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Human bone marrow‑derived mesenchymal 
stromal cells cultured in serum‑free media 
demonstrate enhanced antifibrotic abilities 
via prolonged survival and robust regulatory 
T cell induction in murine bleomycin‑induced 
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Abstract 

Background:  Mesenchymal stromal cells (MSCs) are a potential therapeutic tool for pulmonary fibrosis. However, 
ex vivo MSC expansion using serum poses risks of harmful immune responses or unknown pathogen infections in the 
recipients. Therefore, MSCs cultured in serum-free media (SF-MSCs) are ideal for clinical settings; however, their effi-
cacy in pulmonary fibrosis is unknown. Here, we investigated the effects of SF-MSCs on bleomycin-induced pulmo-
nary inflammation and fibrosis compared to those of MSCs cultured in serum-containing media (S-MSCs).

Methods:  SF-MSCs and S-MSCs were characterized in vitro using RNA sequence analysis. The in vivo kinetics and 
efficacy of SF-MSC therapy were investigated using a murine model of bleomycin-induced pulmonary fibrosis. For 
normally distributed data, Student’s t test and one-way repeated measures analysis of variance followed by post hoc 
Tukey’s test were used for comparison between two groups and multiple groups, respectively. For non-normally dis-
tributed data, Kruskal–Wallis and Mann–Whitney U tests were used for comparison between groups, using e Bonferro-
ni’s correction for multiple comparisons. All tests were two-sided, and P < 0.05 was considered statistically significant.

Results:  Serum-free media promoted human bone marrow-derived MSC expansion and improved lung engraftment 
of intravenously administered MSCs in recipient mice. SF-MSCs inhibited the reduction in serum transforming growth 
factor-β1 and the increase of interleukin-6 in both the serum and the bronchoalveolar lavage fluid during bleomycin-
induced pulmonary fibrosis. SF-MSC administration increased the numbers of regulatory T cells (Tregs) in the blood 
and lungs more strongly than in S-MSC administration. Furthermore, SF-MSCs demonstrated enhanced antifibrotic 
effects on bleomycin-induced pulmonary fibrosis, which were diminished by antibody-mediated Treg depletion.
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Background
Idiopathic pulmonary fibrosis (IPF) is a severe pulmo-
nary fibrotic disease that presents with short life expec-
tancy and a high mortality rate [1]. Since patients with 
IPF who are treated with antifibrotic agents show inhibi-
tion of forced vital capacity (FVC) decline and improved 
survival, antifibrotic agents such as pirfenidone and nin-
tedanib have been conditionally recommended for IPF 
treatment [2]. However, these agents cannot halt disease 
progression; moreover, they have adverse effects, includ-
ing gastrointestinal disorders, skin-related problems, 
and liver damage [3]. Thus, considering the lack of more 
effective options for treating IPF, further therapeutic 
approaches are being explored.

Mesenchymal stromal cells (MSCs) are pluripotent 
cells in the bone marrow and are now known to be iso-
lated from various sources, including adipose tissue, 
umbilical cord, peripheral blood, and muscle tissue [4]. 
Systemically administered MSCs home to the site of 
injury and exert anti-inflammatory effects by modulat-
ing various immune cells. Furthermore, MSCs secrete 
cytokines and growth factors with proliferative and 
angiogenic effects and support tissue repair through 
paracrine effects [5]. With the expectation of applying 
these favorable effects to therapy, several preclinical and 
clinical studies are ongoing using human MSCs to treat 
chronic diseases including autoimmune, inflammatory, 
degenerative, and cardiovascular diseases [6]. Regarding 
lung diseases, MSC-based therapies have been reported 
as effective in preventing experimental models of pulmo-
nary fibrosis [7]. Based on successful studies with animal 
models, clinical trials of MSC-based therapies for inter-
stitial lung diseases, mainly human IPF, are underway 
worldwide [8]. Some clinical trials have shown that MSC-
based cell therapy provides a protective effect against 
FVC decline over time in patients with IPF [9, 10]. In 
addition, no serious adverse events related to MSC-based 
cell therapy have been reported in these trials, suggest-
ing the safety and tolerance of this therapy [8, 10]. These 
findings suggest that MSC-based cell therapy could be a 
new potential therapeutic option for treating IPF.

In vitro expansion of MSCs is necessary before their 
transplantation into recipients of MSC-based therapies. 
MSC growth in  vitro generally requires culture media 
supplemented with fetal bovine serum (FBS) or human 

serum to provide the factors essential for cell growth. In 
fact, most studies on MSCs have used serum-contain-
ing media [11]. However, using serum in culture media 
poses various potential disadvantages including patho-
gen contamination (e.g., unknown viruses, mycoplasma, 
and prions), harmful immunizing effects [11, 12], inhi-
bition of cell growth [13], uneven quality between lots, 
global shortage of supply, and high costs [14]. Therefore, 
defined culture conditions without sera are ideal as a tool 
for MSC therapy in humans. Recently, several chemically 
defined serum-free media for experimental MSC cultures 
have been commercialized [11, 14]. Wu et  al. showed 
that human MSCs cultured in serum-free medium (SF-
MSCs) exhibited strong immunomodulatory activity and 
secreted higher levels of immunoregulatory factors com-
pared with MSCs cultured in serum-containing medium 
(S-MSCs) in  vitro, and showing improved therapeutic 
activity in a rat model of pulmonary arterial hypertension 
in  vivo [15]. Moreover, other animal studies have also 
reported better therapeutic efficacy of SF-MSCs com-
pared with that of S-MSCs in a mouse model of acute 
colitis [16], a rat model of renal fibrosis [17] and perito-
neal fibrosis [18]. Thus, using SF-MSCs not only avoids 
the disadvantages of using sera, but SF-MSCs may also 
be more useful as a therapeutic tool than S-MSCs. Previ-
ous preclinical studies of SF-MSCs used for lung disease 
reported that xenogeneic SF-MSCs demonstrated thera-
peutic effects in a rat model of Escherichia coli-induced 
[19] and ventilator-induced lung injury [20]. However, 
the therapeutic effects of SF-MSCs on pulmonary fibrosis 
have not been investigated. Considering the progress of 
IPF clinical trials with MSCs, clarifying the efficacy of SF-
MSCs in experimental pulmonary fibrosis is essential for 
developing MSC-based therapies in human IPF. There-
fore, in the current study, we investigated the effects of 
SF-MSCs on an experimental mouse model of lung fibro-
sis and compared these effects with those of S-MSCs.

