Xiang et al. Stem Cell Research & Therapy (2021) 12:347
https://doi.org/10.1186/513287-021-02356-z Stem Cell Research &Therapy

RESEARCH Open Access

Caveolin-1 mediates soft scaffold-enhanced =~ ®
adipogenesis of human mesenchymal stem
cells

Shigi Xiang'?, Zhong Li', Madalyn R. Fritch', La Li', Sachin Velankar®, Yuwei Liu', Jinee Sohn'”, Natasha Baker'®,
Hang Lin'*”" and Rocky S. Tuan'*7%"

Abstract

Background: Human bone marrow-derived mesenchymal stem cells (hBMSCs) can differentiate into adipocytes
upon stimulation and are considered an appropriate cell source for adipose tissue engineering. In addition to
biochemical cues, the stiffness of a substrate that cells attach to has also been shown to affect hBMSC
differentiation potential. Of note, most current studies are conducted on monolayer cultures which do not directly
inform adipose tissue engineering, where 3-dimensional (3D) scaffolds are often used to create proper tissue
architecture. In this study, we aim to examine the adipogenic differentiation of hBMSCs within soft or stiff scaffolds
and investigate the molecular mechanism mediating the response of hBMSCs to substrate stiffness in 3D culture,
specifically the involvement of the integral membrane protein, caveolin-1 (CAV1), known to regulate signaling in
MSCs via compartmentalizing and concentrating signaling molecules.

Methods: By adjusting the photo-illumination time, photocrosslinkable gelatin scaffolds with the same polymer
concentration but different stiffnesses were created. hBMSCs were seeded within soft and stiff scaffolds, and their
response to adipogenic induction under different substrate mechanical conditions was characterized. The functional
involvement of CAV1 was assessed by suppressing its expression level using CAV1-specific siRNA.

Results: The soft and stiff scaffolds used in this study had a compressive modulus of ~0.5 kPa and ~23.5 kPa,
respectively. hBMSCs showed high viability in both scaffold types, but only spread out in the soft scaffolds. hBMSCs
cultured in soft scaffolds displayed significantly higher adipogenesis, as revealed by histology, gRT-PCR, and
immunostaining. Interestingly, a lower CAV1 level was observed in hBMSCs in the soft scaffolds, concomitantly
accompanied by increased levels of Yes-associated protein (YAP) and decreased YAP phosphorylation, when
compared to cells seeded in the stiff scaffolds. Interestingly, reducing CAV1 expression with siRNA was shown to
further enhance hBMSC adipogenesis, which may function through activation of the YAP signaling pathway.

Conclusions: Soft biomaterials support superior adipogenesis of encapsulated hBMSCs in 3D culture, which is
partially mediated by the CAV1-YAP axis. Suppressing CAV1 expression levels represents a robust method in the
promotion of hBMSC adipogenesis.
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Background

Fat is the most abundant tissue of the human body. It
provides structural protection, shapes a normal human
appearance, and plays key roles in endocrine and meta-
bolic functions [1]. Due to aging, trauma, or pathological
conditions, one can suffer damage to or significant losses
in adipose tissue, often requiring surgical interventions.
Free-fat transplantation represents a classic approach for
replacing lost or damaged adipose tissue, but is often
limited by delayed neovascularization, graft volume
shrinkage, and poor long-term survival [2]. In recent
years, the emerging technologies of tissue engineering
strategy, which typically involve the generation of new
tissues through guided differentiation of cells encapsu-
lated a 3-dimenstional (3D) scaffold, have presented al-
ternative approaches for regenerating adipose tissue.
Specifically, adult mesenchymal stem cells derived from
the human bone marrow (hBMSCs) or fat, which have
shown robust adipogenic potential upon stimulation, are
the two most used cell sources in current adipose tissue
engineering [3-5]. To generate tissues with sufficient
volume for large defect repair, these cells are often com-
bined with scaffolds that provide structural support as
well as influence cell behavior through cell-matrix inter-
actions. For example, robust adipogenesis was reported
for hBMSCs seeded with gelatin-based scaffolds [6] and
polylactic acid nanofibrous scaffold [7] upon treatment
with adipogenic medium.

In addition to the inducing agents present in adipo-
genic medium, hBMSC adipogenesis is also affected by
biomechanical signals [8—14]. Majumder et al. [15] re-
ported that a soft substrate is better able to maintain the
adipogenic differentiation ability of hBMSCs. Similar re-
sults were reported in another study, which demon-
strated that a greater degree of adipogenesis occurs on
softer matrices, as evidenced by the accumulation of
lipid droplets [16]. Of note, most current studies investi-
gating the response of hBMSCs to substrate stiffness
were conducted on two-dimensional (2D) cultures [17].
Although this conventional culture condition allows easy
cell manipulation and analysis, it does not assess 3D cul-
tures commonly used in tissue engineering. Therefore,
an increasing number of studies have recently been fo-
cusing on cell behavior in 3D culture environments. For
example, Chaudhuri et al. seeded hBMSCs in alginate
scaffolds and found that cells cultured in a softer algin-
ate scaffold produced more oil drops and expressed
higher levels of adipogenic genes than cells in stiff scaf-
folds [18]. Based on current studies, it is generally ac-
cepted that softer substrates enhance the level of
adipogenesis, irrespective of 2D or 3D culture [19].

