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Abstract

The adoptive transfer of natural killer (NK) cells is an emerging therapy in the field of immuno-oncology. In the

last 3 decades, NK cells have been utilized to harness the anti-tumor immune response in a wide range of
malignancies, most notably with early evidence of efficacy in hematologic malignancies. NK cells are dysfunctional
in patients with hematologic malignancies, and their number and function are further impaired by chemotherapy,
radiation, and immunosuppressants used in initial therapy and hematopoietic stem cell transplantation. Restoring
this innate immune deficit may lead to improved therapeutic outcomes. NK cell adoptive transfer has proven to be
a safe in these settings, even in the setting of HLA mismatch, and a deeper understanding of NK cell biology and
optimized expansion techniques have improved scalability and therapeutic efficacy. Here, we review the use of NK
cell therapy in hematologic malignancies and discuss strategies to further improve the efficacy of NK cells against

these diseases.
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Background

Natural killer (NK) cells are cytotoxic lymphocytes that
play a key role in recognizing malignant and virus in-
fected cells and serve as a bridge between the innate and
adaptive immune response. In hematologic malignancies,
there is a qualitative and quantitative dysfunction of in-
nate NK cells and defective NK cells at diagnosis por-
tends a poor prognosis [1, 2]. For example, NK cell
phenotypes at diagnosis of acute myeloid leukemia
(AML) can be stratified into highly functional and dys-
functional groups with distinct transcriptional modifica-
tions in pathways involved in cytotoxicity, intracellular
signaling, and metabolism [3]. Patients with this defect-
ive NK cell profile at diagnosis had a higher risk of
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relapse. In addition, patients with “hypomaturation” NK
cell profiles have reduced overall and relapse-free sur-
vival [4, 5]. While the majority of clinical data support-
ing adoptive NK cell therapy to date is in adult myeloid
malignancies, there is evidence to support the use of NK
cells across a broad range of hematologic cancers, in-
cluding multiple myeloma (MM). Pre-clinical data has
been published for B and T cell lymphoblastic leukemia,
non-Hodgkin lymphoma (NHL), and Hodgkin lymph-
oma (HL) [6-8]. In addition, while the graft-versus-
leukemia (GVL) effect is historically thought to be more
important in AML, there is mounting evidence that
post-transplant immune recovery and NK cell alloreac-
tivity confers lower risk of relapse in pediatric ALL and
NHL [9-12]. Early clinical success and demonstration of
safety of adoptive NK cell therapy in hematologic malig-
nancies has led to more widespread use. As we learn
more about the biology of NK cells and NK cell dysfunc-
tion in cancer, new strategies for successful NK cell
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therapy are emerging. This review focuses on the use of
NK cell therapy to date in hematologic malignancies as
well as barriers to success and future directions.

Advantages and early success of NK cell therapy
Although the ability of NK cells to recognize and kill
leukemia cells was described 45 years ago, a clinically
relevant role for NK cells in the treatment of leukemia
was first demonstrated nearly 20 years later [13-16].
Early NK cell recovery after stem cell transplant and in-
creased NK cells in the graft are associated with im-
proved transplant outcomes in leukemia [17-19].
Additional evidence of NK cell-mediated GVL was dem-
onstrated in the setting of HLA-mismatched
hematopoietic stem cell transplant (HSCT) [20, 21].
Ruggeri et al. observed that patients with AML undergo-
ing haploidentical HSCT had decreased relapse rates
when HLA differences between the donor and recipient
were present in the GVL direction in a missing-ligand
model for NK cells [20]. This concept was termed “lig-
and-ligand mismatch” and similar studies confirmed the
importance of NK cell alloreactivity in AML patients
undergoing HSCT [20, 22-24]. Similarly, decreased re-
lapse and increased survival were seen in patients receiv-
ing HLA-mismatched transplants in which the donor-
recipient pair was also mismatched for KIR genes [25-
27].

Supported by this early clinical evidence, adoptive NK
cell therapy to augment the GVL effect was investigated.
The earliest trials were performed with NK cells isolated
from healthy donor leukapheresis products using immu-
nomagnetic cell selection and overnight IL-2 activation
[28-30]. Using this approach, Miller et al. demonstrated
that infusion of haploidentical NK cells after chemother-
apy could induce remission of poor-prognosis AML
[31]. In a similar study, Rubnitz et al. reported the safety
of KIR-mismatched NK cell infusion as post-remission
consolidation therapy for children with AML, with no
relapses reported in the 10 patients treated [32]. A simi-
lar approach has been used for adoptive transfer of NK
cells in patients with refractory lymphoma and MM [33,
34]. Importantly, GVHD was not reported in any of
these studies utilizing allogenic NK cells. Other studies
using NK cells derived by this approach in the allogeneic
HSCT setting in patients with lymphoid and myeloid
malignancies have also demonstrated that NK cell infu-
sions were safe and not associated with severe infusion
reactions, GVHD, or graft rejection [35-38]. However,
the response rates in these studies were variable (OS
from 29% to 73%) and the NK cell doses produced by
this approach were typically limited to a single dose of
<107 /kg.

