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Abstract 

Background:  Aldehyde dehydrogenase (ALDH) is highly expressed in stem/progenitor cells in various tissues, and 
cell populations with high ALDH activity (ALDHbr) are associated with tissue repair. However, little is known about 
lung-resident ALDHbr. This study was performed to clarify the characteristics of lung-resident ALDHbr cells and to 
evaluate their possible use as a tool for cell therapy using a mouse model of bleomycin-induced pulmonary fibrosis.

Methods:  The characteristics of lung-resident/nonhematopoietic (CD45−) ALDHbr cells were assessed in control 
C57BL/6 mice. The kinetics and the potential usage of CD45−/ALDHbr for cell therapy were investigated in bleomycin-
induced pulmonary fibrosis. Localization of transferred CD45−/ALDHbr cells was determined using mCherry-express-
ing mice as donors. The effects of aging on ALDH expression were also assessed using aged mice.

Results:  Lung CD45−/ALDHbr showed higher proliferative and colony-forming potential than cell populations with 
low ALDH activity. The CD45−/ALDHbr cell population, and especially its CD45−/ALDHbr/PDGFRα+ subpopulation, 
was significantly reduced in the lung during bleomycin-induced pulmonary fibrosis. Furthermore, mRNA expression 
of ALDH isoforms was significantly reduced in the fibrotic lung. When transferred in vivo into bleomycin-pretreated 
mice, CD45−/ALDHbr cells reached the site of injury, ameliorated pulmonary fibrosis, recovered the reduced expres-
sion of ALDH mRNA, and prolonged survival, which was associated with the upregulation of the retinol-metabolizing 
pathway and the suppression of profibrotic cytokines. The reduction in CD45−/ALDHbr/PDGFRα+ population was 
more remarkable in aged mice than in young mice.

Conclusions:  Our results strongly suggest that the lung expression of ALDH and lung-resident CD45−/ALDHbr cells 
are involved in pulmonary fibrosis. The current study signified the possibility that CD45−/ALDHbr cells could find appli-
cation as novel and useful cell therapy tools in pulmonary fibrosis treatment.
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Background
Tissue-resident stem cells are valuable in cell therapy and 
have been successfully used for immunomodulation, tis-
sue regeneration, and tissue repair. Several trials using 
stem cell therapy have been performed to treat refractory 
diseases, with mesenchymal stem cells (MSCs) being the 
most frequently used cell type [1]. In particular, MSCs, 
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shown to exhibit pluripotency toward the nonhemat-
opoietic cell lineage, can be isolated from various organs, 
including the bone marrow, adipose tissue, skeletal mus-
cle, and the umbilical cord [1]. Bone marrow-derived 
MSCs, isolated from the most orthodox cell source of 
MSCs [2, 3], have been shown to have immunomodula-
tory effects such as the inhibition of the proliferation of 
T-cells through secretion of anti-inflammatory cytokines 
and growth factors [4]. In a mouse model of bleomycin 
(BLM)-induced lung injury, administration of bone mar-
row-derived MSCs was reported to improve lung injury 
by exerting an anti-inflammatory effect [5]. With respect 
to lung resident stem cells, the Sca1+/CD45−/CD31− cell 
population has been identified as lung tissue stem cells 
capable of differentiating into endothelial and lung epi-
thelial cells in vitro. Moreover, when transferred into an 
elastase-induced lung injury mouse model, this popula-
tion was demonstrated to significantly improve the sur-
vival rate and reverse lung damage [6]. Lung Hoechst 
33342dim side population (SP) cells are adult stem cells, 
which have also been identified to exhibit mesenchy-
mal and epithelial potential [7]. Among the SP cells, the 
CD45−/CD31− fraction has been reported to have the 
characteristics of lung resident MSCs, due to their ability 
to differentiate into smooth muscle, bone, fat, and carti-
lage [8, 9]. Furthermore, the number of lung resident SP 
cells was shown to be significantly reduced in mice with 
BLM-induced lung injury, and this reduction was corre-
lated with the pathology of the lung injury. When admin-
istered intravenously into the lung, lung SP cell therapy 
was shown to reduce BLM-induced pulmonary fibrosis 
and pulmonary arterial hypertension [10]. These results 
suggest the existence of tissue-specific MSCs in the lung 
and their involvement in lung injury.

Aldehyde dehydrogenases (ALDH) are a group of 
enzymes that catalyze the oxidation of aldehydes to car-
boxylic acids, with 19 different isoforms in humans [11]. 
A cell population with high ALDH activity, called ALDH 
bright cells (ALDHbr), is associated with the stemness of 
various normal tissues and is involved in tissue repair 
[12]. Moreover, ALDHbr isolated from the human bone 
marrow, reported to have a higher colony-forming capac-
ity when compared to a cell population with low ALDH 
activity (ALDHdim) [13], was shown to be a progenitor 
population for epithelial, endothelial, and mesenchymal 
lineages [14]. When administered in a mouse model of 
myocardial infarction, ALDHbr collected from the human 
umbilical cord blood was demonstrated to enhance 
angiogenesis in the ischemic heart [15]. Given these 
findings, the existence of lung resident ALDHbr and its 
contribution to tissue repair were speculated; however, 
little is known about lung resident ALDHbr. The objec-
tives of this study were to clarify the characteristics of 

lung-resident ALDHbr and to evaluate its possible use as 
a tool for cell therapy in a mouse model of BLM-induced 
pulmonary fibrosis.

