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Abstract 

Fe3O4 magnetic nanoparticles (MNPs) are biomedical materials that have been approved by the FDA. To date, MNPs 
have been developed rapidly in nanomedicine and are of great significance. Stem cells and secretory vesicles can be 
used for tissue regeneration and repair. In cell therapy, MNPs which interact with external magnetic field are intro-
duced to achieve the purpose of cell directional enrichment, while MRI to monitor cell distribution and drug delivery. 
This paper reviews the size optimization, response in external magnetic field and biomedical application of MNPs in 
cell therapy and provides a comprehensive view.
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Introduction
Stem cells have the function of tissue regeneration and 
repair. In addition, EVs and exosomes from cells also have 
the function of repairing injury. In particular, they have 
the attributes of low immunogenicity and drug delivery 
potential, and they carry a variety of signaling biomole-
cules (proteins, mRNAs and miRNAs). At present, stem 
cells and their secretory vesicles have been widely used 
in disease treatment. Researchers intravenously inject 
repair cells or vesicles into organisms to treat diseases, 
hoping that they can accumulate at the injured site via the 
blood circulation [1]. The key is the successful delivery 
of drugs to the lesion. Although stem cells have homing 
ability, they still have shortcomings. The actual enrich-
ment effect is not ideal [2, 3]. Kyrtatos et al. [4] showed 
data in  vitro by computer simulation that a few cells 
were retained in the target tissue area in the presence of 
blood flow. By intracoronary injection, the cell residence 
time was only a few minutes in the study of myocardial 
regeneration [5]. At the same time, EVs were cleared in a 
short time (1.2–1.3 min) after intravenous injection into 

the blood, and most of them accumulated in the liver 
and spleen. Therefore, the poor targeting, the low reten-
tion rate and the poor therapeutic effect limit the clinical 
application in cell therapy [6].

SPIONs have obvious advantages of low toxicity to 
organisms, magnetic targeting, magnetic resonance 
imaging tracking, hyperthermia and drug delivery ability. 
More importantly, SPIONs are an iron-containing prepa-
ration approved by the FDA. Therefore, the development 
of SPIONs has attracted increasing attention, especially 
in medicine. It is important to target and transport the 
therapeutic cells and EVs under the joint action of MNPs 
and an external magnetic field. This method can not only 
improve precise positioning within organisms [4, 7–9], 
improve the retention rate and prolong the drug half-
life but also reduce the drug dosage and enhance the 
efficacy, even in high-flow systems (such as the arterial 
vascular system). In the literature [4, 10], it was found 
that targeted stem cells were enriched approximately 
five times more than nontargeted cells in arteries. After 
labeling with MNPs, EVs were preserved in the blood for 
7–8 h in a magnetic field. Magnetic targeting was found 
to enhance myocardial retention of intravascular EPCs. 
They could also effectively cross the BBB and deliver 
drugs [11, 12] under a magnetic field. Therefore, cells 
and EVs labeled by MNPs achieved multiple functions of 
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treatment, targeting, drug delivery, magnetic hyperther-
mia and MRI, which has a great development potential in 
medicine.

Here, we introduce the combination of MNPs not only 
with cells, but also with extracellular vesicles, exosomes 
and artificial simulated liposomes (known as membrane 
system or membrane structure for convenience). In this 
paper, we review the requirements for the size of MNPs 
when used in combination with membrane systems, the 

response under external magnetic field and its applica-
tion in medicine.

Application size of MNPs
In this paper, we have reviewed the literature from the 
last 20 years and further explained the importance of the 
appropriate size of MNPs in Table 1.