Advancements in NK cell sources and expansion
methods have improved the potential for NK cell
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therapy by enabling repeated dosing with larger numbers
of NK cells (Fig. 1). Expansion methods have been devel-
oped that use cytokines alone, or in combination with
costimulatory antibodies or agonists [39, 40]. The devel-
opment of irradiated feeder cells generated from autolo-
gous mononuclear cells, EBV-transformed
lymphoblastoid cell lines, or tumor cell lines has led to
improved NK cell maturation and proliferation ex vivo
[41-48]. Feeder cells have also been genetically modified
to express membrane-bound cytokines and co-
stimulatory molecules such as 4-1BB, MICA, IL-15, and
IL-21, which can result in > 1000-fold expansion over a
period of weeks. NK cell growth may plateau, however,
because of exhaustion and/or proliferative senescence at-
tributed to shortened telomeres [46, 49, 50]. In our ex-
perience with irradiated K562 feeder cells expressing 4-
1BB and membrane bound IL-21, the IL-21 leads to
STAT3-mediated induction of telomerase reverse tran-
scriptase and increased telomere length. NK cells ex-
panded with this method are highly functional and do
not show proliferative senescence, achieving an average
3000-fold expansion in 2 weeks and 20-80,000-fold in 3
weeks [7, 44].

There have also been significant advances utilizing al-
ternative allogeneic NK cell sources such as the umbil-
ical cord blood, NK-like leukemia/lymphoma cell lines,
and stem cell-derived NK cells, and there are advantages
and disadvantages to each method (Fig. 1). While abso-
lute lymphocyte numbers are low in UCB, it is relatively
rich in NK cells compared to the peripheral blood, com-
prising 20-30% of the CB lymphocyte population [51].
The volume of the cord blood is limited, however, and
freshly isolated CB NK cells are phenotypically immature
and less cytotoxic with low expression of CD16 and acti-
vating receptors [51]. These quantitative and qualitative
limitations of CB NK cells, however, can be overcome
with cytokine stimulation and expansion, and expanded
CB NK cells are highly functional against tumor targets
[52-54]. A phase 1 study of cord blood-derived NK cells
combined with autologous SCT in MM demonstrated
the safety of NK cell doses up to 1x 10%/kg with no
dose-limiting toxicity, no GVHD, and NK cells detect-
able in the peripheral blood for up to 26 days [55].

The NK cell lymphoma cell line, NK-92, has high pro-
liferative capacity in culture, exerts anti-tumor cytotox-
icity and is easily genetically modified using viral or non-
viral transduction techniques [56]. While the infusion of
a malignant cell line has the theoretical potential to
cause malignancy itself, irradiation of the NK-92 cells
prevents proliferation in vivo and there have been clin-
ical trials demonstrating the safely of this method [57—
60]. However, this limits in vivo persistence and elimi-
nates in vivo expansion. Finally, there has been extensive
study optimizing the generation of functional NK cells
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Fig. 1 Sources for expanded NK cells. Current NK cell therapies are derived from peripheral blood (PB) NK cells, umbilical cord/placental NK cells,
NK cell lines, or induced pluripotent stem cells (iPSC). Isolated NK cells are expanded utilizing cytokine stimulation with or without the presence
of feeder cells. Yellow lightning bolts indicate timepoints utilized for genetic alteration of the final expanded NK cell product
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from embryonic stem cells and induced pluripotent stem
cells (iPSC) [61, 62]. The advantages of this method in-
clude a highly uniform, standardized, end product, and
relative ease of genetic engineering of these cells [63].

Clinical trials utilizing expanded NK cells have shown a
high degree of safety and early evidence of benefit in both
the transplant and non-transplant settings. Haploidentical
IL-21-expanded NK cells delivered in the setting of hap-
loidentical transplant with post-transplant cyclophospha-
mide led to a dramatic reduction in post-transplant
relapse in patients with myeloid malignancies. Compared
to historical matched controls, delivery of three infusions
of NK cells (on days — 2, + 7, and +28) reduced leukemia
relapse from 35 to 5%, respectively [64, 65]. Expanded NK
cells have also been used safely in the setting of autolo-
gous SCT for MM in combination with lenalidomide [55].
Outside of the transplant setting, expanded NK cells in
combination with chemotherapy yielded a 69% complete
response rate in a phase I study of patients with relapsed/
refractory AML [66]. In these early clinical trials, NK cells
have been safe with no dose-limiting toxicity, cytokine re-
lease syndrome, or increase in rates of GVHD. Given these
initial reports demonstrating safety and efficacy, there are
currently dozens of clinical trials exploring the use of NK
cells for hematologic malignancies.