Integrins and associated molecules, specifically the
YAP (Yes-associated protein) and its paralog TAZ (tran-
scriptional  co-activator with PDZ-binding motif),
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components of the Hippo signaling cascade, have been
shown to play a role in the response of hBMSCs to sub-
strate stiffness [20]. However, the outcome of differenti-
ation also depends highly on the dimensionality of the
culture system [21]. Interestingly, integrin endocytosis,
one means of integrin regulation, is mediated by
caveolin-1 (CAV1) coated-caveolae membrane rafts [22].
It has also been reported that CAV1 positively modu-
lates YAP activity under 2D conditions [23]. To date, the
interplay between CAV1 and YAP/TAZ during the cell’s
response to substrate stiffness and adipogenic medium
in the context of 3D culture conditions has not been
fully studied.

Herein, we aim to examine the efficiency of hBMSC
adipogenesis within soft and stiff hydrogels and investi-
gate how CAV1 and YAP/TAZ regulate the response of
hBMSCs to substrate stiffness. We aimed to test the hy-
pothesis that a soft 3D scaffold would support a higher
level of adipogenesis than a stiff one. To test this hy-
pothesis, we first prepared photo-crosslinked hydrogels
with the same gelatin concentrations but different stiff-
nesses by adjusting the time the scaffolds were cured
under photo-crosslinking illumination. Then, the viabil-
ity and morphology of hBMSCs within soft and stiff
scaffolds were examined. After hBMSC-laden soft or stiff
scaffolds were cultured in adipogenic medium for 2
weeks, the level of adipogenesis was examined by qRT-
PCR, histology, and immunostaining. Lastly, we assessed
the alterations of CAV1 and YAP levels in cells encapsu-
lated in soft and stiff scaffolds during adipogenesis and
then used siRNA to downregulate the expression levels
of CAV1 to examine the role of CAV1 and YAP in regu-
lating adipogenesis in the context of 3D culture.

Methods

Preparation of hydrogel scaffolds with different levels of
stiffness

Gelatin scaffolds were fabricated using previously re-
ported methods [24, 25]. Briefly, to synthesize the
methacrylated gelatin (GelMA), bovine skin-derived gel-
atin (Sigma-Aldrich, St. Louis, MO) was dissolved in de-
ionized H,O and then reacted with methacrylic
anhydride (Sigma-Aldrich) overnight at 37°C. The reac-
tion product was dialyzed against distilled water using a
dialysis cassette (3.5K molecular weight cut-off mem-
brane, ThermoFisher, Waltham, MA) for 5 days to re-
move the salts and methacrylic acid. The solution was
then lyophilized, and the dried sponge was stored in a
desiccator. To make the monomer solution, GelMA was
dissolved into Hanks’ Balanced Salt Solution (HBSS,
with Ca®* and Mg>*; ThermoFisher) at 15% (w/v), and
the photoinitiator, lithium phenyl-2,4,6-trimethyl-ben-
zoyl phosphinate (LAP, Sigma-Aldrich, St. Louis, MO),
was added at 0.15% (w/v).
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To generate the hydrogel scaffolds, the GelMA/LAP
solution was first poured into silicon molds, which had a
cylindrical void space (2 mm height x 5 mm diameter).
Then, polymerization was induced using a flashlight with
a wavelength at 395 nm for 8 s or 2 min to generate soft
or stiff scaffolds.

Degradation behavior of hydrogels

The biodegradability of hydrogel scaffolds was evaluated
by incubating gels in collagenase type 1 solution in
phosphate-buffered saline (PBS) (0.05%, w/v) (Worthing-
ton-Biochemical Corporation, Lakewood, NJ) at 37°C
with shaking at 50 rpm/min. At different time points,
samples were taken, washed, and weighed. Biodegrad-
ability was quantified by determining the % remaining
weight as follows:

%Weight remaining = W /W, x 100%.

where W, was the initial wet weight of the hydrogel
scaffold and W, is the weight at different time points (t).

Mechanical test

The compressive moduli of hydrogel scaffolds created
with different photo-illumination times were measured
using a mechanical tester (Bose ElectroForce 3230 Series
II, TA Instruments, New Castle, DE). Briefly, the hydro-
gels were subjected to 10% compression (0.2 mm) at
0.01 mm/s, and the linear portion of the stress-strain
curve was used to calculate the compressive modulus of
the scaffolds.