A total of 36 literature studies are counted in Table 1. 
There are 14 articles on loading MNPs into cells, 2 
articles on loading MNPs into vesicles, 11 articles on 

Table 1  Literature summary of medical applications of MNPs in recent 20 years

–The relevant information was not found

MNP Core size (nm) Carrier Disease Function References

1 CoFe2O4 10 Cell – – [13]

2 Endorem 3–5 Cell Vascular injury MT [4]

3 γ-Fe2O3 7 & 9 Liposome Cancer MT and hyperthermia and MRI [14]

4 Fe3O4 10 Liposome – MT [15]

5 Fe3O4 6.8 ± 1.36 Liposome Tumor MT [16]

6 Fe3O4 30–40 – Microglial BV2 cells Magnetic hyperthermia [17]

7 Fe3O4 10 Hydrogel vesicle – Drug delivery [18]

8 γ-Fe2O3 8 Liposome Prostatic adenocarcinoma MT [19]

9 γ-Fe2O3 8 Microvesicle – MRI and MT [20]

10 – 19 ± 3 – Cancer Magnetic hyperthermia [11]

11 NPs 5 /10 Liposome – Delivery [12]

12 Fe3O4 16 ± 4 Liposome – MRI [21]

13 Fe3O4 200 EV Myocardial infarction MT [22]

14 Fe3O4 100 Exosome Wound healing MT [23]

15 VivoTrax – Exosome Tumor MPI [24]

16 Fe3O4 ∼ 10 Exosome Cancer MT [25]

17 Fe3O4 ∼ 10 Exosome Tumor MT and delivery [26]

18 Fe3O4 < 60 Exosome Wound healing MT [27]

19 SPION 10 Exosome Cancer Delivery [28]

20 Fe3O4 8 Exosome Glycuresis MT [29]

21 Fe3O4 20 & 200 MSC Trabecular meshwork MT [30]

22 SPION 6.2 MSC Spinal cord injury MT [31, 32]

23 ZnFe2O4 18.93 ± 1.6 MSC Cancer Magnetic hyperthermia [33]

24 Fe3O4 6–7 MSC – MRI [34]

25 Fe3O4 8 ESC – MT [35]

26 Fe3O4 6.6 ADSC Osteoporosis MT [36]

27 Fe3O4 10 MSC Angiogenesis MT [37]

28 Fe3O4 10 hMSC – MRI and MT [38]

29 γ-Fe2O3 1.7–11.5 MSC Pulmonary damage MT [39]

30 SPION 10 ADSC Parkinson MT [40]

31 Zn0.4Fe2.6O4 15 NSC Brain stroke MT [41]

32 IONP ∼ 22 H9C2 Myocardial infarction MT [42]

33 IONP 12 Exosome Spinal cord injury MT [43]

34 IONP 12 Exosome Ischemic stroke MT [44]

35 IONP 20–30 Exosome Myocardial infarction MT [45]

36 Fe3O4 5 Exosome Tumor Photothermal therapy [46]
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exosomes and 6 articles on liposomes. Table  1 shows 
that most researchers prefer to use MNPs of approxi-
mately 10 nm in the field of nanomedicine, because there 
are 25 literature studies introducing MNPs of 5–15 nm, 
accounting for 69%. This is consistent with the results in 
the literature [47, 48]. MNPs (< 200  nm) are rapidly fil-
tered by the spleen and liver and cleared by the kidney at 
2 nm, while 10-nm particles easily enter the circulatory 
system. Moreover, in the process of preparing MNPs, 
ultra-small magnetic particles (< 5  nm) have very good 
dispersion and stability in the organic coating. However, 
the response to external magnetic field is poor. There-
fore, it is less used for magnetic targeting in cell therapy 
and more used as MRI contrast agent. When the size 
increases to 10 nm, it not only enhances the dispersion, 
but also enhances the response to the external magnetic 
field. In addition, with the continuous expansion of the 
scale, its agglomeration phenomenon is becoming more 
and more serious. Combined with the results summa-
rized in the literature [6], the hydrodynamic size advan-
tages [47] and optimization [49] of MNPs, we believe that 
a core diameter of approximately 10 nm has great advan-
tages. At the same time, when preparing MNPs-labeled 
exosomes, the size of exosomes should be considered 
to facilitate the loading of MNPs. In addition, there are 
two main types of MNPs, namely Fe3O4 and γ-Fe2O3, but 
γ-Fe2O3 is better and safer for cells because ferric iron 
causes less damage to the recipient cells.

