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Senescence of donor cells impairs fat graft ")
regeneration by suppressing adipogenesis
and increasing expression of senescence-
associated secretory phenotype factors

Xihang Chen, Jingwei Feng, Qiang Chang, Feng Lu" and Yi Yuan

Abstract

Background: Fat grafting has been regarded as a promising approach for regenerative therapy. Given the rapidly
aging population, better understanding of the effect of age on fat graft outcomes and the underlying mechanisms
is urgently needed.

Methods: C57/BL6 mice [old (O, 18-20-month-old) and young (Y, 4-month-old)] were randomized to four fat graft
groups [old-to-old (O-0), young-to-young (Y-Y), old-to-young (O-Y), and young-to-old (Y-O)]. Detailed cellular events
before and after grafting were investigated by histological staining, RNA sequencing, and real-time polymerase
chain reaction. The adipogenic differentiation potential of adipose-derived mesenchymal stem cells (AD-MSCs) from
old or young donors was investigated in vitro. Additionally, adipogenesis of AD-MSCs derived from old recipients
was evaluated in the culture supernatant of old or young donor fat tissue.

Results: After 12 weeks, the volume of fat grafts did not significantly differ between the O-O and O-Y groups or
between the Y-Y and Y-O groups, but was significantly smaller in the O-O group than in the Y-O group and in the
O-Y group than in the Y-Y group. Compared with fat tissue from young mice, senescence-associated secretory
phenotype (SASP) factors were upregulated in fat tissue from old mice. Compared with the Y-O group,
adipogenesis markers were downregulated in the O-O group, while SASP factors including interleukin (IL)-6, tumor
necrosis factor-a, and IL-1(3 were upregulated. In vitro, AD-MSCs from old donors showed impaired adipogenesis
compared with AD-MSCs from young donors. Additionally, compared with the culture supernatant of young donor
fat tissue, the culture supernatant of old donor fat tissue significantly decreased adipogenesis of AD-MSCs derived
from old recipients, which might be attributable to increased levels of SASP factors.

Conclusions: Age has detrimental effects on fat graft outcomes by suppressing adipogenesis of AD-MSCs and
upregulating expression of SASP factors, and fat graft outcomes are more dependent on donor age than on
recipient age. Thus, rejuvenating fat grafts from old donors or banking younger adipose tissue for later use may be
potential approaches to improve fat graft outcomes in older adults.
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Background

Fat grafting has been considered to be a promising re-
generative cell-directed therapy and has been success-
fully used as a regenerative treatment option for many
clinical purposes, including breast augmentation and re-
construction, treatment of contour deformities and
scars, and wound healing [1-4]. The elderly are increas-
ingly becoming recipients of fat grafting given the desire
for a higher quality of life within an aging world popula-
tion [5]. Emerging evidence suggests that the success of
fat grafting is largely dependent on the age of patients
[6]. For example, fat grafting is more effective when
started at earlier ages for the treatment of Parry—Rom-
berg syndrome or progressive hemifacial atrophy [4]. As
plastic surgeons increasingly encounter an aging popula-
tion, understanding the basic mechanisms of aging com-
bined with how age impacts fat graft outcomes is
essential [5].

Adipose tissue is rich in stem cells (adipose-derived
mesenchymal stem cells, AD-MSCs), which act as the
main player in all types of adipose tissue regeneration,
including after fat grafting, by differentiating into adipo-
cytes or vascular endothelial cells and releasing angio-
genic growth factors. The “cell replacement theory”
states that most adipocytes undergo ischemic apoptosis
after fat grafting and are subsequently replaced by regen-
eration of adipocytes [7, 8]. Furthermore, AD-MSCs in
regenerated fat are an admixture of donor and recipient
cells, which contribute to regeneration of adipose tissue
[9, 10]. However, the age-related effects of AD-MSCs in
fat grafts on cell function are not well studied.

During physiological aging, cellular senescence affects
multiple tissues, as well as stem cells, which contributes
to the loss of functional and regenerative capacity in
tissues [11, 12]. This prevents proliferation and differ-
entiation of both somatic and stem cells in a cell-
intrinsic manner [13]. Additionally, senescent cells se-
crete a variety of proteins collectively known as
senescence-associated secretory phenotype (SASP) fac-
tors. Senescent cells can contribute to loss of tissue
function during aging through non-cell-autonomous
mechanisms. This can result from SASP factors dis-
rupting homeostasis or possibly through the induction
of paracrine senescence in neighboring cells [14, 15].
Aged adipose tissue is reported to release proinflamma-
tory cytokines that impair differentiation of AD-MSCs ne-
cessary for regeneration [16]. SASP factors also alter
insulin responsiveness, and a decrease in insulin respon-
siveness promotes lipolysis and production of factors that
inhibit adipogenesis [16, 17]. It has long been known that
advanced age is negatively correlated with an organism’s
reparative and regenerative potential [11, 12], but little in-
formation is available about the effect of age on grafted fat
tissue remodeling and the underlying mechanisms.
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In the present study, we investigated whether age af-
fected fat graft outcomes when grafted into mice of the
same age. We also performed a fat cross-grafting experi-
ment between young and old mice to determine whether
the effects of age are attributable to the donors or recipi-
ents. We performed RNA sequencing (RNA-seq) and
real-time polymerase chain reaction (RT-PCR) analysis
to investigate age-related changes in the transcriptome
of fat grafts in the old-to-old (O-O) and young-to-old
(Y-O) groups. Furthermore, to investigate the mecha-
nisms underlying donor age-related differences in fat
graft regeneration, the adipogenic differentiation poten-
tial of AD-MSCs from old and young donor mice was
investigated, and the ability of culture supernatants of
old and young adipose tissue to modulate adipogenic
differentiation of AD-MSCs from old recipients was
determined.