Rheological analysis

The continuous and oscillatory shear measurements at
small strain were used to characterize the viscoelastic
properties of the hydrogel scaffolds. Both experiments
were conducted using an Anton Paar MCR 302 rheome-
ter (Ashland, VA). For test preparation, the scaffolds
were placed between two profiled parallel plates with a
diameter of 25 mm to prevent wall slip and were pre-
heated at 37 °C to simulate body temperature. A pre-
shear test was first run at a shear rate of 1 s for 10
min for each sample. The shear rates for the continuous
shear tests increased from 0.1 to 100 s, with a 1 min
hold at each shear rate. In the oscillatory experiments,
amplitude sweep tests were carried out with the strain
ranging from 0.01% up to 100% at a constant frequency
of 157

Harvest and expansion of human bone marrow-derived
mesenchymal stem cells (hBMSCs)

According to an Institutional Review Board (IRB)
exempted approval protocol (University of Washington),
the surgical waste from total joint replacements was
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used for hBMSC isolation. The methods have been re-
ported in our previous studies [24, 26]. Briefly, the fem-
oral heads were flushed with a rinsing medium («-MEM
and 1% antibiotic-antimycotic, Invitrogen, Carlsbad,
CA). The cell suspension was centrifugated, and the pel-
let was resuspended in the growth medium [GM, Dul-
becco’s modified Eagle’s medium (DMEM; Gibco, Grand
Island, NY) supplemented with 10 % (v/v) fetal bovine
serum (FBS, Gemini Bio-Products, West Sacramento,
CA) and 1x antibiotic-antimycotic (anti-anti; Gibco)]
supplemented with 1.5 ng/mL fibroblast growth factor-2
(FGF-2; RayBiotech, Norcross, GA) and cultured in
T150 flasks (Corning Inc., corning, NY)). Upon reaching
70-80% confluence, cells were detached by trypsin-
0.25% ethylenediaminetetraacetic acid (ThermoFisher,
Waltham, MA) and passaged. At passage 3 (P3),
hBMSC:s isolated from 5 male and 5 female donors were
pooled. P5 cells were used in all experiments.

In vitro culture of cell-laden gelatin scaffolds

To generate the two cell-laden hydrogel scaffolds with
different stiffnesses, hBMSC pellets were resuspended in
GelMA/LAP solution at a final density of 10 x 10° cells/
ml and then subjected to 8 s (soft) or 2 min (stiff) illu-
mination using the method described above. The
hBMSC-laden soft and stiff hydrogels were cultured in
GM overnight and then maintained in adipogenic
medium [27] (AM: a-MEM (Gibco) supplemented with
10% FBS, 1% antibiotics-antimycotics, 0.45 mM 3-
isobutyl-1-methylxanthine (Sigma-Aldrich, St. Louis,
MO), 0.1 uM dexamethasone (Sigma-Aldrich), 0.2 mM
indomethacin  (Sigma-Aldrich), and 1x insulin-
transferrin-selenium (ITS, Invitrogen)).

Analysis of cell morphology and cell viability in 3D
hydrogels

Both cell morphology and cell viability were assessed
after 1, 4, and 7 days of culture in AM. For morpho-
logical observation, the cell-laden scaffolds were fixed in
4% paraformaldehyde (PFA) aqueous solution (Fisher
Scientific, Hampton, NH) for 2 h and permeabilized with
0.1% Triton X-100 (Sigma-Aldrich). Alexa Fluor 488
phalloidin (Invitrogen, Carlsbad, CA) was used to label
cytoskeletal actin filaments, and Hoechst 33342 solution
(Invitrogen, Carlsbad, CA) was utilized as nuclear coun-
terstain. To assess cell viability, the LIVE/DEAD cell via-
bility assay (Life Technologies, Carlsbad, CA) was used.
Briefly, constructs were transferred into maintenance
medium (phenol red-free DMEM (Gibco) containing
10% (v/v) EBS), containing calcein AM and ethidium
homodimer-1, and then incubated at 37°C for 30 min.
Images were acquired using an Olympus Fluoview 1000
confocal microscope (Center Valley, PA). Z stacks were
acquired at optimal intervals (2 um or 4 pum steps, 100—
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150 pum stack) as suggested by the software. NIH Image]
software was utilized to analyze all the confocal stacks.

Gene expression analysis

To isolate total cellular RNA, cell-laden scaffolds were
transferred into a 1.5-ml RNase-free microtube and cells
were lysed in QIAzol reagent, followed by RNA extrac-
tion using a RNeasy Plus Universal Kit (Qiagen, Ger-
mantown, MD). Reverse transcription was then carried
out using the SuperScript® VILO™ ¢DNA Synthesis Kit
(Invitrogen) to obtain complementary DNA. qRT-PCR
was then performed using SYBR Green chemistry and
the QuantStudio 3 qRT-PCR system (Applied Biosys-
tems, Foster City, CA). Relative gene expression was cal-
culated using the comparative Ct (2**“") method, and
the housekeeping gene glyceraldehyde-3-phosphatase
dehydrogenase (GAPDH) was used as the endogenous
control. The sequences of primers are listed in Table S1.

Histology and immunostaining

The cell-laden 3D hydrogel constructs were fixed in 4%
PFA and embedded in Cryo-gel (Leica Microsystems
Inc, Chicago, IL). Blocks were sectioned at 6-pum thick-
ness, and Oil Red O staining was performed to detect
the lipid droplet [27]. The stained sections or cultures in
6-well plates were imaged with an EVOS M5000 Im-
aging System (ThermoFisher, Waltham, MA). To quan-
tify the lipid content, cells on the culture plates were
first washed exhaustively in distilled water and dried by
placing it at 32 °C for 40 min [28]. Isopropyl alcohol was
added to elute the dye from the cells and dye intensity
was estimated spectrophotometrically based on Asig
(Microplate Reader, BioTek, Winooski, VT).