Methods
MSCs
Human bone marrow-derived MSCs were collected 
from the sternum of consenting patients during thoracic 
surgery with the approval of the Ethics Committee of 
Hiroshima University Hospital (E-1089). MSCs were cul-
tured in Dulbecco’s modified Eagle’s medium (DMEM) 

Conclusions:  SF-MSCs significantly suppressed BLM-induced pulmonary inflammation and fibrosis through 
enhanced induction of Tregs into the lungs and corrected the dysregulated cytokine balance. Therefore, SF-MSCs 
could be a useful tool for preventing pulmonary fibrosis progression without the demerits of serum use.
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(Sigma-Aldrich, St. Louis, MO, USA) supplemented with 
10% FBS (Sigma-Aldrich) for S-MSCs, or with serum-
free STK2 medium (KBDSTC102; DS Pharma Bio-
medical) for SF-MSCs. The MSCs were dissociated with 
Accutase (Innovative Cell Tech, San Diego, CA, USA) 
and passaged 5–6 times before use. For the proliferation 
assay, MSCs were seeded into 24-well plates at a density 
of 5 × 103 cells/well and cultured as S-MSCs or SF-MSCs. 
After staining with Trypan blue (Sigma, St. Louis, MO, 
USA), the cell number per well was counted at 24, 48, 
72, 96, and 120 h after the start of the cell culture using an 
automated cell counter (TC-20, Bio-Rad, Hercules, CA, 
USA). Cell morphologies were also recorded at the indi-
cated time points using a Nikon Diaphot 300 microscope 
(Nikon, Tokyo, Japan). For the measurement of cytokine 
secretion by MSCs, MSCs pre-cultured in DMEM with 
10% FBS (S-MSCs) or with serum-free STK2 medium 
(SF-MSCs) were seeded into 24-well plates at a density 
of 5 × 103 cells/well. They were cultured in serum-free 
DMEM for 48  h. During MSCs incubation, the culture 
supernatants were collected and cleared of cells by cen-
trifugation for 10 min at 300 × g at 10  °C. The superna-
tants were stored at − 80 °C and used for measuring the 
cytokine concentrations.

Flow cytometry analysis
To obtain single-cell suspensions, mice were eutha-
nized, and the middle and lower lobes of the right lung, 
spleen, or thymus were excised, minced, and digested in 
RPMI 1640 medium containing 1.0  mg/mL collagenase 
A (Roche Diagnostics, Basel, Switzerland) and 20 U/
mL DNase I (Takara Bio Inc., Shiga, Japan) at 37  °C for 
30  min. Red blood cells (RBCs) were lysed using ACK 
lysis buffer (Thermo Fisher Scientific, Waltham, MA, 
USA). Murine blood samples for flow cytometry analy-
sis were subjected to RBC lysis twice, according to the 
ACK lysis buffer protocol. After blocking with anti-
mouse CD16/32 Abs (FcγR, clone 93, BioLegend, San 
Diego, CA, USA), cell suspensions were incubated with 
appropriate dilutions of antibodies or their isotype-
matched controls. Rat monoclonal antibodies for mouse 
CD3 (17A2), CD4 (RM4-5), CD25 (PC61), and mouse 
monoclonal antibodies against human CD11b (ICRF44), 
CD19 (SJ25C1), CD34 (581), CD44 (IM7), CD45 (HI30), 
CD73 (AD2), CD90 (5E10), CD105 (SN6h), and HLA-DR 
(L243) were purchased from BioLegend. For intracellular 
staining, cells were fixed and permeabilized with a Cyto-
fix/Cytoperm Kit (BD Biosciences, San Jose, CA, USA) 
before staining with FoxP3 (clone MF-14, BioLegend). 
CD3+/CD4+/CD25+/FoxP3+ cells were defined as regu-
latory T cells. Cells were analyzed on the BD FACS Aria 
II (BD Biosciences) or the BD LSR Fortessa X-20 system 

(BD Biosciences). The collected data were analyzed using 
the FlowJo software (Tree Star, Inc., Ashland, OR, USA).

RNA extraction and sequencing
Total RNA from S-MSCs and SF-MSCs was extracted 
using the RNeasy Mini Kit (Qiagen, Hilden, Germany), 
according to the manufacturer’s protocol. Extracted RNA 
was quantified and qualified using an Agilent 2100 Bio-
analyzer (Agilent Technologies, Santa Clara, CA, USA) 
according to the manufacturer’s instructions. Total RNA 
(1 µg) with an RNA Integrity Number value > 8 was used 
for library construction, which was done using a SMART-
Seq Stranded Kit (Takara Bio, Shiga, Japan). The qualified 
libraries were sequenced using an Illumina Hiseq 2500 
system (Illumina, CA, USA) with single-end reads. The 
raw reads were aligned against the whole genome build 
hg19 using the StrandNGS v2.7 software (Strand Genom-
ics, Inc., San Francisco, CA, USA).

Enrichment analysis of differentially expressed genes
Gene Ontology (GO) enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way analysis were performed to explore the biological 
functions of the differentially expressed genes (DEGs) 
between S-MSCs and SF-MSCs. Transcripts with fold-
change values greater than 2.0, with a P ≤ 0.05, were 
included in the analysis as DEGs. In GO enrichment 
analysis, these DEGs were assigned to one of three cat-
egories: biological processes (BP), molecular functions 
(MF), and cellular components (CC). Enrichment analy-
ses of the DEGs were carried out using the Database for 
Annotation, Visualization, and Integrated Discovery v.6.8 
online software tool (<http://​david.​abcc.​ncifc​rf.​gov/>).

DiI labeling
MSCs were labeled using CellTracker CM-DiI (Thermo 
Fisher Scientific) according to the manufacturer’s pro-
tocols before intravenous injection. Briefly, the DiI solu-
tion stock was diluted with dimethyl sulfoxide (DMSO, 
Sigma-Aldrich) at a concentration of 2  mg/mL to pre-
pare the DiI working solution. Labeling was performed 
by adding the DiI working solution to the cell suspen-
sion at a final concentration of 5 µg/mL and incubating 
for 25 min at 37 °C with 5% CO2. After labeling, the cells 
were washed with fresh DMEM.

Animals
Male C57BL/6 mice (6–8  weeks old) were purchased 
from Charles River Laboratories Japan (Yokohama, 
Japan), housed in pathogen-free rooms with a controlled 
environment under a 12-h light–dark cycle, and main-
tained on laboratory chow with free access to food and 
water. All experimental procedures were approved by the 

http://david.abcc.ncifcrf.gov/
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Committee on Animal Research at Hiroshima University 
(Approval No. A17-28) and were conducted under the 
Guide for the Care and Use of Laboratory Animals, 8th 
ed, 2010 (National Institutes of Health, Bethesda, MD, 
USA).