Methods

Fat grafting

All experiments were approved by the Nanfang Hospital
Animal Ethics Committee Laboratory and were con-
ducted according to the guidelines of the National
Health and Medical Research Council of China. Young
(4-month-old) and old (18-20-month-old) male C57/
BL6 mice weighing 25-30 g were obtained from South-
ern Medical University, housed in individual cages with
a 12-h light/dark cycle, and provided standard food and
water ad libitum.

Fat grafting was performed using the following
groups (n = 6 per group): fat grafts from old-to-old
mice (O-O group), fat grafts from young-to-young
mice (Y-Y group), fat grafts from old-to-young mice
(O-Y group), and fat grafts from young-to-old mice
(Y-O group). Fat tissue was harvested from the in-
guinal fat pads of C57/BL6 donor mice and gently
dissected into very small pieces, similar to the size of
aspirated fat tissue used for clinical fat injection in
humans. A volume of 0.3 mL of prepared adipose tis-
sue was used for fat grafts. An allogenic transplant-
ation (donors and recipients were syngeneic) animal
model was used. Each animal (old and young) re-
ceived one old fat graft on the right side of its dor-
sum and one young fat graft on the left side of its
dorsum. Mice were sacrificed at weeks 1, 4, and 12
after grafting. At the time the animals were sacrificed,
grafts were harvested and carefully separated from the
surrounding tissue. The water displacement method
was used to independently determine the fat graft vol-
ume. Fat grafts were immersed in 0.9% saline, and
the displaced solution was measured using a gradu-
ated cylinder to determine the fat graft volume [18].
Each harvested sample was assessed by different
methods.
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Histological, immunohistochemical, and
immunofluorescence analyses of fat grafts

Tissue samples were fixed in 4% paraformaldehyde,
dehydrated, and embedded in paraffin for staining with
hematoxylin and eosin (HE).

Tissue samples were immunohistochemically stained
with rabbit anti-mouse histone H2AX phosphorylation
(YH2A.X) (1:200, ab26350; Abcam, Cambridge, UK) and
rabbit anti-mouse p21 (1:200, ab188224; Abcam)
primary antibodies and then with a horseradish
peroxidase-conjugated goat anti-rabbit IgG H&L
secondary antibody (1:1000, ab205718; Abcam).

After grafting, tissue sample sections were immuno-
fluorescently stained with a rabbit anti-mouse perilipin
primary antibody (1:200, ab3526; Abcam), before being
washed and labeled with an Alexa Fluor® 594-conjugated
goat anti-rabbit IgG secondary antibody (1:1000,
ab150080; Abcam). Nuclei were stained with DAPI (1:
10000, D9542; Sigma, St. Louis, MO, USA). To quanti-
tate adipogenesis, the percentage of perilipin-positive
areas was determined by dividing the positive area by
the total area. All images were captured with a micro-
scope (Olympus BX63; Olympus, Tokyo, Japan). Images
were analyzed using Image] software.

RNA-seq analysis of fat tissue before and after grafting
To explore the influence of age on fat grafting, RNA was
prepared from fat tissue before grafting from old and
young mice for RNA-seq analysis (three biological repli-
cates per group). Fat grafts from the O-O and Y-O
groups were also collected at 1 week after grafting, and
RNA was extracted and prepared for RNA-seq (three
biological replicates per group). RNA-seq experiments
were performed by Novogene (Beijing, China). Briefly,
total RNA was isolated from fat tissue using TRIzol
reagent (Invitrogen, CA, USA). Library preparation and
transcriptome sequencing were carried out using
[llumina HiSeq X Ten (Novogene Bioinformatics Tech-
nology Co., Ltd., Beijing, China). Mapping of 150-bp
paired-end reads to genes was undertaken using Hisat2
v2.0.5 software, and fragments per kilobase of transcript
per million fragments mapped (FPKM) were also ana-
lyzed. Differential expression was analyzed using the
edgeR R package (3.22.5). p values were adjusted (padj)
using the Benjamini and Hochberg method. Gene ontol-
ogy (GO) analyses were undertaken using the cluster-
Profiler R package. The hierarchical clustering heat map
was generated with the ggplot library.