Methods
Animals and BLM‑induced pulmonary fibrosis
This study, aimed at elucidating the characteristics of 
lung-resident ALDHbr and exploring its usage in cell 
therapy, was performed in accordance with the proto-
cols approved by the Animal Ethics Committee of Hiro-
shima University (A19-122 and 28-29-2). In this study, 
pulmonary fibrosis was induced as previously described 
[16] in C57BL/6J mice (6–8-week-old young female mice 
and 52  week old aged female mice) which were pur-
chased from Charles River Laboratories Japan (Yoko-
hama, Japan). The mice were maintained in a specific 
pathogen-free environment and randomly assigned to 
BLM or control groups. In experiments performed to 
confirm the localization of transferred cells, C57BL/6-
Gt (ROSA)26Sor < tm1.1 (H2B-mcherry) Osb > hete-
rozygotic mice (mCherry mouse, BRC No. RBRC06036, 
RIKEN, Tokyo, Japan) [17] systemically expressing the 
mCherry protein in their nuclei were used as a donor 
population. On day 0, after intraperitoneal injection of 
mixed anesthesia with medetomidine hydrochloride 
(0.3 mg/kg body weight; Kyoritsu Seiyaku, Tokyo, Japan), 
midazolam (4  mg/kg body weight, Sandoz K.K., Tokyo, 
Japan), and butorphanol tartrate (5  mg/kg body weight, 
Meiji Seika Pharma, Tokyo, Japan), pulmonary fibrosis 
was induced by endotracheal injection of BLM (2 mg/kg 
of body weight, Nippon Kayaku, Tokyo, Japan). Control 
mice received the same amount (2 mL/kg body weight) of 
phosphate-buffered saline (PBS, Nacalai Tesque, Kyoto, 
Japan) alone. For survival analysis, a higher dose of BLM 
(5 mg/kg) was used. At 7 and 14 days after BLM admin-
istration, both lungs were removed from each animal 
and the lung tissue was assessed for hydroxyproline, and 
mRNA expression and subjected to flow cytometry and 
histological analysis.

Cell isolation
The lungs were removed and minced in 1-mL Roswell 
Park Memorial Institute 1640 medium (Thermo Fisher 
Scientific, Waltham, MA, USA) supplemented with col-
lagenase A (1  mg/mL, Roche, Basel, Switzerland), and 
incubated at 37  °C for 30  min. Following lysis of red 
blood cells with ACK Lysing Buffer (Life Technologies, 
Grand Island, NY, USA), the cells were resuspended 
in 2  mL of PBS containing 0.5% bovine serum albumin 
(Sigma-Aldrich, St. Louis, MO, USA) and 2 mM ethylen-
ediaminetetraacetic acid (Sigma-Aldrich), and cell count-
ing was performed.
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Antibodies and ALDH staining
Antibodies (all purchased from BioLegend, San Diego, 
CA, USA) used for flow cytometry and cell sorting are 
shown in Additional file 1. After staining for cell surface 
proteins using the aforementioned antibodies, ALDH 
activity was expressed as fluorescent intensity using the 
ALDEFLUOR™ Kit (STEMCELL Technologies Inc., 
Vancouver, Canada) according to the manufacturer’s 
protocol, as previously reported [18]. A separate tube 
containing 5 µL of diethylaminobenzaldehyde (DEAB, 
provided in the ALDEFLUOR™ Kit), a specific inhibitor 
of ALDH, was prepared to determine ALDHbr gating.

Hoechst staining
Hoechst 33,342 staining of lung cells was performed 
as previously reported [19]. After suspended in 1  mL 
DMEM (Thermo Fisher Scientific) with 5% FBS (Sigma-
Aldrich), 1.0 × 106 cells were stained with 4 µL Hoe-
chst 33,342 (Invitrogen, Carlsbad, CA, USA) alone or in 
combination with 30 µL verapamil (Sigma-Aldrich) for 
90 min at 37 °C with mixing every 20 min during stain-
ing. Antibody and ALDH staining were performed as 
described above after Hoechst 33,342 staining.

Flow cytometry and cell sorting
Flow cytometric analysis of lung cells was performed 
using the following method, referring to a previous report 
[20]. Flow cytometry and cell sorting were performed 
using the FACS Aria II system (BD Biosciences, San Jose, 
CA, USA) and LSRFortessa X-20 (BD Biosciences). Data 
were analyzed using the FACS Diva (BD Biosciences) and 
the FlowJo (version 10.7.1, BD Biosciences) software. For 
the isolation of ALDHbr, unnecessary cell populations 
were pre-depleted using magnetic cell sorting (MACS) 
cell separation using a Stem Cell Pre-Enrichment kit 
(Miltenyi Biotec, Bergisch Gladbach, Germany) prior to 
FACS according to the manufacturer’s protocol. Cell sort-
ing from mCherry-expressing donor mice and analysis of 
injected donor mCherry+ cells was performed using the 
SORP Aria (BD Biosciences) and LSRFortessa X-20 (BD 
Biosciences) systems, respectively.