Effect of the magnetic field on the cells labeled 
by MNPs
The process of labeling cells with MNPs includes simple 
culture, transfection agents, magnetoelectric perfora-
tion and magnetoacoustic perforation [50]. The small 
volume and negative surface charge of MNPs are con-
ducive to their nonspecific adsorption on the plasma 

membrane, thus triggering their endocytosis pathway 
in cells [51]. MNPs were ingested by cells and encapsu-
lated in endosomes inside the cells. The endosomes were 
located close to the cytoplasm and away from the nucleus 
and not affected the normal activity of the cell. Analysis 
of the intracellular MNP distribution in the literature 
[17] showed that the MNP vesicles captured by cells dif-
fuse along the cytoplasm and respond to magnetic fields 
[52], as shown in Fig.  1. A review [13] indicated that 
endosomes were elongated and aligned in the direction 
of the magnetic force line after the cells had phagocytized 
anionic colloidal ferromagnetic nanoparticles into the 
endosomes. In addition, the cells movement depended 
on the gradient in the magnetic field instead of feeling the 
strength [53–55]. The cells migrated toward the region 
with the maximum gradient. The study on the survival 
rate and proliferation rate of BMSCs under a high-inten-
sity static magnetic field suggested that it had the least 
effect on cell proliferation within 24  h [56]. The effect 
depended on the degree of iron load [4]. If applied for a 
short time, cells can withstand a higher magnetic force. 
Moreover, stem cells were induced to differentiate by an 
extremely low-frequency magnetic field to obtain an ideal 
phenotype [57–59]. A study [51] revealed that the rota-
tional movement of SPIONs induced by a dynamic mag-
netic field led to changes in cell membrane permeability 
and even apoptosis, because applying magnetic force to 
SPIONs distorted the inner membrane of the cell [13]. 
At the same time, the vesicles encapsulating MNPs not 
existed in cells for a long time and were soon excreted by 
cells to form free labeled extracellular vesicles.

In summary, the key is to pay attention to the load of 
MNPs, the strength and time in the magnetic field and 
the preparation time of cells’ sample. Because of the long 
time, the vesicles encapsulating MNPs were produced in 
the test, as shown in Fig. 2.

Fig. 1  Changes of MNPs phagocytized by cells in magnetic field
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Application of MNP‑labeled membrane systems 
in biomedicine
Application of MNP‑labeled cells in biomedicine
Stem cells and secreted vesicles have multidirectional 
differentiation potential, migrate to inflammatory sites 
and repair tissues and regenerate [60]. Therefore, they 
are widely used in cell therapy and have great prospects 
in the field of regenerative medicine. Stem cells have 
homing ability. However, they still have limitations and 
deficiencies. When stem cells are injected intravenously 
into the body, they are easily dispersed by blood flow and 
cleared by organisms, resulting in difficult localization, a 
short half-life and a low retention rate. To enhance tar-
geting ability, prolong the retention rate and enhance the 
therapeutic effect of stem cells, MNPs are introduced. In 
addition, it was also important to minimize the injection 
dose, the toxicity and the side effects on healthy tissues 
and to cause the labeled cells or EVs to accumulate in the 
target tissue to reduce the in  vitro administration con-
centration and frequency. As shown in Table 1, stem cells 
were labeled with MNPs and then injected into organ-
isms under the magnetic field to treat lung injury [39], 
atrial fibrillation [61], coronary artery embolism [62], 
vascular diseases [63], systemic osteoporosis [36], reti-
nitis [64], high intraocular pressure [30], Parkinson’s dis-
ease [40, 65], myocardial infarction [42] and spinal cord 
injury [43] and to regenerate articular cartilage and bone 
[66–71].