RT-PCR analysis

RNA was isolated and quantified before cDNA was syn-
thesized using PrimeScript™ RT Master Mix (TaKaRa,
Kyoto, Japan). PCR was performed using a LightCycler
480 Real-time PCR System (Roche, Indianapolis, IN,
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USA) and SYBR® Premix Ex Taq™ (TaKaRa). Expression
levels were calculated using the 27" method. The fol-
lowing primers were used: Pparg (forward, 5'-GAACCT
GFATCTCCACCTTATT-3"; reverse, 5 -TGGAAGCC
TGATGCTTTATCC-3"); Tuf (forward, 5'-CAGCAAGC
ACTCAACGGAAT-3'; reverse, 5'-CGTCCTCTGA
ACGACCAACA-3"); Il1b (forward, 5'-AGTTGACGGA
CCCCAAAAG-3’; reverse, 5 -TTTGAAGCTGGATG
CTCTCAT -3"); Il6 (forward, 5-ACAGAAGGAG
TGGCTAAGGA-3'; reverse, 5-TTTCTGACCA
CAGTGAGGAA-3'); and Gapdh (forward, 5'-AACT
TTGGCATTGTGGAAGG-3'; reverse, 5'-CCCTGTTG
CTGTAGCCGTAT-3’).

Cell culture and fat tissue culture

AD-MSCs were isolated from inguinal fat pads of old or
young mice using a previously described protocol [19, 20].
In brief, fat tissue was digested with 0.075% collagenase A
(Sigma) diluted in phosphate-buffered saline (PBS) for 40
min on a shaker at 37°C. Collagenase digestion was
stopped by adding AD-MSC complete medium
(MUBMD-90011; Cyagen, Guangzhou, China), which
consisted of DMEM supplemented with 10% fetal bovine
serum, 1% penicillin-streptomycin, and 1% glutamine.
After centrifugation, the supernatant was discarded. Cell
pellets were resuspended in AD-MSC complete medium,
centrifuged, filtered through a 100-pum cell strainer, and
resuspended in AD-MSC complete medium. The cells
were maintained at 37°C in a humidified atmosphere con-
taining 5% CO, and 95% air. The medium was changed
after 24 h and then every second day. The cells were pas-
saged once after reaching full confluency. Cells at passage
3 were used in this study.

To test the effect of age on adipogenesis of AD-MSCs,
AD-MSCs from old or young mice were seeded at a
density of 20,000 cells per cm” and incubated in an adi-
pogenic medium (MUBMD-90031; Cyagen), which con-
sisted of DMEM containing 10% fetal bovine serum, 1%
penicillin—streptomycin, 0.1 mM ascorbic acid, 1 puM
dexamethasone, and 0.5mM 3-isobutyl-1-methylxan-
thine, for 15 days. The medium was changed every 3
days. The cells were maintained at 37°C in a humidified
atmosphere containing 5% CO, and 95% air. After 15
days of culture in the adipogenic medium, perilipin was
labeled to identify lipid vacuoles in cells for assessment
of adipogenic differentiation.

Samples were processed for tissue culture as previ-
ously described [21]. Briefly, excised adipose tissue from
old or young mice was collected. After removing vessels
and conjunctive tissue, adipose tissue was washed with
Krebs—Ringer HEPES and cut into small pieces with
sharp scissors. Tissue fragments were placed in 6-well
dishes (300400 mg adipose tissue/well) containing 2.5
mL DMEM supplemented with 0.5% fetal bovine serum
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(Gibco, Grand Island, NY, USA), 100 U/mL penicillin
(Gibco), and 100 pg/mL streptomycin sulfate (Gibco)
[21]. Culture supernatants of old and young adipose tis-
sue were collected at day 3 and their paracrine effects
were evaluated.

Old AD-MSCs were cultured in a conditioned medium
(adipogenic medium supplemented with the culture
supernatant of old or young adipose tissue at a 1:1 ratio)
for 15 days. The conditioned medium was replaced every
3 days. After 15 days of culture in the conditioned
medium, cells were stained for perilipin to detect lipids.