Oropharyngeal aspiration (OA) of bleomycin (BLM) in mice
Mice were first anesthetized using mixed anesthetic 
agents, including medetomidine (0.3 mg/kg body weight; 
Kyoritsu Seiyaku, Tokyo, Japan), midazolam (4  mg/kg 
body weight, Sandoz K.K., Tokyo, Japan), and butorph-
anol (5 mg/kg body weight, Meiji Seika Pharma, Tokyo, 
Japan). They were then administered BLM (Nippon Kay-
aku, Tokyo, Japan) at a dose of 2.0 mg/kg body weight in 
phosphate-buffered saline (PBS) via OA using a micro-
pipette. The OA procedure was performed as described 
previously [21]. Briefly, mice were secured on a platform, 
their tongue was pulled out with forceps, and the BLM 
solution was placed onto the distal part of the orophar-
ynx, while the nasal cavity was closed gently with the 
technician’s fingers.

MSC administration
SF-MSCs or S-MSCs (1 × 105 cells/mouse) in 100  µL of 
PBS were injected through the tail vein at 4  days after 
BLM OA. In the PBS group, 100  µL of PBS alone was 
injected through the tail vein. For analyzing cell engraft-
ment, DiI-labeled MSCs were injected into the mice via 
the tail vein at a dose of 2.0 × 105 cells/mouse in 100 µL 
of PBS. Control mice were injected with unlabeled SF-
MSCs at the same dose through the tail vein.

Immunohistochemical staining
Immunohistochemical staining was performed on paraf-
fin-embedded tissues to evaluate the retention of MSCs. 
Briefly, the tissue sections were incubated overnight 
at 4  °C with the anti-human nuclei mouse monoclo-
nal antibody (3E1.3, MAB 4383, MilliporeSigma, Burl-
ington, MA, USA) diluted in 0.05  M phosphate buffer 
(pH 7.6). A Histo-fine simple stain MAX-PO (Multi) 
kit (Nichirei, Tokyo, Japan) was used to detect antigen 
binding. Nuclear staining was performed using Mayer’s 
hematoxylin.

Hydroxyproline assay
For the biochemical analysis of lung fibrosis, murine 
left lungs were evaluated for hydroxyproline content. 
Briefly, at 7 or 14 days after BLM OA, the left lung was 
removed and the extrapulmonary airways and blood ves-
sels were excised and discarded. After homogenization in 
1.0 mL of PBS, 1.0 mL of 12 N HCl was added, and the 
samples were hydrolyzed at 120 °C for 16 h. In a 96-well 
plate, 5 μL of each sample was combined with 5 μL of 

citrate/acetate buffer (5% citric acid, 1.2% glacial acetic 
acid, 7.25% sodium acetate, and 3.4% sodium hydrox-
ide). Then, 100 µL of chloramine-T solution (0.141  g of 
chloramine-T added to 8  mL of citrate/acetate buffer, 
1.0 mL of n-propanol, and 1.0 mL of Milli-Q water) was 
added, and the mixture was incubated for 30 min 25 °C. 
After this incubation, 100 µL of Ehrlich’s solution (1.25 g 
of p-dimethylaminobenzaldehyde added to 4.65  mL 
of n-propanol and 1.95  mL of 70% perchloric acid) 
was added and the samples were incubated at 65  °C for 
30 min. The absorbance of each sample was then meas-
ured at 540  nm wavelength. Standard curves were gen-
erated for each experiment using hydroxyproline as the 
standard reagent. Results are expressed as micrograms of 
hydroxyproline in the left lung tissue.

Histological analysis of lung fibrosis
The right lungs were inflation-fixed with a buffered 4% 
formalin solution. After embedding in paraffin, the sec-
tions were stained with hematoxylin and eosin (H&E).

Analysis of bronchoalveolar lavage fluid (BALF)
BALF was collected before BLM OA, or at 7 or 14 days 
after BLM OA. Briefly, after euthanasia, the murine tra-
cheas were exposed and cannulated using an 18-gauge 
cannula, and the lungs were lavaged thrice with 0.5 mL 
of PBS. Lavage fluids were pooled and cleared of cells by 
centrifugation for 5  min at 300 × g at 4  °C. The super-
natants were stored at − 80  °C and used for measuring 
the cytokine concentrations. The cell pellets were resus-
pended in 1  mL of DMEM, and the total cell numbers 
were determined using an automated cell counter after 
red blood cell lysis using the ACK lysis buffer. Differential 
cell counts were obtained with the Diff-Quik stain (Koku-
sai Shiyaku, Kobe, Japan) using Cytospin (Thermo Fisher 
Scientific).

Cytokine measurements
Cytokine levels including free active transforming growth 
factor (TGF)-β1, granulocyte macrophage-colony-
stimulating factor (GM-CSF), interferon (IFN)-γ, tumor 
necrosis factor (TNF)-α, interleukin (IL)-2, IL-4, IL-5, 
IL-6, IL-10, IL-13, and IL-33, in mouse bronchoalveo-
lar lavage fluid (BALF) and serum were assessed using 
the LEGENDplex (BioLegend) custom panel assay kit 
as per the manufacturer’s instructions. Cytokine levels 
were determined using a FACSverse flow cytometer (BD 
Biosciences), and analyses were performed using the 
LEGENDplex data analysis software (BioLegend). Total 
TGF-β1 protein in the culture supernatant or in MSCs 
was measured using a Human TGF-β1 Quantikine ELISA 
kit (R&D Systems, Minneapolis, MN, USA) following the 
manufacturer’s instructions.
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Blood sampling
Blood samples for flow cytometry analysis were collected 
at 6, 10, or 14 days after BLM OA from the facial veins of 
live anesthetized mice. Blood samples for cytokine meas-
urement were collected at 7, 14, or 21  days after BLM 
OA by right ventricular cardiac puncture at the time of 
sacrifice. Blood samples for serum cytokine analysis were 
cleared of cells by centrifugation at 1000 × g for 15 min at 
4  °C. The supernatants were stored at − 80  °C and used 
for measuring the cytokine concentrations.

Lung homogenate co‑culture and protein extraction 
from MSCs
Fresh left lungs harvested from mice treated with PBS 
OA or BLM OA at a dose of 2.0 mg/kg body weight were 
homogenized in 1.0 mL of DMEM or STK2 using a hand-
held homogenizer. Then, 100 μL of lung homogenate was 
added onto co-culture inserts for 6-well plates with a 
0.4  μm pore size porous polyester membrane (Corning, 
NY, USA). The well inserts were combined in a 6-well 
culture plate pre-plated with 1.0 × 105 MSCs. They were 
cultured in DMEM with 10% FBS (S-MSCs) or in serum-
free STK2 medium (SF-MSCs). After co-culture for 72 h, 
MSCs were lysed with Nonidet P-40 (NP-40) lysis buffer 
(50  mM Tris–HCl [pH 8.0], 150  mM NaCl, 1% NP-40) 
containing a protease inhibitor cocktail for measurement 
of TGF-β1 protein in MSCs.