As shown in Fig.  2, MNP is engulfed by stem cells 
to form endosomes, which are then transformed into 
MVEs. The MVEs have two fates. One is to combine 
with lysosomes (low pH) in cells, be further digested 
and decomposed into Fe3+. The free metal ions released 
into the cytoplasm promote pathways of JNK activation 

and c-Jun phosphorylation, cause the upregulation of 
a variety of cytokines in cells, and induce angiogenesis, 
anti-apoptosis and anti-inflammatory [44]. Moreover, in 
the treatment of myocardial infarction, it was found to 
induce the increased expression of connexin 43 (Cx43) 
in H9c2 [42]. However, the other is excreted outside the 
cell in the form of extracellular vesicles. At the same time, 
exosomes prepared with MSC-IONP also contained a 
large number of therapeutic growth factors [44].

Application of MNP‑labeled EVs in biomedicine
In the past decade, there have been an increasing num-
ber of studies on EVs, especially exosomes (50–150 nm). 
Due to the biological characteristics such as low immu-
nogenicity and drug delivery, they have better application 
prospects in the field of tissue regeneration [6]. EVs are 
effectors of intercellular communication and act as natu-
ral endogenous carriers. To improve their low separation 
rate and insufficient targeting ability, MNPs and mag-
netic localization were used to enhance the directional 
distribution ability of EVs. To internalize SPIONs directly 
into EVs, electroporation, natural incubation and other 
methods were used. However, the membrane is incom-
plete due to electroporation. MNP-labeled cells’ secre-
tory vesicles are the primary choice for natural processes. 
Under the external magnetic field, MNP-labeled EVs 
were concentrated and enriched at the target position for 
tissue repair and regeneration. Many studies have used 
this method to improve and treat scar formation in acute 
and chronic porcine myocardial infarction [72], ischemic 
stroke [44], skin trauma [27], spinal cord injury [43, 73], 
infarcted heart [22], wound healing [23], bone and angio-
genesis [74], and myocardial infarction [45].

Application of magnetic liposomes in biomedicine
Liposomes are similar to EVs released by cells. Synthetic 
liposomes are usually spherical closed structures com-
posed of lipid bilayers enclosing the internal hydrophilic 
chamber [75]. The size of liposomes ranges from 20 nm 
to several microns [76]. Like vesicles released by cells, 
liposomes can encapsulate molecules with different solu-
bilities. Liposomes have the advantage of encapsulating 
MNPs without being affected by enzyme degradation, 
but there are no proteins or other biomolecules from pre-
cursor cells [16]. At the same time, loading hydrophilic 
USPIO into the hydrophilic chamber of liposome can 
also achieve the magnetic targeting [77], drug delivery 
and MRI imaging [21, 78, 79] and generate multifunc-
tional liposomes [77, 80]. Moreover, the preparation of 
liposomes is simple and controllable, so researchers have 
given increasing attention to the use of liposomes. Under 
a permanent magnetic field, magnetic liposomes deform 

Fig. 2  Cellular changes after phagocytosis of MNPs
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into slender ellipsoids [81]. A study [82] first reported 
the fusion of dry magnetic liposomes and cell membrane 
models, evaluated their interactions (giant monolayer 
vesicles, GUVs) and considered the future application in 
drug delivery of such magnetic systems. Ideally, the tar-
get release system allows external control of the time and 
dose of products released at the target location [83].

In summary, the application of the MNP-labeled mem-
brane systems has treated many diseases successfully. 
In addition, the method can also be extended to the cell 
localization of other organs and provide a useful tool 
for systematic cell therapy. At the same time, it can also 
treat acute organ failure with high mortality. For exam-
ple, acute lung injury and acute kidney injury are caused 
by COVID-19 or other diseases. However, there are few 
studies on these diseases. Combined with the rapid tar-
geting enrichment and the therapeutic advantages of 
stem cells and exosomes, it will be possible to treat acute 
organ failure.