Assessment of adipogenesis of AD-MSCs

In vitro adipogenesis was evaluated by measuring in-
creases of lipids/triglycerides in cultured differentiated
AD-MSC:s. Perilipin staining was used to visualize accu-
mulated lipid-rich cytoplasmic vacuoles. Briefly, differen-
tiated AD-MSCs were fixed with 4% paraformaldehyde,
rinsed in PBS, and blocked for 1 h with Tris-buffered sa-
line (TBS, pH 7.4) containing 1% bovine serum albumin
and 0.01% Triton X-100. Next, samples were incubated
overnight at 4°C with a rabbit anti-mouse perilipin pri-
mary antibody (1:100, ab3526; Abcam), rinsed exten-
sively with TBS, and incubated with an Alexa Fluor®
594-conjugated goat anti-rabbit IgG secondary antibody
(1:1000, ab150080; Abcam) for 1 h at room temperature.
Finally, samples were rinsed in PBS and stained with
DAPI (Sigma). All images were captured with a micro-
scope (Olympus BX63) using the same laser intensity
and detection sensitivity. The area occupied by lipid
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vacuoles was analyzed with Image] based on the sections
stained for perilipin.

Characterization of AD-MSCs via flow cytometry

To analyze the expression of typical cell surface markers,
cultured AD-MSCs at passage 3 were treated with the
following anti-mouse conjugated antibodies on ice for
30 min in the dark: PE-CD73, FITC-CD90, PE-CD29,
APC-CD31, FITC-CD45, and APC-CD34. Cell suspen-
sions not labeled with antibodies served as controls.
Cells were washed twice and resuspended in 300 uL of
PBS before analysis. All antibodies were purchased from
BD Biosciences (San Diego, CA, USA). Flow cytometry
was performed with a flow cytometer (BD FACS Vant-
age SE, BD Biosciences).

Western blot analysis of AD-MSCs in vitro

Total cell lysates of cultured AD-MSCs were prepared
using M-PER Mammalian Protein Extraction Reagent
(Thermo Fisher Scientific, Waltham, MA, USA). Primary
antibodies against p21 (1:1000, ab188224; Abcam) and
yH2A.X (1:1000, ab26350; Abcam) were used. After in-
cubation with secondary antibodies, immunocomplexes
were detected with a WesternBreeze Chemiluminescent
Detection Kit (WB7108; Thermo Fisher Scientific). B-
actin was used as an internal control.

Senescence-associated B-galactosidase (SA-B-gal) staining
To detect cellular senescence, a SA-B-gal staining kit
was used (Cell Signaling Technology, Boston, MA,
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USA). Briefly, cells were seeded into 12-well plates at a
density of 5 x 10% cells/well and incubated with freshly
prepared [-gal staining solution for 60 min at 37°C in
the absence of CO,. AD-MSCs were washed with water,
and blue labeling (i.e., senescent cells) was observed
under a microscope. SA-B-gal-positive cells (blue) were
counted under a microscope and expressed as the per-
centage of total cells.

MILLIPLEX® MAP assays

The levels of the following mouse cytokines in adipose
tissue culture media were evaluated by multiplex ana-
lysis: granulocyte-macrophage colony-stimulating factor
(GM-CSF), interferon y (IFNy), interleukin (IL)-1a, IL-
1B, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12 (p70), IL-13,
IL-17A, chemokine (C-X-C motif) ligand 1 (Cxcll),
Cxcl5, monocyte chemoattractant protein (MCP)-1,
macrophage inflammatory protein (MIP)-2, and tumor
necrosis factor (TNF)-a. The assay was performed using
the MILLIPLEX magnetic bead panel (Millipore Corpor-
ation, Billerica, MA, USA) in accordance with the manu-
facturer’s instructions. Briefly, 25 pL of adipose tissue
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magnetic beads coated with antibodies in a 96-well plate
overnight at 4°C. Plates were then washed and incubated
with detection antibodies (1 h at room temperature) and
the reporter streptavidin—phycoerythrin (30 min at room
temperature). Finally, samples were run on the Luminex
100/200 system and data were collected using Luminex
XxPONENT® software (v. 3.1). The median fluorescence
intensities (MFIs) of cytokine/chemokines were analyzed
using MasterPlex® QT software (v1.1) and the Luminex
200 analyzer (Luminex Corporation, Austin, TX, USA).
The MFI data were saved and analyzed using a five-
parameter logistic for calculating analyte concentrations
in samples. Triplicate tests were performed for each
sample.

Statistical analysis

Data analysis was performed using GraphPad Prism stat-
istical software. Data are presented as mean + standard
error of mean (SEM) unless otherwise stated. The num-
bers of technical and experimental replicates for each
experiment are provided in the figure legends. The inde-
pendent samples -test or a two-way ANOVA with

culture medium was incubated with 25 pL of fluorescent  Bonferroni’s post hoc analysis was used where
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appropriate. p values < 0.05 were considered statistically
significant. Differential gene expression was considered
significant at padj < 0.05. For term enrichment in GO
analysis, the level of significance was set at a padj < 0.01.

Results
Older age increases senescence in fat tissue
Older fat tissue exhibited hallmark features of senescence
including a more uneven texture and darker color (Fig. 1a).
Histological analysis showed that fat tissue in old mice dis-
played a loose tissue structure and larger adipocytes than
that observed in young fat tissue (Fig. 1b).