Cell culture and colony‑forming assay
Sorted cells were seeded into 96-well plates at a density 
of 5–10 × 103 cells/well and cultured in Dulbecco’s modi-
fied Eagle medium (DMEM, Thermo Fisher Scientific) 
and 10% fetal bovine serum (FBS, Sigma-Aldrich) sup-
plemented with or without 20 ng/mL epidermal growth 
factor (EGF, BioLegend) or 20  ng/mL fibroblast growth 
factor-2 (FGF2, BioLegend) or both. The medium was 
changed every 3–4 days. For colony formation, 5.0 × 103 
cells were seeded into 6-well plates using MethoCult 

(STEMCELL Technologies Inc.). Consecutively, 2 to 
3 weeks after the start of culture, the number of prolifer-
ated colonies was counted.

Cell viability assay
Cells were seeded into 96-well plates at a density of 
5.0 × 103 cells/well and the medium was changed every 
3–4 days. After 3–4 weeks from the start of the culture, 
cell proliferation was evaluated using Cell Counting Kit-8 
(Dojindo, Kumamoto, Japan).

Cell transfer to recipient mouse
Sorted 1.0 × 105 CD45−/ALDHbr and CD45−/ALDH-
dim cells were dissolved in 100 µL PBS and administered 
intravenously via the tail vein to recipient BLM-pre-
treated mice on day 2 (2 days after treatment with BLM). 
To confirm the localization of transferred cells, 5.0 × 104 
mCherry+ CD45−/ALDHbr and CD45−/ALDHdim cells 
were administered intravenously into recipient BLM-pre-
treated C57BL/6 mice on day 2. On the following day and 
5 days after the injection (on days 3 and 7), the recipient 
mice were sacrificed, and lung samples were subjected to 
flow cytometry and histology analyses.

Hydroxyproline assay
The left lungs were removed and the sample was homog-
enized in 1 mL of PBS and hydrolyzed with 1 mL of HCl 
for 16  h at 120  °C. The supernatant was centrifuged at 
10,000g for 5 min (Model 3740, KUBOTA, Tokyo, Japan), 
and 5 µL of the supernatant was aliquoted into a 96-well 
plate. After dispensing 5 µL hydroxyproline standard 
(Sigma-Aldrich) into each well of the 96-well plate, 5 
µL citrate/acetate buffer (deionized distilled water sup-
plemented with 238  mM Citric acid, Sigma-Aldrich, 
1.2% glacial acetic acid, Sigma-Aldrich, 532 mM sodium 
acetate, Sigma-Aldrich, and 850  mM sodium hydrox-
ide, Nacalai Tesque) and 100 µL chloramine T solution 
(1.0  mL deionized distilled water supplemented with 
0.141 g chloramine T, Sigma-Aldrich, 1.0 mL 1-propanol, 
Sigma-Aldrich, and 8.0  mL citrate/acetate buffer) were 
added. After 30  min of incubation at 25  °C, 100 µL of 
Ehrlich’s reagent (2.5  g 4-dimethylaminobenzaldehyde, 
Sigma-Aldrich, 9.3 mL 1-propanol, and 3.9 mL 70% per-
chloric acid, Sigma-Aldrich) was added and the mixture 
was incubated at 65 °C for 30 min. After 5 min at 25 °C, 
the absorbance was measured at 550  nm using a plate 
reader (iMARK, Bio-Rad, Hercules, CA, USA), as previ-
ously described [21].

PCR and agarose gel electrophoresis
The sorted cells and the excised lungs were homogenized 
using 1  mL TRIzol reagent (Life Technologies) and total 
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RNA was extracted using the RNeasy Mini Kit (QIAGEN, 
Venlo, Netherlands). The extracted RNA was reverse tran-
scribed into cDNA using the High Capacity RNA-to-cDNA 
Kit (Applied Biosystems, Foster City, CA, USA). Real-time 
quantitative PCR was performed using the Applied Biosys-
tems 7500 Fast Real-Time PCR System (Applied Biosys-
tems) and the TaqMan Gene Expression Assays (Applied 
Biosystems) as previously described [16]. The expression of 
Actb (β-actin, Mm02619580_g1; Applied Biosystems) was 
used as an endogenous control. The TaqMan Gene Expres-
sion Assays were used as shown in Additional file  2. To 
distinguish the mCherry-heterozygotic mice the from wild-
type mice, mouse-tail DNA was extracted using the DNeasy 
Blood and Tissue Kit (QIAGEN). The extracted DNA was 
subjected to PCR using the primers shown in Additional 
file 2. PCR conditions were as follows: 120 s at 94 °C, 10 s 
at 98 °C, 30 s at 60 °C, 120 s at 68 °C, repeated for 30 cycles. 
Amplified products were stained with SAFELOOK™ (Fuji-
film Wako Junyaku, Osaka, Japan), and bands were con-
firmed using electrophoresis on a 1% agarose gel.