BODIPY 493/503 (10 pg/ml, Invitrogen, D3922) was
also used for lipid detection. Cryosections were washed
with 1% (v/v) PBS-T solution for 10 min and then incu-
bated with BODIPY solution for 30 min. Hoechst 33342
(ThermoFisher, H3570) was used as nuclear counterstain.

For immunofluorescence (IF), the 4% PFA-fixed cryo-
sections were first blocked in 10% goat serum (ab7481,
Abcam, Cambridge, UK) in PBS for 1h and incubated
with primary antibodies against C/EBP-a (8178s, Cell
Signaling Technology, Danvers, MA, 1:100 dilution) or
CAV1 (3238s, Cell Signaling Technology, 1:400 dilution)
overnight at 4°C. The information on the primary anti-
bodies used in this study is listed in Table S2. For sec-
ondary antibodies, a goat anti-rabbit IgG (Alexa Fluor
488; Abcam, 1:500 dilution) was utilized. Alexa Fluor
568 conjugated phalloidin (Invitrogen, A12380, 1:200 di-
lution) was used to stain actin fibers. The samples were
then mounted with a 4',6-diamidino-2-phenylindole
(DAPI)-containing antifade medium (Vector Laborator-
ies, Burlingame, CA). An Olympus IX81 inverted micro-
scope (Olympus, Waltham, MA) and EVOS M5000
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Imaging System (ThermoFisher) were used to image the
stained sections.

Western blot analysis

Constructs were washed in PBS for 3 times and then pul-
verized in RIPA buffer (Sigma Aldrich) supplemented with
1% (v/v) protease and phosphatase inhibitor cocktail
(ThermoFisher). After centrifugation, protein concentra-
tions of the supernatants were determined using the BCA
protein assay kit (Thermo Scientific BCA Protein Assay
Kit). After thermal denaturation and reduction in
Laemmli buffer containing p-mercaptoethanol (10% (v/v)
(BioRad; Hercules, California), the proteins were electro-
phoretically fractionated in a 4-12% Bis-Tris polyacryl-
amide gel (Invitrogen™, NP0326BOX) and transferred
onto PVDF membranes (0.2 um). After being blocked in
3% non-fat milk (BioRad) in TBST (0.1% Tween-20 in
TBS) for 1.5 h at room temperature, the membranes were
incubated at 4°C overnight with primary antibodies
against target proteins (diluted in 1% non-fat milk in
TBST; see information in Table S2). After washing in
TBST for 5 times, the membranes were incubated with
horseradich peroxidase (HRP)-conjugated secondary anti-
bodies (GENA934-1ML, Sigma-Aldrich, 1:2000 dilution)
for 1.5 h at room temperature and then with SuperSignal
West Femto Maximum Sensitivity Substrate solution
(ThermoFisher). The blots were imaged using the Chemi-
DocTM Touch Imaging System (Bio-Rad). Quantification
of the blot images was conducted using NIH Image].

siRNA treatment

siRNA transfection was performed as described previ-
ously [29]. Briefly, small interfering RNA (CAV1, Invi-
trogen) and negative control siRNA (Silencer Negative
Control No. 1 siRNA, Invitrogen) were incubated with
Lipofectamine™ RNAiMax reagent (Invitrogen) respect-
ively in Opti-MEM medium for 5-10 min. The mixture
was added to cell culture and incubated at 37°C for 48 h.
Transfection efficiency was assessed using Western blot
and qRT-PCR. The transfected cells were subjected to
3D culture using the same conditions described above.

Statistical analyses

Statistical analysis was carried out using GraphPad Prism
9 (GraphPad, San Diego, CA). All data are presented as
means and 95% confidence intervals for analyzing the
correlation of gene expression. Mean differences be-
tween the two groups were assessed with Student’s ¢ test.
Analysis of variance (ANOVA) was used to analyze re-
sults among multiple groups. p values less than 0.05
were considered statistically significant, and depicted in
figures as *p < 0.05, **p < 0.01, **p < 0.001, and ****p <
0.0001.
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Fig. 1 Characterization of soft and stiff scaffolds used for hBMSC culture. a Schematic illustration of the soft and stiff gelatin scaffolds, which had
the same gelatin concentrations but different crosslinking degrees. b Degradation test of scaffolds in collagenase solution. Scaffolds were
harvested at different time points and weighed. N=10. ¢ Compressive modulus of soft and stiff scaffolds. N = 3. **** p<0.0001. d, f Storage
modulus and e, g loss modulus of soft and stiff scaffolds in the continuous shear tests (d, e) or the oscillatory shear tests (f, g)
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Results