Fat tissue from old mice exhibited increased expres-
sion of the age-related markers yH2A.X (Fig. 1c) and
p21 (Fig. 1d).

Age of donor has a significant effect on fat graft
outcomes

To assess the effect of donor age on fat graft outcomes,
fat tissue from old and young donors was placed into
old recipients (O-O and Y-O) (Fig. 2a). The fat graft in
the O-O group presented poor surface vascularization
and visible oil cysts; however, the fat graft in the Y-O
group appeared to be normal (Fig. 2b). The fat volume
was significantly smaller in the O-O group than in the
Y-O group at week 12 (72.5 + 23.61 pL vs. 120.83 +
40.79 uL; p < 0.05) (Fig. 2c). Histological analysis showed
that a small number of oil cysts were observed in the
central zone of fat grafts from the O-O group at week 1,
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and the number and volume of these cysts increased
over time. Some large oil cysts had not been completely
absorbed by week 12 (Fig. 3a). In contrast with the in-
complete fat tissue structure observed in the O-O group,
grafts from the Y-O group presented a relatively
complete fat structure with larger mature blood vessels,
except for some scattered small oil cysts at week 12
(Fig. 3d). Moreover, small, immature adipocytes and
large perilipin-negative regions existed in the O-O group
(Fig. 4a), in contrast with the mature adipocytes found
in the Y-O group at week 12 (Fig. 4d). Although
perilipin-positive areas were increased from week 4 to
week 12 in both groups, they were significantly smaller
in grafts from the O-O group than from the Y-O group
at weeks 4 and 12 (Fig. 4e).

When older age donor tissue was placed into a young
recipient (O-Y), grafts presented as a small mass with a
yellow—gray color. By contrast, grafts from the Y-Y
group showed a normal appearance with a bright pink
color (Fig. 2b). In addition, fat volume was significantly
smaller in the O-Y group than in the Y-Y group (85.83
+ 27.64 pL vs. 134.17 + 36.66 pL; p < 0.05) (Fig. 2c).
Histological analysis showed that large necrotic areas
and a large amount of oil cysts were observed in the in-
terior zone of grafts from the O-Y group from week 1 to
week 12 (Fig. 3c). By contrast, although a small number
of oil cysts was also observed in grafts from the Y-Y
group from week 1 to week 12, most necrotic areas and
oil cysts had been replaced by mature adipocytes at week
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Fig. 3 Histologic changes in grafts over time. Histologic evaluation of the fat grafts from the a O-O, b Y-Y, ¢ O-Y, and d Y-O groups at weeks 1, 4,
and 12. The O-O and O-Y groups exhibited numerous inflammatory cells, large oil droplets, and necrotic nodules in the interior zone of the graft.
By contrast, grafts in the Y-Y and Y-O groups had mature, vascularized fat tissue at week 12
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12 (Fig. 3b). In addition, adipogenesis in the O-Y group
was incomplete, as characterized by smaller adipocytes
and more residual undifferentiated regions compared
with the Y-Y group (Fig. 4b, c). Perilipin-positive areas
were increased from week 4 to 12 in both groups, but
were significantly smaller in grafts from the O-Y group
than from the Y-Y group at weeks 4 and 12 (Fig. 4e).

Age of recipient has a minimal effect on fat graft
outcomes

To determine the impact of recipient age on fat graft
outcomes, fat tissue from old mice was grafted into old
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or young recipients (O-O and O-Y) (Fig. 2a). Age differ-
ence in the recipients did not significantly affect fat graft
appearance or volume. At 12 weeks after grafting, the
grafts displayed a grayish appearance (Fig. 2b), and the
volume of grafts shrank considerably in both groups
(Fig. 2c). Incomplete fat tissue structure (Fig. 3a, c¢) and
low levels of perilipin-positive areas were also observed
in both groups at week 12 (Fig. 4e).

When lipoaspirate was taken from young mice and
grafted into old or young mice (Y-O and Y-Y), both
groups exhibited normal tissue appearance (Fig. 2b).
Fat volume (Fig. 2c) and tissue structure (Fig. 3b, d)
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of grafts did not differ significantly between the
groups at week 12. Perilipin-positive areas were
slightly larger in younger recipients at week 12;
however, this effect was not significant (Fig. 4e).

SASP factors are upregulated in fat tissue from old mice
Overall, the above findings suggested that fat grafts
from old donors led to lower graft retention com-
pared with those from young donors, which was asso-
ciated with impaired fat regeneration. To gain more
insight into the deleterious effects of donor age on fat
graft regeneration, RNA was prepared from fat tissue
harvested from old and young mice for RNA-seq
analysis.