TGF‑β1 administration
Mice were injected intraperitoneally with 400  ng of 
recombinant TGF-β1 (BioLegend) three times, at 3, 6, 
and 9 days after BLM OA.

Regulatory T cell (Treg) depletion
To deplete Tregs, mice were injected twice intraperi-
toneally with 30  μg of purified anti-mouse CD25 anti-
body (clone PC61, BioLegend) in 200 µL of PBS, at 6 and 
9 days after BLM OA (i.e., at 2 and 5 days following SF-
MSC injections). The control group was treated with rat 
isotype IgG1 (BioLegend).

Statistical analyses
Statistical analyses were performed using the JMP Pro 
15 software (SAS Institute Inc., Cary, NC, USA). The 
results are expressed as mean ± standard deviation (SD) 
for normal distribution and median with interquartile 
range for non-normal distribution. In normal distribu-
tion data analyses, Student’s t test (two-tailed paired or 
unpaired) was performed for comparison between two 
groups, and one-way repeated measures analysis of vari-
ance (ANOVA) followed by the post hoc Tukey’s test was 
performed for comparison between multiple groups. 
In the analysis of non-normally distributed data, the 

Kruskal–Wallis and Mann–Whitney U tests were used 
for comparison between groups, using Bonferroni’s cor-
rection for multiple comparisons. All tests were two-
sided, and P < 0.05 was considered statistically significant.

Results
Comparison of characteristics between SF‑MSCs 
and S‑MSCs
We initially compared the proliferative ability of SF-
MSCs with that of S-MSCs. Compared with that in 
serum-containing medium, the number of MSCs was sig-
nificantly increased in serum-free medium (Fig.  1A, B). 
To determine whether SF-MSCs retained their expres-
sion of MSC surface biomarkers, we analyzed the expres-
sion of cell surface proteins, proposed as the minimal 
criteria for human MSCs by the International Society for 
Cellular Therapy (ISCT) [22], in SF-MSCs and S-MSCs 
using flow cytometry. Both S-MSCs and SF-MSCs were 
negative for CD11b, CD19, CD34, CD45, and HLA-DR 
and were positive for CD44, CD73, CD90, and CD105 
(Additional file  1). In RNA sequencing analysis, out of 
16,806 quantitatively detected genes, 2,417 DEGs were 
identified between the two MSC populations, including 
1,120 significantly upregulated DEGs and 1,297 signifi-
cantly downregulated DEGs, when comparing SF-MSCs 
with S-MSCs (Fig.  1C). The clustering analysis in both 
directions between the DEGs provided evidence on 
whether the two types of MSCs were different (Fig. 1D). 
Similarly, principal component analysis (PCA) showed 
that the groups were far from each other, indicating a dif-
ference in gene expression between the S-MSCs and SF-
MSCs (Fig. 1E). To analyze the functions of these DEGs, 
data from the GO database and the KEGG database were 
used to perform pathway analysis. In GO term analysis, 
the upregulated DEGs were mainly associated with cell 
proliferation and the downregulated DEGs were mainly 
associated with extracellular components (Fig.  1F). In 
the BP category, positive regulation of apoptotic process 
(GO:0043065) was downregulated in SF-MSCs com-
pared with S-MSCs (− log10 FDR = 0.004. Not shown in 
Fig. 1F due to being ranked outside of top 10 downregu-
lated terms). In KEGG pathway analysis, several down-
regulated pathways were related to bleomycin-induced 
pulmonary fibrosis including PI3K/AKT signaling, renin 
angiotensin system (RAS) signaling, and hypoxia-induc-
ible factor 1 (HIF-1) signaling (Fig. 1G) [23–25]. Further, 
the cell cycle pathway was upregulated, indicating the 
high proliferative potential of SF-MSCs.

Increased murine lung engraftment of MSCs cultured 
in serum‑free medium
To evaluate the number of cells engrafted in murine 
lungs, MSCs were labeled with CellTracker CM-DiI 
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before intravenous administration to mice (Fig.  2A, B). 
DiI-labeled SF-MSCs were detected in murine lungs 
using flow cytometry (Fig. 2C) and fluorescence micros-
copy (Additional file  2). Staining with an anti-human 
nuclear antibody confirmed the engraftment of SF-
MSCs in the murine lungs (Fig.  2D). Flow cytometry 
analysis revealed a decrease in the number of SF-MSCs 
engrafted into the murine lungs over time (Fig.  2E). 
The number of MSCs engrafted in the murine lungs 
on the day after MSCs injection was 50% higher in SF-
MSCs (0.42% ± 0.02%) than S-MSCs (0.28% ± 0.02%) 
transplanted recipients (Fig.  2F). We also evaluated the 

number of SF-MSCs engrafted into the murine thymus or 
spleen after intravenous MSC administration and found 
that few MSCs were engrafted into either organ (Fig. 2G).

Enhanced antifibrotic and anti‑inflammatory effect 
of SF‑MSCs in BLM‑induced pulmonary fibrosis
To determine the optimal dose of intravenous SF-MSC 
injection, we compared different doses of SF-MSCs 
and assessed their antifibrotic effects on BLM-induced 
pulmonary fibrosis. No significant difference in lung 
hydroxyproline levels was found between SF-MSCs in the 
1 × 104 and PBS groups. SF-MSCs administered at a dose 
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Fig. 1  Effect of culture medium differences on MSCs proliferation. A The number of MSCs cultured in Dulbecco’s modified Eagle’s medium 
(DMEM) with 10% fetal bovine serum (S-MSC) or serum-free medium STK2 (SF-MSC). Data are presented as means ± SD (n = 4 per group). *p < 0.05. 
****P < 0.001. B Microscopic images showing proliferation of S-MSCs and SF-MSCs. Scale bar, 200 µm. C Volcano plot showing the gene expression 
profiles of S-MSCs and SF-MSCs (n = 3 per group). Upregulated (FC ≥ 2.0, FDR P < 0.05) and downregulated (FC ≤ − 2.0, FDR p < 0.05) differentially 
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shows the negative logarithm of the p value. G The significantly enriched KEGG pathways (P < 0.05) are presented. For each KEGG pathway, the bar 
shows fold enrichment of the pathway. The y-axis indicates the top 10 pathway categories, and the x-axis indicates the -log10 of the false discovery 
rate (FDR)-adjusted p value
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of over 1 × 105 cells significantly inhibited the elevation 
of lung hydroxyproline levels, whereas there was no dif-
ference between the 1 × 105 and 5 × 105 groups (Fig. 3A). 
Therefore, we used a dose of 1 × 105 cells as the therapeu-
tic dose. Next, we compared the therapeutic effects of 
SF-MSCs and S-MSCs. The hydroxyproline levels in the 
SF-MSC group were significantly lower than those in the 
S-MSC group on day 14 (Fig. 3B). H&E staining of lung 
tissues also confirmed reduced patches of lung fibrotic 
areas, as evidenced by thickening of the alveolar septa 
and inflation of the alveoli in the SF-MSC group when 