Histological analysis
Lung tissue sections were fixed in 2% formalin solution 
(Nacalai Tesque, Kyoto, Japan) and embedded in paraf-
fin, followed by hematoxylin–eosin (HE) and Masson’s 
trichrome staining. Immunostaining for ALDH1A1 and 
mCherry was performed using an anti-ALDH1A1 rabbit 
polyclonal antibody (dilution factor 1:500; GTX123973, 
GeneTex, Irvine, CA, USA) and anti-mCherry rabbit 
polyclonal antibody (dilution factor 1:400; ab167453, 
Abcam, Cambridge, UK), respectively, as the primary 
antibodies and a peroxidase-conjugated anti-rabbit goat 
IgG polyclonal antibody (ready to use; #424144, Nichirei, 
Tokyo, Japan) as the secondary antibody.

Statistical analyses
All experiments were performed 2 or 3 times and the 
representative data are shown as median ± interquar-
tile range except for mRNA data, which is shown as 
mean ± SEM to ensure the visibility of the graph. The 
Kruskal–Wallis test for median values was used to assess 
the statistical significance between groups. Correlation 
coefficients for parameters were calculated using the 
Spearman’s rank correlation coefficient analysis. Kaplan–
Meier analysis and log-rank test were used for survival 
analysis. A P value < 0.05 was considered significant. All 
statistical analyses were performed using JMP Pro 14 
(SAS Institute Inc., Cary, NC, USA).

Results
Detection of ALDHbr in mouse lung
Following the determination of the appropriate ALDHbr 
gating using ALDEFLUOR staining with the DEAB 

ALDH inhibitor, we observed a rare ALDHbr population 
in the whole lung of mice (Fig.  1A). When we divided 
the whole lung cells into CD45+ hematopoietic cells 
and CD45− nonhematopoietic cells (Fig.  1B), we noted 
that both fractions contained ALDHbr (Fig.  1C, D). To 
assess lung resident ALDHbr, we focused on the nonhe-
matopoietic CD45−/ALDHbr fraction. Analysis of these 
nonhematopoietic cells, that is, the lung resident CD45−/
ALDHbr fraction, revealed that this fraction was fur-
ther divided into mesenchymal (platelet-derived growth 
factor receptor α positive, PDGFRα+) and epithelial 
(epithelial cell adhesion molecule positive, EpCAM+) 
phenotypes (Fig. 1E).

Characteristics of lung CD45−/ALDHbr

To determine the characteristics of lung CD45−/ALD-
Hbr, we collected CD45−/ALDHbr (n = 3) and CD45−/
ALDHdim (n = 3) cells using FACS. As shown in Addi-
tional file  3, pre-depletion of unnecessary cell popula-
tions prior to FACS resulted in the enrichment of the 
CD45−/ALDHbr fraction. To confirm if sorted CD45−/
ALDHbr cells truly expressed high levels of ALDH mRNA 
and to determine the isoforms of ALDH that were mainly 
expressed in CD45−/ALDHbr cells, we performed real-
time quantitative PCR. Our results showed that the lev-
els of mRNA expression of ALDH1a, ALDH2, ALDH3a1, 
ALDH4a1, ALDH7a1, and ALDH18a were significantly 
higher in the CD45−/ALDHbr than in the CD45−/ALD-
Hdim cells (Fig.  2A, P = 0.049 for ALDH1a1, P = 0.049 
for ALDH1a2, P = 0.049 for ALDH1a3, P = 0.037 for 
ALDH1a7, P = 0.049 for ALDH2, P = 0.046 for ALDH3a1, 
P = 0.049 for ALDH4a1, P = 0.037 for ALDH7a1, and 
P = 0.049 for ALDH18a). We further observed that when 
both cell populations were cultured, the CD45−/ALD-
Hbr population showed higher proliferative ability than 
the CD45−/ALDHdim population (Fig.  2B, C, P = 0.009 
between CD45− and CD45−/ALDHbr and P = 0.009 
between CD45−/ALDHdim and CD45−/ALDHbr). To 
examine whether CD45−/ALDHbr cells maintained a 
high ALDH activity in culture, sorted CD45−/ALDHbr 
cells were further cultured, harvested, and reexamined 
for ALDH activity. As shown in Fig. 3A, most proliferated 
cells were ALDHdim, with ALDHbr cells accounting for 
approximately 5% of the total proliferative cells.