Soft and stiff scaffolds are fabricated from GelMA with a
same concentration

In this study, GelMA was used to fabricate scaffolds with
different stiffnesses. The degree of crosslinking was con-
trolled by adjusting the light exposure time (8 or 120 s),
to create soft and stiff scaffolds, respectively (Fig. 1a). In

both scaffolds, the gelatin concentration was the same
(15% w/v). Upon collagenase treatment, soft scaffolds
displayed faster degradation rates. Thus, in less than 80
min, the soft scaffolds were completely degraded
(Fig. 1b). In contrast, it took more than 180 min to de-
grade stiff scaffolds. As expected, soft scaffolds had a sig-
nificantly lower average compressive modulus of 0.5 kPa,
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Fig. 2 Viability and morphology of hBMSCs cultured in soft and stiff scaffolds. a Live/Dead staining of hBMSCs cultured for 1, 4, and 7 days. Green
= live cells; Red = dead cells; Bar = 100 um. b Representative higher magnification imaging by confocal microscopy showing cell morphology.
Bar = 20 um
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(See figure on previous page.)

Fig. 3 Assessment of adipogenesis in hBMSC-laden scaffolds. a Relative expression levels of adipogenic marker genes in hBMSCs cultured under adipogenic
conditions (AM) in soft or stiff scaffolds. Data are normalized to that from the Soft-GM group (cultured under control growth conditions). N = 4. *p<0.05, **p<
001, ***p<0.0001. GM: growth medium, AM: adipogenic medium. b Oil Red O staining, BODIPY staining, and C(/EBP-a immunofluorescence to assess

adipogenesis. Bar = 100 um

while stiff scaffolds had an average compressive modulus
of 23.5 kPa (Fig. 1c).

Figures 1d, e shows that in the continuous shear tests,
as the crosslinking time increased from 8 s to 120 s, the
storage and loss moduli of the hydrogel both signifi-
cantly increased in the frequency range of 0.1-100s™.
The storage and loss moduli values relate to the hydro-
gel’s elastic and viscous behaviors, respectively. For both
sample groups, the storage moduli values were substan-
tially larger than the loss storage values, indicating that
soft and stiff hydrogels both displayed mainly elastic be-
havior. In the oscillatory shear tests (Fig. 1f, g), larger
storage and loss moduli values were also observed for
the stiff hydrogels when strains of 0.01 to 100% were ap-
plied, suggesting a larger resistance to deformation
caused by forces exerted by the encapsulated cells.
Therefore, cells gown in the stiff hydrogels were ex-
pected to experience a larger constraint by the local
matrix than those in the soft hydrogels. In addition, both
soft and stiff hydrogels showed a drastic decrease in
storage moduli values in the strain range of 0.01-20%,
indicating their decreased ability to recover from larger
deformations.

hBMSCs display different morphologies when cultured in

soft and stiff scaffolds

hBMSCs encapsulated in both soft and stiff scaffolds
were assessed for cell viability and morphology on days
1, 4, and 7. As shown in Fig. 2a, hBMSCs displayed high
viability (>90%) in both scaffolds at all time points
tested. Interestingly, phallodin cytoskeletal staining
showed that cells within soft scaffolds spread and ex-
tended in all directions (Fig. 2b, Video S1), whereas cells
within stiff scaffolds displayed a rounder morphology
with limited development of actin filaments (Fig. 2b,
Video S2).

Culturing within soft scaffolds results in higher level of
hBMSC adipogenesis

hBMSC-laden soft and hard scaffolds were cultured in
adipogenic medium for 14 days. As shown in Fig. 3a, all
tested adipogenic genes were upregulated upon adipo-
genic stimulation. When compared to those in stiff scaf-
folds, cells within soft scaffolds showed higher expression
levels of adipogenic genes, as well as produced more histo-
logically detectable lipid droplets, C/EBP-a protein and
BODIPY staining (Fig. 3b). A similar trend was observed

on day 7 as well (Figure S1), which collectively implied a
higher level of adipogenesis in soft scaffolds.

hBMSCs cultured in soft scaffolds express lower level of
CAV1

We then used immunofluorescence and Western blot to
examine the expression level of CAV1. As shown in
Fig. 4a, d, lower CAV1 levels were observed in softer
scaffolds than in stiff scaffolds at all tested time points,
except on day 1. In addition, as shown in Fig. 4b, c,
higher levels of YAP and lower levels of YAP phosphor-
ylation (p-YAP:YAP) were observed in cultures main-
tained in the soft scaffolds, suggesting that YAP
activation is higher in soft cultures. In summary, CAV1
and YAP are closely related in regulating cellular re-
sponses to stiffness and adipogenic stimulation.

Knockdown of CAV-1 results in enhanced adipogenesis
To understand the function of CAV1, siRNA was used
to reduce the expression levels of CAVI. Transfection
with CAVI siRNA resulted in an ~8-fold reduction in
the expression levels of CAVI 48 h after transfection
(Figure S2). This knockdown effect lasted up to 2 weeks
(Fig. 5a). When compared to the untreated control
(CTRL group) or control siRNA-treated cells (si-CTRL
group), hBMSCs treated with CAV-1 siRNA (si-CAV1
group) displayed higher levels of adipogenesis upon adi-
pogenic stimulation in 2D culture, revealed by qRT-PCR
and Oil Red O staining (Fig. 5a, b). In particular, cells in
the si-CAV1 group generated ~50% more oil droplet
staining than those in the si-CTRL group (Fig. 5c).