compared with the S-MSC group (Fig.  3C). Like the 
above experiments, SF-MSCs, but not S-MSCs, signifi-
cantly suppressed the number of total cells, macrophages, 
and lymphocytes in the BALF at 14 days after BLM OA 
(Fig. 3D). In BALF cytokine analysis, SF-MSC treatment 
suppressed the BLM-induced increase in IL-6, but not in 
TGF-β1 (Fig. 3E). The BALF levels of TNF-α, IL-4, IL-5, 
IL-10, and IL-13 were not significantly different between 
the groups (Additional file 3). In serum cytokine analysis, 
the level of TGF-β1 gradually decreased with a nadir at 
14 days after BLM OA; this decrease was suppressed in 

Fig. 2  Engraftment of administered MSCs in murine lungs. A MSCs were labeled with CellTracker CM-DiI before injection. DiI-labeled MSCs were 
detected as the positive fraction in the phycoerythrin (PE) channel using flow cytometry. B Fluorescence microscopy images showing DiI-labeled 
MSCs with red fluorescence. C MSCs engrafted in murine lungs were detected using flow cytometry on the day after intravenous SF-MSC 
administration (i.e., at 5 days after BLM OA). D Confirmation of engrafted human-derived MSCs in murine lung tissues using anti-human nuclear 
antibody staining (red arrows). E At 1, 3, or 10 days after DiI-labeled SF-MSC injection (i.e., at 5, 7, or 14 days after BLM OA), the percentages of 
engrafted SF-MSCs in the lungs were measured (n = 3 per group). ***P < 0.005. ****P < 0.001. F The percentages of SF-MSCs or S-MSCs engrafted 
in murine lungs on the day after DiI-labeled MSC injection (n = 3 per group). ****P < 0.001. G The percentages of SF-MSCs engrafted in the murine 
thymus, spleen, or lung on the day after DiI-labeled SF-MSC injection. The mice in the PBS group were administered only 100 µL of PBS (n = 3 per 
group). Data are presented as means ± SD
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the SF-MSC group at 7 days after BLM OA. Conversely, 
the serum level of IL-6 gradually increased with a peak at 
14 days after BLM OA; this increase was abolished in the 
SF-MSC group at 7 days after BLM OA (Fig. 3F). Mean-
while, the serum levels of IFN-γ, TNF-α, GM-CSF, IL-2, 
IL-4, IL-5, IL-10, IL-13, and IL-33 were not significantly 
different between the groups (Additional file  4). BLM 
administration caused murine weight loss, which was not 
inhibited by treatment of SF-MSCs (Additional file  5). 
Interestingly, subcutaneous and intraperitoneal adminis-
tration of SF-MSCs did not demonstrate the antifibrotic 
effects and lung engraftment that were observed with the 
intravenous administration of SF-MSCs (Additional file 6 
and 7).

Increased numbers of Tregs in the blood and lungs 
after SF‑MSCs treatment
Since the SF-MSC treatment inhibited the increased 
IL-6 and decreased TGF-both of which are associ-
ated with Treg induction, we hypothesized that SF-
MSC treatment could induce differentiation of Tregs 
in BLM-treated mice and prevent lung fibrosis. We 
defined CD3+/CD4+/CD25+/FoxP3+ cells as Tregs 
(Fig. 4A) and found a significant increase in the number 
of blood and lung Tregs in healthy mice treated with 
SF-MSCs (Fig. 4B). Notably, SF-MSCs, but not S-MSCs, 
increased the number of Tregs during BLM-induced 
pulmonary fibrosis (Fig. 4C). In addition, the number of 
Foxp3+/CD4+ T cells in the thymus (virtually all thymic 

Fig. 3  Antifibrotic effect of SF-MSCs in BLM-induced pulmonary fibrosis in mice. A At 4 days after BLM OA, SF-MSCs were injected via the tail vein at 
a dose of 1 × 104, 1 × 105, or 5 × 105 cells in 100 µL of PBS. Mice in the without-BLM group were aspirated with 100 µL of PBS alone instead of BLM 
and were injected with 100 µL of PBS intravenously. At 14 days after BLM OA, the hydroxyproline levels in the murine left lung were measured (n = 5 
per group). B The hydroxyproline levels in the murine left lung before or at 7 or 14 days after BLM OA (i.e., at 3 or 10 days after intravenous MSC 
administration) (n = 8–12 per group). C Histological analyses using hematoxylin and eosin staining in lung sections obtained before or at 14 days 
after BLM OA. D Inflammatory cells in BALF were measured before or at 7 or 14 days after BLM OA (n = 5 per group). E Cytokine levels in BALF 
before or at 7 or 14 days after BLM OA (n = 5–10 per group). F Cytokine levels in the serum before or at 4, 7, 14, or 21 days after BLM OA (n = 3–7 
per group). Data are presented as the mean ± SD for normal distribution, or as the median with interquartile range for non-normal distribution. 
*P < 0.05. **P < 0.01. ****P < 0.001
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cells were positive for CD3) was transiently increased 
with SF-MSC treatment, suggesting that Treg differ-
entiation was promoted in the thymus (Fig.  4D). The 
changes over time in serum TGF-β1, blood Tregs, and 
lung Tregs during BLM-induced pulmonary fibrosis 
treated with or without SF-MSC treatment are summa-
rized in Fig. 4E.