Among 27,510 detected genes, 261 were significantly
upregulated and 267 were downregulated (padj < 0.05
and log2 (fold change) > 1) in fat tissue harvested from
old mice compared with grafts from young mice (Fig. 5a
and Supplemental Table 1). Notably, among the 261
significantly upregulated genes, a group of genes was
related to SASP factors including Crtacl, 1117, 116, SfrpS,
Slpi, Tnf, Fndcl0, Serpine2, Cyr6l, Mmpll, Serpinel,
and [l1b (Fig. 5b).

Adipogenesis is suppressed in grafts from old donors at
week 1

To gain more insight into the deleterious effects of
donor age on fat graft regeneration after grafting, RNA
was prepared from fat grafts of mice at 1 week after
grafting in the O-O and Y-O groups for RNA-seq
analysis.
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Among 25,940 detected genes, 367 were significantly
upregulated and 150 were downregulated (padj < 0.05
and log2 (fold change) > 1) in the graft tissue from old
donors compared with grafts from young donors (Fig. 6a
and Supplemental Table 2). The 517 differentially
expressed genes (DEGs) were used for GO enrichment
analysis; 553 significantly enriched (padj < 0.01) GO bio-
logical processes were identified. GO terms associated
with adipogenesis including “white fat cell differenti-
ation,” “brown fat cell differentiation,” “fat cell differenti-
ation,” “regulation of fat cell differentiation,” and
“positive regulation of fat cell differentiation” were sig-
nificantly decreased in the O-O group compared with
the Y-O group (Fig. 6b). In addition, genes relating to
“white fat cell differentiation” including Adig, Scdl,
Fgf10, Pparg, and Fabp4 were expressed at a significantly
lower level in the O-O group than in the Y-O group
(Fig. 6¢).

These results suggest that adipogenesis was induced in
grafts from young donors as early as 1 week after graft-
ing and was suppressed in grafts from old donors.

Grafts from old donors display a proinflammatory
phenotype at week 1

RNA-seq analysis revealed that GO terms associated
with tissue inflammation including “monocyte chemo-
tactic protein-1 production,” “interleukin-17 production,
” “chronic inflammatory response,” “acute inflammatory
response,” “chemokine-mediated signaling pathway,”

“tumor necrosis factor production,” “interferon-gamma
” “regulation of
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” o«

chemotaxis,” “interleukin-1 beta production,” “regulation
of inflammatory response,” “cytokine secretion,” “cyto-
kine-mediated signaling pathway,” and “chemotaxis”
were significantly enriched and increased in the O-O
group compared with the Y-O group (Fig. 6b). Notably,
a group of genes related to the “regulation of inflamma-
tory response” including Perl, Ppard, Tgm2, Tnfrsflb,
Zfp36, Nt5e, Casp4, Nod2, Rabgefl, Adora2b, Tnipl,
Pglyrpl, Tlr2, Cd24a, Il2ra, Ccr7, Tnfsfll, Socs3, Mefv,
Nfkbia, Tarml, Siglece, Nlrp12, Tnf, Tnfaip3, Nos2,
Ptgs2, 1l6, Ccl3, Ccl4, Nirp3, S100a8, S100a9, Il1b, and
Acodl were significantly upregulated in the O-O group
compared with the Y-O group (Fig. 6d). These results
suggested that grafting fat from aged donors resulted in
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a proinflammatory response that was closely related to
impaired adipogenesis.

To validate this result, we performed RT-PCR analysis
for the proadipogenic gene Pparg and the proinflamma-
tory cytokine genes Twnf, I/1b, and 1l6 in samples at 1, 4,
and 8 weeks after fat grafting in the O-O and Y-O
groups. In line with the impaired adipogenesis found in
grafts from the O-O group, Pparg was expressed at sig-
nificantly lower levels in the O-O group than in the Y-O
group at all time points (Fig. 6e). Similar to the RNA-
seq results, expression of Tnf, 1l1b, and 1l6 was signifi-
cantly higher in the O-O group than in the Y-O group
at 1 and 4 weeks post-grafting. I/1b was expressed at sig-
nificantly higher levels in the O-O group than in the Y-
O group at week 8 (Fig. 6f-h).
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Donor age negatively impacts differentiation of AD-MSCs
Considering that new mature adipocytes are mostly de-
rived from AD-MSCs, which are an admixture of donor
and recipient cells, during fat graft regeneration, we fur-
ther explored the potential mechanisms underlying the
role of age in regulation of AD-MSC differentiation dur-
ing fat graft regeneration in the O-O and Y-O groups.
We first analyzed the surface markers of young and old
AD-MSCs at passage 3 by flow cytometry. Both groups
of cells exhibited the classical pattern of AD-MSC
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marker expression. Although a significantly higher per-
centage of young AD-MSCs than old AD-MSCs was
CD73-positive, the percentages of cells positive for
CD29 and CD90 did not significantly differ between the
two groups. Both young and old AD-MSCs were nega-
tive for the AD-MSC markers CD31, CD45, and CD34
(Fig. 7a, b). AD-MSCs obtained from old donors dis-
played senescent features, including increased expression
of p21 and YH2A.X proteins (Fig. 7c, d) and elevated
SA-pB-gal activity (Fig. 7e, f).
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Adipogenic differentiation was assessed by staining
cells for perilipin to label the cytoplasmic accumulation
of lipids/triglycerides after 15 days of differentiation.
Compared with AD-MSCs isolated from young donors,
AD-MSCs obtained from old donors had a significantly
reduced adipogenic differentiation potential (Fig. 8a, b).
In addition, the ability of conditioned media of old and
young adipose tissue cultures to modulate adipogenic
differentiation of AD-MSCs from old recipients was in-
vestigated (Fig. 8c). The levels of 18 cytokines/chemo-
kines in the culture supernatant of adipose tissue were
measured using MILLIPLEX® MAP assays. The levels of
some SASP factors, including IL-6, MCP-1, and TNF-q,
were significantly higher in the culture supernatant of
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old adipose tissue than in the culture supernatant of
young adipose tissue (Fig. 8d). Furthermore, immuno-
fluorescence staining demonstrated that the perilipin-
positive area of differentiated old AD-MSCs was
markedly decreased by treatment with the culture
supernatant of old adipose tissue, but increased by
treatment with the culture supernatant of young adi-
pose tissue (Fig. 8e, f).