Next, we examined the colony-forming ability of 
CD45−/ALDHbr cells using a colony-forming assay. We 
found that CD45−/ALDHbr cells formed larger (Fig. 2D) 
and higher number (Fig. 2E) of colonies than the CD45−/
ALDHdim cells. Although a similar pattern of colony for-
mation was observed for CD45−, the size and the num-
ber of colonies were relatively small, suggesting that 
the colony-forming ability of the CD45− population 
depended to a large extent on the CD45−/ALDHbr cells. 
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As the CD45−/ALDHbr population seemed to be a heter-
ogeneous cell population and ALDHbr is associated with 
stemness in various tissues, we evaluated the expres-
sion of surface antigens associated with the mesenchy-
mal cells, fibroblasts, and the stem cells in the CD45−/
ALDHbr population. As shown in Additional file  4, not 
all CD45−/ALDHbr cells expressed the representative 
markers of bone marrow-derived MSCs (CD44, CD73, 
CD90, and CD105). It was notable that the stage-specific 
embryonic antigen-4 (SSEA4) stem cell marker was solely 
expressed in CD45−/ALDHbr cells in the mouse lung.

When we divided the CD45−/ALDHbr population 
into CD45−/ALDHbr/PDGFRα+ and CD45−/ALDHbr/
EpCAM+ population, and investigated their character-
istics, we observed that the CD45−/ALDHbr/PDGFRα+ 
population exhibited a fibroblast-like spindle shape, 
whereas the CD45−/ALDHbr/EpCAM+ population 
exhibited a flat and round shape (Fig. 2F). We also found 
that growth factors led to an increase in the number of 
CD45−/ALDHbr/PDGFRα+ cells but not that of CD45−/
ALDHbr/EpCAM+ cells, suggesting that CD45−/ALDHbr/
PDGFRα+ fraction contributed to the high proliferative 
potential of the CD45−/ALDHbr population (Fig. 2F).

Next, we examined the expression of ALDH in pri-
mary cultured lung fibroblasts (Fig.  3A). These primary 

cultured lung fibroblasts obtained from BLM-untreated 
wild-type C57BL/6 mice were shown to frequently 
express PDGFRα, but not CD45 or EpCAM, suggesting 
that these cells were truly fibroblasts (Fig. 3B). As shown 
in Fig. 3C, both fluorescent microscopy and flow cytom-
etry revealed that the percentage of ALDHbr cells in pri-
mary cultured lung fibroblasts was approximately 5%. 
Similarly, we noted that the percentage of ALDHbr cells 
in fibroblast cell lines was also less than 5% (Fig. 3D).

Kinetics of CD45−/ALDHbr in BLM‑induced pulmonary 
fibrosis
To investigate the kinetics of CD45−/ALDHbr in fibrotic 
lungs, we used endotracheal administration of BLM 
(2 mg/kg body weight) to generate a mouse model of pul-
monary fibrosis. We found that the levels of hydroxypro-
line were significantly elevated in the BLM group (n = 9) 
14 days after BLM administration (Fig.  4A, P = 0.005) 
compared with the PBS group (n = 4). On days 7 and 14, 
the percentage of total ALDHbr cells in the lung was sig-
nificantly elevated compared with that on day 0 (Fig. 4B), 
whereas the percentage of CD45−/ALDHbr cells and 
CD45−/ALDHbr/PDGFRα+ cells, but not CD45−/ALD-
Hbr/EpCAM+ cells, were significantly decreased (Fig. 4B). 
Among the ALDHbr populations in the lung obtained on 
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day 14, the percentage of CD45−/ALDHbr/PDGFRα+ 
cells, but not that of CD45−/ALDHbr cells or CD45−/
ALDHbr/EpCAM+ cells, inversely correlated with the 
levels of hydroxyproline (Fig. 4C).

Real-time quantitative PCR analysis revealed that the 
mRNA expression of ALDH1a1, ALDH1a7, ALDH1l1, 
ALDH2, ALDH3a1, ALDH4a1, and ALDH7a1 was 
significantly lower in the fibrotic lung obtained on 
day 14 (Fig.  4D, P = 0.006 for ALDH1a1, P = 0.006 
for ALDH1a7, P = 0.014 for ALDH1l1, P = 0.006 
for ALDH2, P = 0.006 for ALDH3a1, P = 0.006 for 
ALDH4a1, and P = 0.009 for ALDH7a1). Consistent 
with the reduced number of CD45−/ALDHbr cells and 

the reduced expression of ALDH1a1 mRNA in the 
fibrotic lung, the expression of ALDH1a1 was reduced 
throughout the alveolar epithelia, especially in the 
areas of fibrosis, as demonstrated using immunostain-
ing (Additional file 5).