Effect of upregulated circulating TGF‑β1 on Treg induction 
and BLM‑induced pulmonary fibrosis
MSCs have been reported to produce TGF-β in  vitro 
[5]. In our study, although we observed increased serum 
TGF-β1 levels in the SF-MSC group (Fig.  3F), RNA 
sequence analysis did not indicate a higher expression 
of TGF-β1 related genes in SF-MSCs compared with 
that in S-MSCs (Fig. 5A). This result was also replicated 
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in the experiment using ELISA (Additional file 8). Next, 
to investigate the TGF-β1 production ability of MSCs 
in fibrotic lung environment, we stimulated MSCs with 
damage-associated molecular pattern (DAMP) mole-
cules in vitro. To provide DAMP stimulus, we used a co-
culture system between MSCs and bleomycin-induced 
fibrotic murine lung homogenates. Interestingly, DAMP 
stimulus decreased intracellular TGF-β1 production in 
MSCs, with changes milder in SF-MSCs (− 20.7% ± 5.9%) 
compared with S-MSCs (− 27.4% ± 4.6%). Furthermore, 
to evaluate the effect of upregulated circulating TGF-β1 
in BLM-induced pulmonary fibrosis, mice were systemi-
cally supplemented with recombinant TGF-β1 (Fig. 5B). 
Supplementation with circulating TGF-β1 attenuated 

pulmonary fibrosis without increasing the number of 
blood and lung Tregs (Fig. 5C, D).

Requirement of Treg induction for the antifibrotic effect 
of SF‑MSCs
To investigate whether increased Treg numbers play a 
role in the antifibrotic effect of SF-MSC treatment, we 
administered PC61 antibody, which functionally depletes 
Tregs, or an isotype control antibody to the BLM-treated 
mice (Fig.  6A). PC61 antibody administration suc-
cessfully depleted Tregs in as early as 1  h, regardless of 
SF-MSC treatment (Additional file 10 and Fig. 6B). Com-
plete depletion of Tregs using the PC61 antibody resulted 

Fig. 5  Effect of circulating TGF-β1 on Treg induction and BLM-induced pulmonary fibrosis. A The heatmap shows the gene expression related 
to the regulation of TGF-β production between S-MSCs (S1-3) and SF-MSCs (SF1-3). Each row represents a sample, and each line represents 
an expressed gene. Red color indicates upregulation and blue color indicates downregulation. B Experimental scheme of systemic TGF-β1 
supplementation. ip, intraperitoneal injection. C The hydroxyproline content in the murine left lung (n = 5–7 per group). D The percentages 
of blood or lung Tregs in BLM-treated mice with or without TGF-β1 injection (n = 4–5 per group). Data are presented as means ± SD. *P < 0.05. 
****P < 0.001
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in loss of the potential antifibrotic ability of SF-MSCs in 
BLM-induced pulmonary fibrosis (Fig. 6C).

Discussion
In this study, we showed that serum-free media increased 
proliferative capacity of MSCs and transformed the 
gene expression profiling of MSCs in  vitro. Serum-free 
media also increased lung engraftment of intravenously 
administered MSCs in BLM-induced pulmonary fibro-
sis model mice. In addition, intravenously administered 
MSCs abolished the reduction in serum TGF-β1 and the 
increase in IL-6 in both the serum and the BALF caused 
by BLM treatment, which causally ameliorated BLM-
induced pulmonary inflammation and fibrosis more 
effectively than the administration of S-MSCs. Finally, we 
found that treatment of SF-MSCs increased the number 
of murine thymus, blood, and lung Tregs, and depletion 
of the increased Tregs leads to abolish antifibrotic effect 
of SF-MSCs in  vivo. Thus, this study showed that SF-
MSCs suppress murine bleomycin-induced pulmonary 
fibrosis by enhancing regulatory T cell induction (Fig. 7).

We performed in  vivo experiments using non-autolo-
gous MSCs. MSCs express low levels of major histocom-
patibility complex (MHC) class I and class II and do not 
express CD40, CD80, and CD86, which are necessary for 
T cell activation. Therefore, non-autologous MSCs do not 
induce lymphocyte proliferation when co-cultured with 

donor-derived lymphocytes that do not match their HLA 
type and can be transplanted across the MHC barrier 
safely [26, 27]. In fact, in recent years, more human clini-
cal trials used non-autologous MSCs rather than autolo-
gous MSCs due to less difficulty of obtaining cells [28]. 
In addition, non-autologous MSCs have been adminis-
tered to patients with graft-versus-host disease (GVHD) 
in clinical practice after safety confirmations of non-
autologous MSCs transplantation in clinical trials [29]. 
Moreover, the use of autologous MSCs has some limita-
tions. First, the use of autologous MSCs isolated from the 
patient may also adversely affect cell quality, depending 
on the patient’s age or disease status [30, 31]. In lung dis-
ease, it has been reported that transplantation of bone 
marrow-derived autologous MSCs resulted in reduced 
therapeutic efficiency compared with non-autologous 
transplantation in acute respiratory distress syndrome 
(ARDS) model mice [32]. This problem can be avoided 
by using allogeneic MSCs isolated from young healthy 
donors. Second, in vitro expansion of autologous MSCs 
can take several weeks to obtain enough cells for admin-
istration, making this therapeutic approach difficult for 
the early treatment in acute disease onset. Allogeneic 
MSCs, once obtained, cryopreserved and stocked, can be 
immediately administered to the patients when needed. 
For these reasons, non-autologous MSCs are a promising 
alternative to autologous MSCs with multiple advantages. 

Fig. 6  Tregs depletion abolished the antifibrotic effect of SF-MSCs during BLM-induced pulmonary fibrosis. A Experimental scheme of Treg 
depletion using the PC61 Ab in vivo. iv, intravenous injection. ip, intraperitoneal injection. B The percentage of blood or lung Tregs at 14 days after 
BLM OA in mice treated with or without PC61 Ab and SF-MSCs (n = 5 per group). C The hydroxyproline content in each group (n = 5–11 per group). 
Data are presented as means ± SD. *P < 0.05
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Thus, our experimental procedure using non-autologous 
MSCs is a reasonable approach for clinical use.

We observed that SF-MSC administration increased 
the number of Tregs in both the blood and lungs more 
strongly than S-MSC administration. This increase in the 
number of Tregs preceded the antifibrotic effect of SF-
MSCs, which was diminished by Treg depletion using 
Treg-specific antibodies. Increases in Tregs after sys-
temic administration of S-MSCs have been previously 
reported in animal studies and in human clinical trials 
[33, 34]. Tregs show immunomodulatory functions that 
suppress inflammation and repair injured tissues, result-
ing in resolution of fibrosis and recovery of organ func-
tion [35]. Although the role and function of Tregs in the 
fibrotic cascades in patients with IPF remain unclear, sev-
eral reports suggest Tregs play protective roles in BLM-
treated mice, which is the most reliable animal model 
for preclinical experiments on IPF [36–38]. In an animal 
model of lipopolysaccharide-induced acute lung injury, 
Tregs are reported to be necessary for recovery from 
inflammation and for lung tissue repair to promote lung 
epithelial cell proliferation [39]. Further, Tregs can pro-
tect against pulmonary fibrosis following bacterial infec-
tion [40]. Based on these findings, we concluded that an 
increase in Tregs is central to the anti-inflammatory and 
antifibrotic effects of SF-MSC administration.