Similar CAV1 knockdown studies were conducted in 3D
cultures of hBMSCs. Results from qRT-PCR, the western
blot and immunofluorescence (Fig. 6a—c, e) showed that
CAV1 levels were successfully reduced in 3D culture after
siRNA treatment. Reducing CAV1 level resulted in in-
creased expression of adipogenic genes (Fig. 6a), higher
protein levels of PPAR-y (Fig. 6b, d) and C/EBP-« (Fig. 6e),
as well as increased oil droplet deposition and BODIPY
staining (Fig. 6e) than control counterparts.

YAP/TAZ pathway is regulated by CAV1

We then examined the crosstalk between CAV1 and
YAP signaling during hBMSC adipogenesis. Western
analysis showed that si-CAV1 transfection efficiently re-
duced CAV1 in cultures maintained in both soft and stiff
scaffolds (Fig. 7a, b). Interestingly, in the si-CAV1 group
maintained in soft scaffolds (Fig. 7a, c), protein levels of
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YAP and TAZ rapidly increased and YAP phosphoryl- YAP phosphorylation (p-YAP:YAP); however, upon si-
ation (p-YAP:YAP) decreased, while CAV1 protein levels CAV1 transfection, i.e., with reduction in CAV1 level,
were reduced (Fig. 7a—c). In contrast, cells within stiff YAP and TAZ levels increased, and YAP phosphoryl-
scaffolds displayed higher levels of CAV1, with signifi- ation was reduced (Fig. 7a, c), similar to the response to
cantly lower levels of YAP and TAZ, but higher level of si-CAV1 treatment seen in the soft scaffold group. These
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J

results indicated that YAP/TAZ activation, i.e., unpho-
sphorylated versus phosphorylated YAP, was similarly
affected and involved in the modulation of hBMSC adi-
pogenesis as a function of CAV1 level.

Discussion
Adipose tissue engineering provides a robust tool to re-
generate lost or damaged fat. In vitro created adipose

tissue has recently been used to model diseases and de-
velop drugs [27, 30-32]. There is thus a demonstrated
need for functional fat tissues generated through tissue
engineering. In this study, we have induced hBMSCs to
undergo adipogenesis within 3D gelatin hydrogels and
comparatively analyzed the influence of varying mechan-
ical stiffness of the 3D scaffold in soft supporting adipo-
genesis. Specifically, we have studied the involvement of



Page 11 of 17

(2021) 12:347

Xiang et al. Stem Cell Research & Therapy

[0 si-CTRL M sj-cav1

1 GM

<

CEBPA

LPL

CFD

%k %k
—

I 1 1 1
o o o o
wn o w

- -

[oAS] uoissaidxe aus9)

40000+
30000+
20000+
100004

0-

[9A8] UOISSaIdXd BUBD

I 1 1 1 1
o o o o o
© © < AN

[9A8] uoissaldxe aua9)

S HM ®
¥ :
o N - o
T T T 1 HAdvo / A-dvdd
c 2 2 3 leA8] ulejoid
|9A9] uoissaldxa aua5) o
¥
’ 3
2 | K, @
* % Y
nW ..*..H_H *H—H \n Ww,\\
R OI
g
Q O pay 10 Ad1dO4d ASYosoH

-~ o o

HAdVO / LAVO

o o o o o o [9A3] UIB)0Id
o O O O O
O O © < « O W
- e
|9A9] uoissaldxa auag) m ) M &)
™ N 0 ‘»
>
cE
- % . PFV
> n
e ¥ 1
<< || -
3 - £ |
Q | x
? Q
I T T 1 L »
o o o o o
o < N o
<
O

[oA8] Uoissaldxe aus9)

CAV1
PPAR-y

L L=AVO ASUO80H  D-dg5/0 /ASYO80H

Fig. 6 (See legend on next page.)




Xiang et al. Stem Cell Research & Therapy (2021) 12:347 Page 12 of 17

(See figure on previous page.)

Fig. 6 Influence of CAVT gene expression knockdown on hBMSC adipogenesis in soft and stiff scaffolds. Control siRNA (si-CTRL) and CAV1 siRNA
(si-CAV1) were used. a Relative expression levels of adipogenic marker genes and CAV1. Data were normalized to that in GM group. N=4. b, ¢, d
Western blot and semi-quantitative analysis of CAV1 and PPAR-y levels. N = 3. e Immunofluorescence analysis of CAV1 and C/EBP-a levels. Bar =
100 um. Qil Red O and BODIPY staining of lipid deposition in cells. Bar = 100 um. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001