The decrease in number of cells observed in CD45−/
ALDHbr cells during BLM treatment was a feature 
observed in lung SP cells as well [10]. Therefore, we 
investigated the possibility of an overlap between 
ALDHbr and lung SP cells. After Hoechst stain-
ing, ALDH staining was performed, followed by flow 
cytometry, which revealed that CD45−/ALDHbr popu-
lation is completely different from CD45− lung SP cells 
(Additional file 6).
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Effect of CD45−/ALDHbr cell therapy on BLM‑induced 
pulmonary fibrosis
In the preceding experiments, we presumed that CD45−/
ALDHbr cells were depleted during pulmonary fibro-
sis; therefore, we assessed the possible usage of CD45−/
ALDHbr cells in cell therapy for BLM-induced pulmo-
nary fibrosis. Our results showed that both the levels of 
hydroxyproline (Fig.  5A, P = 0.023) and the degree of 
tissue fibrosis (Fig.  5B for HE staining, Additional file  7 
for Masson’s trichrome staining) in the lung obtained 
on day 14 were significantly lower in the CD45−/ALD-
Hbr i.v. group (n = 4) than in the CD45−/ALDHdim i.v. 
group (n = 7). In the CD45−/ALDHbr i.v. group (n = 7–8), 
the mRNA expression of interleukin 6 (IL6) and trans-
forming growth factor β1 (TGFb1) genes in lung tissues 
obtained on day 7 was significantly suppressed compared 

with the CD45−/ALDHdim i.v. group (n = 9–10) (Fig. 5C, 
P = 0.042 for IL6, and P = 0.013 for TGFb1). Interest-
ingly, we noted that the percentage of CD45−/ALDHbr/
PDGFRα+ cells, which was lowered, was recovered in the 
CD45−/ALDHbr i.v. group (n = 4) in the lung obtained 
on day 14 (Fig.  5D). Furthermore, the expression levels 
of ALDH1a1 and ALDH4a1 mRNAs, which were signifi-
cantly reduced after treatment with BLM (Fig. 4D), were 
also recovered in the CD45−/ALDHbr i.v. group (n = 4) 
on day 14 (Fig. 5E, P = 0.008 for ALDH1a1, and P = 0.038 
for ALDH4a1).

Among the ALDH family of enzymes, the ALDH1a 
family (ALDH1a1, ALDH1a2, and ALDH1a3), also 
known as retinal dehydrogenases or retinaldehyde 
dehydrogenases (RALDH), convert retinal/retinalde-
hyde to all-trans retinoic acid (ATRA) (Fig.  5F) [22]. 
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To investigate the effect of the transferred CD45−/
ALDHbr cells on the retinol-metabolizing pathway in 
BLM-induced pulmonary fibrosis, we examined the reti-
nol-metabolizing pathway-related mRNA expression in 
BLM-treated lung tissue. As shown in Fig. 5G, the mRNA 
expression levels of cellular retinoic acid-binding protein 

1 (Crabp1) and retinoic acid receptor beta (Rarb) were 
significantly increased in the CD45−/ALDHbr i.v. group 
(n = 4) compared with the CD45−/ALDHdim i.v. group 
(n = 7) (P = 0.019 for Crabp1, and P = 0.038 for Rarb).

In addition, we assessed the effect of CD45−/ALDHbr 
cell therapy on survival using BLM-induced pulmonary 
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fibrosis with a higher dose of BLM (5  mg/kg body 
weight). We observed that the higher dose of BLM led 
to approximately 80% mortality on day 14 in both the 
CD45−/ALDHdim (n = 8) and the PBS i.v. groups (n = 8), 
whereas, surprisingly, no death was observed in mice that 
received CD45−/ALDHbr cell therapy (n = 5) (Fig. 5H).

Detection of transferred donor CD45−/ALDHbr in the 
recipient lung
To distinguish and trace the injected donor CD45−/
ALDHbr cells in the lungs of recipient mice, mCherry 
knock-in mice were used as donors. After mCherry het-
erozygosity was confirmed using tail PCR (Additional 
file  8), donor CD45−/ALDHbr or CD45−/ALDHdim cells 
were sorted from these mCherry-expressing mice using 
FACS (Fig.  6A) and transferred into wild-type C57BL/6 
recipients pretreated with BLM. We observed that flow 
cytometry could detect donor mCherry-positive CD45−/
ALDHbr (Fig.  6B) and CD45−/ALDHbr/PDGFRα+ 
(Fig.  6C) cells in the recipient lungs more frequently in 
the CD45−/ALDHbr i.v. group than in the CD45−/ALD-
Hdim i.v. group. Appropriate mCherry immunostaining 

conditions were determined using appropriate 
positive and negative controls (Fig.  6D), and we noted 
that mCherry-positive CD45−/ALDHbr and CD45−/
ADLHbr/PDGFRα+ cells were also found histologically in 
the recipient lung-transferred CD45−/ALDHbr (Fig. 6E).