BLM administration to the airway resulted in reduced 
serum TGF-β1 and increased serum and BALF IL-6 
levels. We found both changes were strongly inhib-
ited by SF-MSC administration. Tregs, specifically cells 
expressing the transcription factor Foxp3, are induced 
to differentiate from naïve CD4 + T cells by TGF-β; this 
induction of differentiation was completely inhibited 
in the presence of the pro-inflammatory cytokine IL-6 
[41]. We thus tested whether systemic supplementation 
of reduced TGF-β1 in BLM-treated mice mimicked the 
favorable effects of SF-MSC transfer. We found that sys-
temic supplementation with TGF-β1 ameliorated pul-
monary fibrosis without increasing the number of Tregs, 
suggesting that SF-MSC-mediated Treg induction did 
not solely depend on the upregulation of systemic TGF-
β1, but also depended on other factors such as strong 
IL-6 suppression. Although TGF-β1 in the lung plays 
key roles in promoting pulmonary fibrosis [42, 43], cir-
culating TGF-β1 has pleiotropic effects, including anti-
inflammatory and immunosuppressive effects [44]. Thus, 
the inhibited reduction in serum TGF-β1 observed in 
SF-MSC-treated mice might serve as one mechanism 
underlying the anti-inflammatory and antifibrotic effects 
of SF-MSC administration. Regarding IL-6, the highest 
expressed cytokine in BALF obtained from both human 
and murine fibrotic lungs [45], SF-MSC administration 

Fig. 7  Summary of the study. Serum-free conditions promote cell proliferation potential of MSCs in vitro and intrapulmonary engraftment of 
intravenous delivered MSCs in vivo. SF-MSCs correct cytokine disruptions (e.g., IL-6 production in serum or BALF) caused by BLM administration. 
Furthermore, SF-MSCs lead to efficiently inhibition of BLM-induced lung inflammation and fibrosis by promoting induction of Tregs into the lung 
compared with S-MSCs
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significantly inhibited IL-6 levels in both the serum and 
BALF compared with S-MSC administration. Notably, 
the suppressive effect of SF-MSCs on circulating IL-6 at 
day 14, regarded as the late phase of BLM-induced pul-
monary fibrosis, was extremely strong, resulting in levels 
as low as those in control mice without BLM treatment. 
Interestingly, IL-6 plays a biphasic role in the pathogen-
esis of pulmonary fibrosis. For instance, IL-6 blockade 
using an IL-6-neutralizing antibody in the early or late 
phase of BLM-induced pulmonary fibrosis resulted in 
the exacerbation or amelioration of pulmonary fibro-
sis, respectively [46]. Seen from this viewpoint, SF-MSC 
treatment in the current study suppressed the serum and 
BALF levels of IL-6, especially in the late phase, suggest-
ing that SF-MSC administration reasonably ameliorates 
established pulmonary fibrosis.

Our data demonstrate MSCs cultured in serum-free 
conditions showed improved lung engraftment compared 
with those cultured in serum-containing media. Further, 
RNA sequence analysis and cytokine measurement of 
the medium supernatant demonstrated no difference 
in TGF-β1 production between S-MSCs and SF-MSCs. 
Thus, the differences in the regulation of cytokines, Treg 
induction, and antifibrotic effect between SF-MSCs and 
S-MSCs may be due to the presence of a larger num-
ber of engrafted SF-MSCs in the lung compared with 
that of S-MSCs. This inference is also supported by 
results where SF-MSCs administered intraperitoneally 
or subcutaneously neither settle in the murine lung nor 
inhibit lung fibrosis. Conversely, intravenous adminis-
tration results in the overwhelming majority of MSCs 
in the murine lungs [47, 48], which was replicated in 
our study. Moreover, MSCs protect against lung injury 
and fibrosis both in  vitro and in  vivo through a parac-
rine anti-inflammatory mechanism [7, 49]. In addition, 
in a renal ischemia–reperfusion injury rat model, it has 
been reported that intra-arterial administration of MSCs, 
via the renal artery, enhanced engraftment of MSCs in 
kidneys and the therapeutic effect compared with intra-
venous administration [50]. These findings suggest that 
the protective effect of MSCs on pulmonary fibrosis may 
require intrapulmonary engraftment of delivered MSCs, 
and that culturing them in serum-free medium enhances 
this effect. This enhancement might be partly due to 
the downregulation of positive apoptosis process such 
as Casp1 (Caspase 1; P = 0.025), FADD (Fas-associated 
via death domain; P = 0.017) and MAP3K5 (Mitogen-
activated protein kinase kinase kinase 5; P = 0.001) in 
SF-MSCs compared with S-MSCs, as shown by RNA 
sequencing analysis.

To apply SF-MSCs to human diseases, culturing in 
serum-free media resulted in significantly higher prolif-
eration of human MSCs compared with culturing in the 

classical serum-containing media, while maintaining the 
MSC properties. Thus, serum-free media allow obtaining 
the required dose of therapeutic cells for transfer into the 
recipient in the short term. In addition, using SF-MSCs 
is free from the transmission of unknown pathogens and 
immune responses typically caused by S-MSCs. Another 
concern with intravenous MSC administration is pulmo-
nary embolism, especially in lungs with inflammation and 
fibrosis [51]. In a previous preclinical report, intravenous 
administration of higher dose bone marrow-derived-
MSCs caused aggregation in the microcirculation and 
pulmonary embolism, resulting in respiratory and cir-
culatory failure in mice [52]. Because of their enhanced 
effects, SF-MSCs treatment requires a smaller num-
ber of cells, leading to risk avoidance of this embolism 
event. In previous clinical trials using MSCs for human 
pulmonary fibrosis, the dose of administered MSCs was 
approximately 2.9 × 105–2.9 × 106/infusion per kg (cal-
culated at 70  kg per body) [9, 10]. In addition, human 
allogenic MSCs (Temcell HS Injection, JCR Pharmaceu-
ticals, Ashiya, Japan) have been approved to treat GVHD 
in clinical practice at a dose of 2.0 × 106 MSCs/infusion 
per kg twice per week [29]. In this study, we adminis-
tered approximately 4.7 × 106 SF-MSCs/infusion per kg 
to mice, which corresponds to about two-thirds to one-
fortieth dose reported in preclinical studies of MSCs in 
BLM-induced pulmonary fibrosis model mice [53]. Thus, 
compared with previous preclinical studies, the dose of 
MSCs in our study protocol was more in line with those 
in previous clinical reports, indicating this study can be 
applied in clinical practice. Given that human clinical tri-
als with S-MSC treatment have shown a protective effect 
against the fibrotic process in patients with IPF [10], SF-
MSCs could be a more useful therapeutic tool in future 
IPF therapy.