Discussion

This study demonstrates that age had a detrimental ef-
fect on fat graft outcomes. Grafts harvested from and
grafted into older mice are smaller and of a poorer qual-
ity than grafts harvested from and grafted into young
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mice. Donor age has a greater effect on graft outcomes
than recipient age, as indicated by reduced adipogenesis
and elevated expression of SASP factors, especially IL-6
and TNF-a. Furthermore, we demonstrated that donor
age negatively impacted the adipogenic differentiation
potential of AD-MSCs in vitro, and the culture super-
natant of old donor fat tissue significantly decreased the
adipogenic differentiation ability of AD-MSCs of old re-
cipients compared with the culture supernatant of young
donor fat tissue.

Regarding the optimal timing of fat grafting, some sur-
geons suggest that beginning soft-tissue reconstruction
with fat grafting in patients at an earlier age may be
preferable to late correction [22, 23]. In a study compar-
ing the outcomes of serial fat grafting to correct soft-
tissue deficiency with microvascular free tissue transfer
for craniofacial microsomia, Tanna and colleagues re-
ported that fat grafting can be safely performed in com-
bination with other operative interventions throughout
childhood and can result in good symmetry when per-
formed before the skeletal deficiency is addressed [24].
Our study demonstrated that fat graft volume was sig-
nificantly smaller and adipogenesis in grafts was lower in
the O-O group than in the Y-Y group. This suggests that
fat grafts are smaller and of a poorer quality in old adults
than in young adults and that age may be a risk factor
for adverse outcomes of fat grafting.

Another important finding of this study is that graft
outcomes were affected more by donor age than by re-
cipient age. After 12 weeks, the volume of fat grafts har-
vested from old or young donors did not significantly
differ between old and young recipients (O-O vs. O-Y, p
> 0.05; Y-O vs. Y-Y, p > 0.05), but was smaller when fat
grafts from old donors were used (O-O vs. Y-O, p <
0.05; O-Y vs. Y-Y, p < 0.05). As expected, fat graft regen-
eration was observed in all four groups consistent with
the “cell replacement theory,” which states that grafted
fat can be categorized into three zones from the periph-
ery to the center, namely, the survival, regeneration, and
necrosis zones. After fat grafting, most adipocytes
undergo necrosis and are subsequently replaced by re-
generation of adipocytes [8, 25]. Similarly, our study
confirmed that necrotic adipocytes were replaced by
newly generated cells after fat grafting, as evidenced by
the significantly increased area of perilipin-positive adi-
pocytes from week 4 to 12 in all four groups. However,
adipogenesis in grafts from older donors was incomplete,
which was characterized by smaller adipocytes and larger
undifferentiated regions. This finding is in agreement
with other studies demonstrating that donor environ-
ment impacts fat graft outcomes more than recipient
sites. For instance, fat depots excised from one part of
the animal and grafted to another location (subcutane-
ous fat tissue grafted into the visceral cavity), or grafts
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harvested from low-estrogenic conditions into a normal
estrogen environment, resemble the pre-graft character-
istics after remodeling [26—28]. In addition, by perform-
ing RNA-seq and RT-PCR analysis to investigate age-
related changes in the transcriptome of fat tissue from
old and young mice as well as fat grafts from the O-O
and Y-O groups, we found that the detrimental effects
of old donors on fat graft regeneration may be attribut-
able to impaired adipogenesis and increased expression
of SASP factors.