CAV1, previously shown to regulate osteogenic differen- Based on these observations, we propose how CAV1
tiation of hBMSCs and the potential role of YAP/TAZ and YAP/TAZ act to mediate hBMSC adipogenesis and
signaling in mediating cell responses to substrate stiff- responses to stiffness of 3D scaffolds (Fig. 8). Specifically,
ness and adipogenic medium in the context of 3D cul- hBMSCs in soft scaffolds display low CAV1 levels, which
ture conditions. lead to high expression levels of YAP/TAZ (with corre-

sponding decrease in p-YAP and thus reduced
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Fig. 8 Schematic of coordinated action of CAV1 and YAP/TAZ (Y/T) to regulate hBMSC adipogenesis in soft and stiff scaffolds. Increased stiffness
of hydrogel scaffold promotes CAV1 expression in hBMSCs, thus elevating the phosphorylation of YAP, and reduces the amount as well as
translocation of active YAP to nucleus, eventually leading to a lower level of adipogenesis

proteasomal degradation of YAP), resulting in subse-
quent translocation of YAP/TAZ into the nuclei, pre-
sumably activating the transcription of adipogenic genes.
The si-CAV1-mediated knockdown of CAVI further in-
creases the activation of the YAP/TAZ pathway and adi-
pogenesis. Conversely, cells maintained in stiff scaffolds
maintain a high level of CAV1, which consequently lead
to low activation of YAP/TAZ and higher level of YAP
phosphorylation, resulting in reduced adipogenesis.
Given its bioactivities and biocompatibility, gelatin has
been widely used in tissue engineering [33]. Its recog-
nized biosafety makes it a convenient biomaterial to gen-
erate adipose tissues for different applications. To date,
gelatin sponge or gelatin hydrogels have been used to
create adipose tissues from human MSCs [32, 34, 35]. In

these studies, MSCs displayed reduced adipogenic po-
tential in gelatin cultures when compared to monolayer
cultures. Therefore, the optimal conditions that can fa-
cilitate MSC adipogenesis within scaffolds, such as those
formulated from gelatin, still need to be developed.

It has been well demonstrated that the mechanical
properties of substrates, including biomaterial scaffolds,
play an important role in mediating MSC differentiation,
such as adipogenesis. The first study demonstrating this
relationship, in which MSCs were cultured on collagen-
coated polyacrylamide gels with different levels of cross-
linking and different stiffness characteristics, showed
that the softer substrates that mimicked the native stiff-
ness of adipose tissue (2 kPa) resulted in significantly en-
hanced adipogenesis, compared to harder surface [17].
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Similarly, using 3D alginate hydrogel, it was shown that
MSCs cultured in a soft scaffold produced more oil
droplets and displayed higher expression levels of adipo-
genic genes than in stiff scaffolds [18]. Currently, it is
generally accepted that softer substrates support higher
adipogenesis of MSCs regardless of whether they are in
2D or 3D cultures [19]. It should also be noted that the
dimensionality of the cultures also affects cell morph-
ology. For example, in 2D cultures, cell spread and ex-
tend robustly on a stiff surface or stiff substrate, while in
3D cultures, cells maintain a round shape in stiff scaf-
folds [21, 36], which was also observed in our study
(Fig. 2). These seemingly opposite results raise the ques-
tion of the importance of cell morphology in guiding
MSC differentiation. In a recent review, Zonderland
et al. suggested that, on flat 2D substrates, a spread
morphology and increased nuclear translocation of YAP
are good predictors of MSC lineage commitment such
as adipogenic differentiation [37]; however, in 3D cul-
ture, these parameters do not have the same predictive
power on MSC differentiation. It was further suggested
that cell volume might play an important role. For ex-
ample, large cell volumes benefit adipogenesis. Our find-
ings supported that a spread cell morphology (Fig. 2)
along with higher YAP levels (Fig. 4) are good indicators
of higher level of adipogenesis in 3D culture as well.

In addition to stiffness, the type and density of ligands
present in the extracellular matrix (ECM) also affect the
spread of MSCs, a process that requires complicated in-
teractions between receptors on cells and binding li-
gands in the ECM. For example, the fibronectin
tripeptide (RGD) motif is necessary to allow MSCs to
spread on a hard surface [38]. However, excessive ECM
binding with matrix seems to negatively affect hBMSC
adipogenesis on 2D culture. Therefore, to eliminate the
influence of different ligand densities, we varied the illu-
mination time for hydrogel photocuring, rather than gel-
atin  concentration, to control the stiffness of
photocrosslinkable gelatin [24].

Currently, there is no consensus regarding the func-
tional association and relationship among YAP/TAZ
pathway, substrate stiffness, and adipogenesis. Conflict-
ing results have been reported. On 2D culture, increas-
ing YAP activity suppresses adipogenic differentiation
[39]. In contrast, inactivation of YAP using small mol-
ecule or siRNA promotes adipogenic differentiation [40].
In a study using gelatin scaffolds with stiffness gradients
from 8 kPa to 30 kPa, activation of YAP was found in
the cells encapsulated in low-stiffness regions [36], simi-
lar to our findings here. However, reduced adipogenesis
was observed, which is not consistent with our findings
(Fig. 3). In another study using polyethylene glycol-
based scaffolds, MSCs seeded in soft hydrogels had a lar-
ger and more extended cell morphology than those in
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stiff gels [41]. However, it was found that YAP nuclear
function impaired adipogenesis. Moreover, cells exposed
to adipogenic stimulation within stiff matrices were
shown to displayed higher adipogenesis as compared to
those in soft hydrogels. To address this inconsistency,
Caliari et al. used the same biomaterials and compared
MSC behavior on or within the scaffolds, and showed
that increased stiffness promoted cell spreading and
YAP/TAZ nuclear localization on 2D culture. However,
the opposite trend was observed in cells in 3D culture
[21]. Taken together, it is clear that YAP/TAZ signaling
is responsible for cell response to stiffness, but the out-
come in terms of adipogenesis depends highly on the di-
mensionality of the culture system.

