimal pre-activation methods for each 
type of MSCs.

The third is to develop standard platforms for evalu-
ating the safety and therapeutic characteristics of pre-
activated MSCs (Fig.  3). Extensive research evidence 
confirms that MSCs mainly rely on paracrine to exert 
biological effects. The sum of MSCs secretion products 
can be regarded as the secretome, which mainly contains 
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soluble proteins and extracellular vesicles, of which the 
former includes cytokines, chemokines, growth factors, 
and the latter can divided into exosomes and microvesi-
cles [220, 221] (Fig.  1). Therefore, it is a troublesome 
problem to accurately select a component both as an 
indicator of preactivation and therapeutic effect of edu-
cated MSCs. However, there is increasing evidence that 
in vivo apoptosis of transplanted MSCs is closely associ-
ated with stem cell therapeutic effects in multiple animal 
models, such as GvHD [222], sepsis and acute lung injury 
[223, 224]. The findings of Pang et  al. are further illus-
trated impeding MSC apoptosis by ablation of BAK/BAX 
reduces their immunomodulatory capacity in the model 
of OVA-induced asthma, suggesting that the in vivo bio-
logical mechanism of MSCs is far more complicated than 
we thought [225]. Therefore, inhibition and resistance to 
stem cell apoptosis as a commonly used evaluation index 
of MSC pre-activation are questionable.

Finally, the essence of MSC therapy in vivo is to deliver 
pro-reparative regulatory factors and extracellular vesi-
cles, etc. Therefore, researchers have begun to use MSC-
derived soluble proteins and extracellular vesicles to 
replace stem cells for treatment [226, 227], whose release 
is precisely regulated and their composition changes 
with the pre-activated condition [228]. This method can 

avoid the risk of in  vivo proliferation, differentiation of 
MSCs, and secretion of unpredictable paracrine factors 
in MSCs. Recent results showed that MSCs were enu-
cleated into "cargocytes" by density-gradient centrifuga-
tion to form a bioinspired delivery method. Cargocytes 
retain paracrine secretion capacities, do not proliferate, 
or permanently engraft in the host. Application of cargo-
cytes not only avoids the adverse events associated with 
the direct use of MSCs, such as pulmonary or cerebral 
emboli, but also improves biodistribution and enhances 
homing to target tissues in  vivo [229]. Therefore, deri-
vations from the MSCs may be therapeutic vehicles to 
deliver curative cargos with the potential to treat diseases 
in a controllable and effective manner.

Conclusion
In summary, despite pre-activated MSCs remaining 
problematic, they still hold considerable promise for the 
treatment of various refractory diseases due to their tre-
mendous regenerative potential. To date, there is a grow-
ing consensus that pre-activated MSCs indeed exhibit 
better therapeutic benefits than naive MSCs in a variety 
of pathological conditions. In future, we should effec-
tively use the "pre-activation" tool to maximize the ther-
apeutic potential of MSCs on the one hand and on the 

Fig. 3  Cycle of naive MSCs to preconditioned MSCs towards clinical treatment. Preconditioned MSCs achieved favourable therapeutic efficacy, with 
enhanced injury repair and disease recovery
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other hand to modify them suitable for targeted disease, 
opening a new chapter for clinical application of MSCs.
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