The mechanisms underlying the inhibitory effect of
aged donors on adipogenesis in fat grafts need to be elu-
cidated. AD-MSCs are the main cell population that
contributes to regeneration of adipocytes in all types of
adipose tissue remodeling/expansion, such as develop-
mental growth, hyperplasia in obesity, and repair pro-
cesses after injury/ischemia [29, 30]. A substantial
amount of evidence supports the therapeutic use of AD-
MSCs to improve long-term graft retention [31]. The
overall volume of a fat graft reportedly depends on the
degree of survival in the regenerating zone, which con-
tains AD-MSCs with the potential to differentiate and
replace adipocytes lost in the necrotic zone [9, 32]. Thus,
surviving donor AD-MSCs may partly contribute to sub-
sequent adipogenesis. In vitro, we found that AD-MSCs
isolated from old donors displayed senescent features
and had a reduced adipogenic differentiation potential
compared with AD-MSCs isolated from young donors.
Thus, we propose that impaired adipogenesis observed
in fat grafts from old donors may be partly attributable
to a cell-intrinsic defect in the regenerative capacity of
aged AD-MSCs.

The quality of the macroenvironmental niche into
which AD-MSCs are placed may be of similar import-
ance as the senescence of AD-MSCs for long-term fat
graft outcomes. Tissue remodeling in grafted fat is initi-
ated by zonal necrosis of adipocytes, which triggers acti-
vation of AD-MSCs and infiltration of recipient cells.
On the other hand, some stem/progenitor cells derived
from recipient bone marrow (bone marrow-derived mes-
enchymal stem cells, BM-MSCs) may also contribute to
fat graft remodeling after grafting [9]. However, the role
of BM-MSC:s in fat graft remodeling is unclear and must
be investigated further. AD-MSCs derived from recipi-
ents also reportedly contribute to generation of adipo-
cytes in fat grafts [10]. Aged adipose tissue has been
reported to release proinflammatory cytokines that im-
pair differentiation of AD-MSCs necessary for regener-
ation [16]. Senescent cells are characterized by
upregulation of proinflammatory cytokines, chemokines,
and proteases, which are termed SASP factors [33].
Given the complex nature of the SASP, senescent cells
impact various biological processes that involve para-
crine signaling including inflammation [34], wound
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healing [35], and other types of tissue repair [36]. In this
study, several SASP factors, including IL-6, IL-1B, and
TNEF-a, were highly expressed during the beginning and
later phases of regeneration in fat grafts from old do-
nors. It is plausible that SASP factors secreted from sen-
escent cells in old donors induce inflammatory
responses in fat grafts. Although several studies have re-
ported that an acute inflammatory response promotes
extracellular matrix remodeling and angiogenesis, which
benefits adipogenesis [25, 37], sustained high proinflam-
matory cytokine expression in adipose tissue is associ-
ated with inhibition of adipogenesis in fat grafts [32, 38—
40]. Finally, in vitro experiments showed that the levels
of some SASP factors, including IL-6, MCP-1, and TNE-
a, were significantly higher in the culture supernatant of
old adipose tissue than in the culture supernatant of
young adipose tissue, which significantly impaired the
adipogenic differentiation ability of AD-MSCs derived
from old recipients. Consistent with our study, type 2
diabetes mellitus, obesity, and insulin resistance result in
persistent production of proinflammatory cytokines such
as TNF-q, IL-1f, and IL-6, which typically inhibit adipo-
genesis [40].

In addition to the major SASP factors mentioned
above, genes related to other SASP factors including
Mmpll, Serpinel, and Il17 were also upregulated in fat
tissue from old mice. Matrix metalloproteinases (MMPs)
and SERPINELI (also known as PAI-1) secreted by senes-
cent cells contribute to the development of tissue fibro-
sis [41, 42]. Furthermore, MMP-11 and IL-17 reportedly
negatively regulate adipogenesis by reducing pre-
adipocyte differentiation and reversing mature adipocyte
differentiatio n[43-45]. Based on our findings, we
propose that the release of SASP factors in fat grafts
from old donors also leads to anti-adipogenic effects on
AD-MSC:s of recipients.

Conclusions

Overall, this study demonstrated that age has detrimen-
tal effects on fat graft outcomes by suppressing adipo-
genesis of AD-MSCs and upregulating expression of
SASP factors, and graft outcomes are affected more by
donor age than by recipient age. Thus, future studies
that aim to rejuvenate fat grafts from old donors are re-
quired. Given the successful fat tissue regeneration
found in grafts from younger donors, approaches for the
old adults could focus on banking younger adipose tis-
sue for later use. To do this, a previously reported cryo-
preservation protocol may be utilized, which allows the
attainment of a nearly normal fat graft appearance after
cryopreservation when compared with fresh fat grafts
[46—-48]. Preservation of adipose tissue at a younger age,
when biological activity is greatest, could be ideal for fu-
ture regenerative medicine applications.
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