Interestingly, Khetan et al. demonstrated that the dif-
ferentiation of MSCs is dictated by the generation of
degradation-mediated cellular traction, which was not
directly related to cell morphology or matrix mechanics
[42]. Specifically, hBMSCs encapsulated within hyalur-
onic acid hydrogels that permitted cell-mediated degrad-
ation exhibited high degrees of adipogenesis. In our
study, we have shown that soft hydrogel is more easily
degraded by collagenase than its stiff counterpart
(Fig. 1b). Of note, a degradable environment is reported
to enhance the activity of YAP/TAZ [21], strongly sug-
gesting the importance of matrix degradation in mediat-
ing cell behavior in hydrogels.

Although the central role of YAP/TAZ is to dictate
MSC response to stiffness, it is not clear how mechanical
cues are converted into the biochemical signals that
affect this pathway. Previously, we had found that
CAV1, a scaffolding protein of cholesterol-rich caveolae
lipid rafts in the plasma membrane involved in mem-
brane receptor traffic [43], regulates proliferation and
differentiation of hBMSCs [44—46]. We have hypothe-
sized that CAV1 expression may stabilize the differenti-
ated and undifferentiated stem cell phenotype and that
changes in CAV1 expression may be required for transi-
tion between the two [45]. We thus investigated in this
study whether CAV1 also regulates the response of
hBMSCs to stiffness. In a recent study investigating
fibroblast behavior on soft and hard substrates (2D cul-
ture), the activation of YAP in cells cultured on soft sub-
strates was completely abolished when CAV1 was
knocked out [23], indicating that CAV1 positively regu-
lates YAP activity. We have obtained the opposite obser-
vation here, namely that the suppression of CAV1
results in higher level of YAP (Fig. 7). Our observation is
in fact supported by other studies: for example, in the
process of mesothelial-to-mesenchymal transition
(MMT), the mechanical stretch-activated YAP/TAZ
pathway first activates CAV1 expression, then CAV1
conversely suppresses YAP/TAZ [47]. We speculate that
the different observations may have come from the
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different culture conditions (2D versus 3D) used and
that CAV1 is unlikely to be the only upstream factor
regulating YAP activity. In another study, where CAV1
was overexpressed in hBMSCs, adipogenic differenti-
ation was significantly suppressed [48], consistent with
our findings (Fig. 6).

There are some limitations in our study. First, similar
to other studies investigating cellular responses to stiff-
ness, this study did not fully eliminate the influence of
differing nutrient/waste diffusion rates experienced by
the soft and hard scaffolds. However, given the relatively
small geometric dimensions of the 3D constructs (2-mm
height and 5-mm diameter) and consequently likely lim-
ited influence on diffusion related to pore size differ-
ences between the soft and stiff scaffolds, this is unlikely
to be a major contributing factor. Secondly, whole-cell
CAV1 analysis was carried out, and subcellular CAV1
distribution was not done. Namely, we have not analyzed
the membrane domain distribution of CAV1, such as as-
sociation with cholesterol-rich membrane rafts [42, 44],
which will be investigated in future studies. Thirdly, our
mechanistic study has not included signaling pathways
other than Hippo, i.e., YAP/TAZ, that are also known to
be related to the cellular response to variations in sub-
strate stiffness, including B-catenin and Rock/Rho path-
ways [49-51]. Our future mechanistic investigations will
include a more in-depth direct comparison of hBMSC
behaviors and phenotypes under 2D and 3D cultures, as
well as the use of hydrogels that have photo-switchable
stiffness to examine the “permanence” of substrate
stiffness-mediated cellular signaling.

Conclusions

Our study demonstrated that softer photocrosslinked 3D
gelatin scaffolds promoted more cell spreading and en-
hanced adipogenesis of encapsulated hBMSCs when
compared to more stiff hydrogels. However, the pro-
adipogenic effect of the softer scaffold alone was less ef-
ficient than that of the adipogenic supplements found in
widely used adipogenic culture medium, indicating the
importance of biochemical cues. Interestingly, hBMSCs
cultured in soft gels displayed reduced levels of CAV1
and increased YAP activity, suggesting CAV1 action up-
stream of YAP. Given the known involvement of the
YAP pathway in mechanosensing of substrate stiffness
and its complex downstream signaling pathway, which is
also modulated as a function of the dimensionality of
the culture system, our findings reported here suggest
that suppressing CAV1 expression is likely an efficient
way to enhance adipogenesis. The 3D culture models de-
veloped here also provide a robust tool to study other
behaviors of MSCs in response to stiffness, such as
osteogenesis, neurogenesis, and chondrogenesis.
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