Effects of aging on ALDH activity
Finally, we examined the role of aging on the CD45−/
ALDHbr population. As shown in Fig.  7A, the percent-
ages of whole CD45−/ALDHbr cell population and that of 
its CD45−/ALDHbr/PDGFRα+ subgroup in the lung were 
not significantly different between aged and young mice 
that were not treated with BLM (on day 0). On the con-
trary, the percentage of CD45−/ALDHbr/PDGFRα+ cells, 
but not CD45−/ALDHbr cells, in the lung obtained 7 days 
after treatment with BLM was significantly decreased in 
aged mice (n = 4–6) compared with that in young mice 
(n = 4–6). In a similar fashion, the percentage of ALDHbr 
cells in cultured PDGFRα-predominant (as shown in 
Fig.  3B) primary lung fibroblasts obtained from the 
lung 7 days after treatment with BLM was significantly 

Fig. 6  Detection of transferred donor CD45−/ALDHbr cells in the recipient lung. A Representative images of flow cytometry of lung CD45− cells in 
donor mCherry-expressing mice. B Flow cytometry of lung CD45− cells in recipient BLM-treated C57BL/6 mice transferred with PBS alone, donor 
mCherry+/CD45−/ALDHdim cells, and donor mCherry+/CD45−/ALDHbr cells. Recipient lungs were harvested on the day following the cell transfer 
(day 3, 3 days after BLM-treatment). C Flow cytometry of lung CD45−/ALDHbr cells in recipient BLM-treated C57BL/6 mice transferred with PBS 
alone, donor mCherry+/CD45−/ALDHdim cells, and donor mCherry+/CD45−/ALDHbr cells. Recipient lungs were harvested the next day and 5 days 
after cell transfer (days 3 and 7). D Histological analysis of mCherry immunostaining in lungs obtained from mCherry-expressing mice (positive 
control) and wild-type C57BL/6 mice (negative control). E Representative images of mCherry immunostaining in lungs obtained from recipient 
BLM-treated wild-type C57BL/6 mice transferred with mCherry+/CD45−/ALDHbr cells
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decreased in aged mice (n = 5–10) compared with young 
mice (n = 5–10) (Fig. 7B).

Discussion
The present study identified and characterized the non-
hematopoietic/lung resident ALDHbr cell populations in 
the mouse lung. The lung CD45−/ALDHbr population 
and, the CD45−/ALDHbr/PDGFRα+ subpopulation are 
cell populations with high proliferative capacity. These 
population significantly reduced in pulmonary fibro-
sis. The high levels of expression of ALDH observed 
in CD45−/ALDHbr cells was mainly attributed to the 
ALDH1a subfamily, also known as RALDH, which was 
significantly reduced in BLM-treated lungs. When used 
as a tool for cell therapy, transferred CD45−/ALDHbr 
cells reached the site of lung injury and ameliorated 
BLM-induced pulmonary fibrosis. Thus, this study dem-
onstrated CD45−/ALDHbr cells as a novel lung-resident 
stem cell population and suggested their potential thera-
peutic use in pulmonary fibrosis.

Although ALDHbr cells with stem cell properties have 
been detected in various normal tissues, including the 
bone marrow [14, 23], umbilical cord blood [24, 25], 
mammary glands [26, 27], heart [28], and adipose tissue 
[29], little is known about lung-resident ALDHbr cells. 
A study showed that isolated murine airway basal and 
submucosal gland duct ALDHbr cells exhibited stem cell 
properties in normal/healthy lungs [30]. No previous 
study has investigated the significance of lung-resident 
ALDHbr cells in respiratory diseases, such as pulmonary 

fibrosis. In the current study, lung-resident CD45−/ALD-
Hbr were rare and heterogeneous population with epi-
thelial and mesenchymal lineages. The percentages of 
ALDHbr in both primary cultured lung fibroblasts and 
fibroblast cell lines were low at approximately 5%, and 
hence, we assumed that ALDHbr cells lost their activ-
ity during differentiation and proliferation, consistent 
with the findings of a previous report [24]. Similar to the 
CD45−/ALDHbr/PDGFRα+ population in the current 
study, CD45− lung SP cells have been reported to express 
mesenchymal markers and exhibit MSC properties [8], 
and have been shown to be decreased in BLM-induced 
pulmonary fibrosis [10]. However, in our study, we found 
that CD45−/ALDHbr is a novel population that is com-
pletely different from lung SP cells (CD45−/CD31−/Hoe-
chstdim). Therefore, it is reasonable that the expression 
of the surface markers of MSCs found in lung CD45−/
ALDHbr cells differed from that in the SP cells. Instead, 
SSEA4, a marker for mesenchymal progenitors [31], was 
demonstrated to be solely expressed on CD45−/ALDHbr 
cells in the mouse lung. These results suggest that the 
CD45−/ALDHbr population might contain mesenchymal 
progenitors and CD45−/ALDHbr/PDGFR+ cells main-
tained the ability to differentiate into the mesenchymal 
lineage.