Besides patients with IPF, SF-MSCs may possess thera-
peutic potential for patients with coronavirus disease 
2019 (COVID-19) complicated by ARDS. Animal and 
human studies have confirmed that MSC-based therapy 
improves the respiratory status of recipients with ARDS 
[54]. COVID-19 ARDS is triggered by a cytokine storm 
in which IL-6 plays a key role; thus, an anti-IL-6 recep-
tor antibody showed favorable effects in patients with 
COVID-19 ARDS [55]. Furthermore, in addition to MSC-
based therapy, Treg-based therapy has been reported as 
effective in multiple preclinical models of ARDS [56]. 
The number of Tregs in peripheral blood, which migrate 
to the lungs to prevent lung tissue damage [57], was sig-
nificantly decreased in patients with severe COVID-19 
compared with that in healthy controls [58, 59]. Based 
on these findings, Treg-based therapy is expected to be 
an effective treatment for COVID-19 ARDS. However, 
the Tregs isolated from each patient require 2–3  weeks 
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for ex vivo expansion to achieve sufficient quantities for 
clinical use [60]. Alternatively, MSCs can be isolated 
from multiple tissues [4] and quickly expanded to clini-
cally relevant numbers under serum-free culture condi-
tions. Moreover, treatment with S-MSCs in subjects with 
COVID-19 ARDS showed a positive response without 
serious adverse events [61]. With no end in sight to the 
ongoing COVID-19 pandemic, a clinical trial to evaluate 
the potential therapeutic role of SF-MSCs in COVID-19 
ARDS would be worth conducting.

Conclusions
SF-MSCs significantly suppressed BLM-induced pul-
monary inflammation and fibrosis through enhanced 
induction of Tregs into the lungs and corrected the 
dysregulated cytokine balance. Besides their remark-
able therapeutic effects, MSCs cultured in serum-free 
media pose reduced risks compared with cells cultured 
in serum-containing media in clinical settings. Adminis-
tration of ex vivo expanded SF-MSCs could, thus, be an 
effective therapeutic strategy to treat pulmonary fibrosis.
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Additional file 1: Representative flow cytometry analysis related to the 
defined positive and negative MSC surface markers on MSCs cultured in 
DMEM with 10% FBS (S-MSC) or in serum-free STK2 medium (SF-MSC).

Additional file 2: Fluorescence microscopic ex vivo images of engrafted 
DiI-labeled SF-MSCs (yellow arrows) in murine lungs on the day after 
injection.

Additional file 3: Cytokine levels in BALF before BLM OA or at 7 or 14 
days after BLM OA (n = 5–8 per group). Data are presented as the mean 
± SD for normal distribution (IL-13), or as the median with interquartile 
range for non-normal distribution (TNF-α, IL-4, IL-5, IL-10).

Additional file 4: Cytokine levels in serum before BLM OA or at 4, 7, 14, 
or 21 days after BLM OA (n = 3–7 per group). Data are presented as the 
median with interquartile range.

Additional file 5: Changes in body weight in mice after BLM OA with 
treatment of MSCs. BLM OA was performed at day 0, and MSCs were 
injected via the tail vein at a dose of 1.0 × 105 cells/mouse in 100 µL of PBS 
4 days after BLM OA. Mice in the PBS with BLM group were injected with 
100 µL of PBS intravenously instead of MSCs. Mice in the without-BLM 

group were aspirated with PBS alone instead of BLM and were injected 
with PBS intravenously. On the indicated days, data are expressed as a 
percentage of the mean weight in each group measured on the first day 
of the experiment. Data are presented as means ± SD for 4–5 mice per 
group.

Additional file 6: Hydroxyproline levels in the murine left lung at 14 days 
after BLM OA. At 4 days after BLM OA, mice were further subjected to sub-
cutaneous (sc) or intraperitoneal (ip) administration of SF-MSCs at a dose 
of 1 × 105 in 100 µL of PBS. Mice without MSC administration were used 
as controls. Data are presented as the means ± SD (n = 5–8 per group). 
NS, not significant.

Additional file 7: Representative flow cytometry analysis on engrafted 
DiI-labeled MSCs in the murine lung. DiI-labeled SF-MSCs were injected 
into mice subcutaneously (sc) or intraperitoneally (ip) at a dose of 
2.0 × 105 cells/mouse in 100 µL of PBS at 4 days after BLM OA. On the day 
after DiI-labeled SF-MSC injection, MSCs engrafted in murine lungs were 
measured using flow cytometry.

Additional file 8: S-MSCs or SF-MSCs were seeded into 24-well plates at 
a density of 5 × 103 cells/well. These MSCs were cultured in serum-free 
DMEM for 48 h. The supernatants of the culture medium were collected 
at 6, 12, 24, or 48 h, and the TGF-β1 concentration in the supernatants 
was measured using an ELISA kit. Data are expressed as concentration 
of TGF-β1 per each live 100,000 MSCs in the cell culture media. Data are 
presented as means ± SD (n = 4 per group). On the indicated hours, there 
was no statistically significant difference in TGF-β1 between the two MSC 
groups.

Additional file 9: Lung homogenate was generated from the left lung of 
mice at 7 days after PBS OA (DAMP- group) or BLM OA (DAMP+ group). 
Upper inserts (pore size, 0.4 μm; Corning) with cultured lung homogen-
ates were dipped into the basal plate of MSCs (1.0 × 105 cells/well) 
cultured in DMEM with 10% FBS (S-MSCs) or in serum-free STK2 media (SF-
MSCs). After 72 hours, the MSCs were harvested, and intracellular proteins 
were extracted for TGF-β1 measurement. TGF-β1 was measured using 
an ELISA kit. Data were calculated as a TGF-β1 per each number of live 
MSCs in the culture media, and expressed as a percentage of the mean in 
DAMP- group. Data are presented as means ± SD (n = 3 per group).

Additional file 10: Representative flow cytometry analysis of the Tregs 
fraction (red box) in murine blood or lung CD4+ T cells at 6, 10, or 14 days 
after BLM OA. BLM-administered mice were treated with or without SF-
MSC plus Treg depletion Ab (PC61) as shown in Figure 6A.
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