Tumor treatment with magnetic hyperthermia
In addition to tissue repair and regeneration, the combi-
nation of MNPs and membrane systems is also used to 
treat tumors. By changing the frequency of the exter-
nal magnetic field, the high-speed movement of MNPs 
can be controlled. The magnetic fields mentioned here 
include the high-frequency and the low-frequency mag-
netic field. The high-frequency AMF makes MNPs in 
organism rotate at high speed, increase membrane per-
meability [11, 16, 21], enhance drug release, and even tear 
cell membrane [83]. It can also convert magnetic energy 
into heat to kill tumor cells. Protect the surrounding 
environment while the local temperature far exceeds the 
body temperature [12]. The damaging effect of magnetic 
hyperthermia on microglial BV2 cells [17] and increasing 
drug release [84] were studied.  However, under a low-
frequency magnetic field, the mechanism of destroying 
the membrane was mechanical and not dependent on 
heat.  Therefore, nonspecific heating of surrounding tis-
sues caused by AMF is avoided [83].

According to the literature for magnetic hyperthermia, 
in this paper, we mainly reviewed the combination of 
MNPs and membrane systems for magnetic hyperther-
mia to treat tumors. Therefore, the use of only heated 
MNP to kill tumors is not described here. Cell commu-
nication promotes tumor development through vesicles. 
It is believed that the vesicles are used as Trojan horses to 
provide a therapeutic payload for cancer cells [76]. There-
fore, exosomes in blood were combined with MNPs to 
target cancer [26]. Recently, it was reported that SPION-
modified exosomes transferred TNF-α to cancer cells 
through magnetic targeting and significantly inhibited 
tumor growth [28].

With regard to the study of magnetic liposomes, the 
literature studies [81, 85, 86] have reported the possibil-
ity of using magnetic liposomes and in vitro magnets to 
treat solid tumors. Some reports [84, 87] prepared multi-
functional magnetoliposomes loaded with the anticancer 
drug DOX to inhibit cancer. In high-frequency magnetic 
field, multifunctional liposomes cause perforation effect 
or change the permeability of vesicle membrane through 
local heating to increase drug release [88]. This method 
opens up a new prospect for the development of intelli-
gent drug delivery system.

MRI application of MNP‑labeled membrane 
systems
MNP-labeled membrane systems were used for three-
dimensional noninvasive imaging positioning to achieve 
real-time monitoring of biological distribution in  vivo 
[47, 89–92], as well as MRI of embryonic tissue [93, 94], 
adipose [95, 96], human adipose-derived stem cells [97, 
98] and extracellular vesicles [99–101]. The dual exoge-
nous substances in which cells are incubated with photo-
sensitizers and MNPs [76] provide magnetic and optical 
responsiveness to vesicles for treatment and monitor-
ing distribution. In addition to the situation described 
above, MNPs were encapsulated in liposomes together 
with fluorescent nanoparticles [102], rhodamine labeling 
[103] and quantum dots [104] for tracking. In conclusion, 
the application of MNP-labeled membrane systems can 
simultaneously have the advantages of treatment and vis-
ualization, so as to timely monitor the embolism caused 
by foreign substances and evaluate the metabolism.

Conclusions and expectations
This paper reviews the research progress of the applica-
tion of MNP-labeled membrane systems in biomedicine. 
They have a wide range of applications in medicine and 
open up a potential application prospect for the direc-
tional positioning of biological entities. Through the 
perfect combination and utilization of magnetic target-
ing, MRI and magnetic hyperthermia, many diseases are 
expected to be successfully treated. In particular, through 
the continuous progress of magnetic field design, nonin-
vasive treatment of deep diseases can be realized, not just 
on the surface of the body. The development of MNPs 
in precision medicine needs more exploration. In the 
future, it is expected to achieve more mature, compre-
hensive (systematic) and accurate (positioning) disease 
treatment in medicine.
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