During BLM-induced pulmonary fibrosis, we observed 
a downregulation in the expression of a broad spectrum 
of ALDH mRNAs in lung tissues. We also found that 
transferred CD45−/ALDHbr cells ameliorated BLM-
induced pulmonary fibrosis by suppressing IL-6 and 
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TGF-β. As an evidence, intravenously administered 
CD45−/ALDHbr cells were shown to reach the site of 
lung injury using mCherry-expressing mice as donors. 
Additionally, these lung-protective effects of transferred 
CD45−/ALDHbr were accompanied by a recovery in the 
levels of ALDH, which had been decreased during fibro-
sis, suggesting that ALDH was involved in the mecha-
nism of pulmonary fibrosis. Although little is known 
about the association of ALDH isoforms with lung dis-
eases, ALDH1a1 and ALDH3a1 have been reported to 
be expressed in the human airway epithelium [32]. Jang 
and coworkers reported that the expression of ALDH3a1 
was markedly increased in human airway epithelial cells 
exposed to cigarette smoke extract and that ALDH3a1 
exerted protective action against smoking-induced air-
way epithelial damage [33]. In the current study, the 
expression of both ALDH1a1 and ALDH4a1 were upreg-
ulated in CD45−/ALDHbr cells and downregulated in 
the fibrotic lung after BLM administration, paralleling 
the reduction in the number of CD45−/ALDHbr cells. 
Likewise, intravenous administration of CD45−/ALD-
Hbr cells was shown to significantly recover the expres-
sion of ALDH1a1 and ALDH4a1 in the fibrotic lung. 
Therefore, we speculated that mesenchymal ALDH1a1 
and ALDH4a1 might protect against BLM-induced pul-
monary fibrosis. Indeed among ALDH family mem-
bers, RALDHs (ALDH1a1, ALDH1a2, and ALDH1a3) 
catalyze the conversion of retinol to ATRA [22], sup-
porting the self-renewal and cell differentiation of stem 
cells [34]. Several lines of evidence have suggested that 
ATRA exerted protective action against radiation pneu-
monitis and BLM-induced lung injury in mice through 
anti-inflammatory effects by activating protein kinase C 
δ (PKC-δ), inhibiting mitogen-activated protein kinase 
P38 α (p38MAPK) and nuclear factor kappa-light-chain-
enhancer of activated B-cells (NF-kB), and suppressing 
the production of IL-6 and TGF-β [35–38]. In the current 
study, we observed the upregulation of retinol-metabo-
lizing pathway molecules, recovery of the expression of 
RALDH, and suppressed expression of IL-6 and TGF-β 
in BLM-induced pulmonary fibrosis treated with CD45−/
ALDHbr cell therapy. On the other hand, the significance 
of ALDH4a1 in lung injury is currently unknown and fur-
ther investigation is required.

In the fibrotic lung, after BLM administration, we 
observed a reduction in the number of cells in the 
CD45−/ALDHbr population, especially of its CD45−/
ALDHbr/PDGFRα+ subpopulation. This reduction was 
more remarkably observed in aged mice than in young 
mice. These results suggested that aging led to a decrease 
in the number of ALDHbr cells in the lungs, especially in 
the lung PDGFRα+ fibroblasts. As fibrotic lung diseases, 
especially idiopathic pulmonary fibrosis (IPF), commonly 

occur in the elderly [39] and stem cell senescence is one 
of the suggested causes of IPF [40], it is speculated that 
the decreased number of ALDHbr cells in the lungs might 
accelerate fibrotic lung diseases in the elderly.

The limitation of this study is the difficulty in collecting 
sufficient number of cells. Because of the infrequency of 
existence of ALDHbr cells, many donor mice lungs were 
necessary to acquire a sufficient number of ALDHbr cells, 
signifying the challenge in applying the methods and the 
results of the present study to human lung diseases. If the 
collected cells could be proliferated while maintaining 
ALDH activity, the burden on donor could be minimized. 
To apply the current results to human translational stud-
ies in the future, development of less invasive methods 
for collecting ALDHbr cells is required.

Conclusions
Our results strongly suggest that the lung expression of 
ALDH and lung-resident CD45−/ALDHbr are involved 
in pulmonary fibrosis. (Figure 8 summarizes the findings 
of the current study.) When administered intravenously, 
CD45−/ALDHbr ameliorated BLM-induced pulmonary 
fibrosis, signifying the possibility for CD45−/ALDHbr 
cells to find application as novel and useful cell therapy 
tools in pulmonary fibrosis treatment.
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activity; ALDHdim: Cell population with low ALDH activity; ATRA​: All-trans 
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of profibrotic cytokines (e.g., IL-6 and TGFβ1), and exacerbation of 
pulmonary fibrosis. Aging accelerates the injury-induced reduction 
in ALDHbr cells. ALDHbr cell therapy restores the impaired antifibrotic 
effects of ALDHbr cells. Solid and dotted arrows indicate promotion 
and inhibition, respectively
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sorting; HE: Hematoxylin–eosin; IL: Interleukin; IPF: Idiopathic pulmonary fibro-
sis; MSCs: Mesenchymal stem cells; NF-kB: Nuclear factor kappa-light-chain-
enhancer of activated B-cells; PDGFR: Platelet-derived growth factor receptor; 
PKC-δ: Protein kinase C δ; p38MAPK: Mitogen-activated protein kinase P38 α; 
RALDH: Retinal dehydrogenase/retinaldehyde dehydrogenase; RAR​: Retinoic 
acid receptor; SP: Side population; SSEA: Stage-specific embryonic antigen; 
TGF: Transforming growth factor.
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