Barriers to NK cell success and solutions
Pharmacokinetics: expansion and persistence of NK cells
in vivo

In contrast to T and B cells that can persist for months
to years, innate immune cells are believed to be relatively
short-lived, lasting for days to weeks [67]. In addition to
the already finite lifespan of NK cells, donor NK cells
face the additional challenge of allo-rejection. The im-
portance of cell persistence for the success of CAR T cell
therapy in leukemia is well described [68]. Similarly,
in vivo expansion and persistence of NK cells after adop-
tive transfer is likely to be important for clinical efficacy.
Grzywacz et al. demonstrated that increased NK cell
homing and persistence in the bone marrow 2-3 weeks
after NK cell infusion for relapsed AML was important
for clinical response [69]. Strategies to improve persist-
ence and in vivo expansion of NK cells after adoptive
transfer include pre-infusion lymphodepleting therapy,
co-administration of cytokines, and repeated NK cell in-
fusions. Recent studies revealing the ability of NK cells
to develop immunological memory clearly demonstrate
that the function and persistence of NK cells is en-
hanced by tumor cell or cytokine priming [70-74]. Cyto-
kine primed or expanded NK cells, however, may
become “addicted” to cytokine stimulation and undergo
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apoptosis upon cytokine withdrawal [75]. This highlights
the need for endogenous or exogenous cytokine stimula-
tion after adoptive transfer to facilitate persistence.

Early clinical trials with IL-2 activated haploidentical
NK cells utilized lymphodepleting chemotherapy with
cyclophosphamide and fludarabine as well as subcutane-
ous IL-2 to facilitate NK cell expansion and persistence
[31, 32]. Miller et al. demonstrated that adequate lym-
phodepletion with high-dose cyclophosphamide and flu-
darabine led to in vivo NK cell expansion with
persistence of donor NK cells for over 28 days in some
patients [31]. There was an inverse correlation between
lymphocyte count and endogenous serum IL-15 after
lymphodepleting chemotherapy suggesting that success-
ful NK cell expansion was secondary to both clearing of
alloreactive recipient cells and IL-15 stimulation of NK
cells. The administration of exogenous IL-2 not only
promotes NK cell priming and proliferation but also se-
lectively targets regulatory T cell expansion and is uti-
lized to promote immune tolerance in autoimmune
disease such as type 1 diabetes [76, 77]. The immuno-
modulatory effect of regulatory T cell expansion in re-
sponse to exogenous IL-2 in cancer is not clear,
however, and it is worth noting that the adoptive trans-
fer of NK cells alone may increase the proportion of
Tregs [78]. IL-15 stimulates CD8+ T cells, has a critical
role in NK cell development, and promotes NK cell sur-
vival via expression of the anti-apoptotic factor Bcl-2
[79]. In addition to its role in NK cell development, IL-
15 is critical for the survival of mature NK cells in vivo
[79]. Using IL-15 in lieu of IL-2 in the setting of haploi-
dentical NK-cell therapy led to improved NK cell expan-
sion in vivo, however, still came with the unwanted side
effects of cytokine release syndrome, neurologic toxicity,
and NK cell exhaustion [80]. The IL-15 super agonist,
ALT-803, was designed to extend the cytokine half-life
and mimic the physiologic cell to cell trans-presentation
of IL-15. A phase I trial of ALT-803 in relapsed AML/
MDS post-transplant led to a more robust NK cell ex-
pansion than the traditional recombinant human IL-15
and a more tolerable toxicity profile with no cytokine re-
lease syndrome, GVHD, or other dose-limiting toxicities
reported [81]. Clinical efficacy as monotherapy in this
setting was limited, however, with only one patient out
of 27 achieving a complete response. Clinical trials
utilizing ALT-803 in combination with adoptive NK cell
therapy for AML are underway (NCT02890758,
NCT03050216). To overcome the issues with toxicity of
exogenous cytokines, others have engineered NK cells to
express novel receptors to enhance proliferation and
function. Hematopoietic growth factors used to stimu-
late the erythropoietin receptor (EPOR) or thrombopoie-
tin receptor (c-MPL) have demonstrated clinical safety.
Viral transduction of NK-92 cells to express EPOR or c-
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MPL led to increased NK cell survival and cytotoxicity
in response to TPO or EPO ligands [82].

Another strategy for improving NK cell persistence
and clinical efficacy is repeated infusions of donor NK
cells. While previous studies were limited by small NK
cell numbers harvested from donor the peripheral blood,
newer strategies for ex vivo NK cell expansion have
allowed for repeated doses of high numbers of NK cells,
reducing the need for in vivo expansion. Importantly,
these NK cells also have a highly functional phenotype
with improved cytotoxicity and cytokine secretion
against a variety of cancers. NK cells expanded with IL-
21-expressing irradiated feeder cells are highly metabol-
ically active with a memory-like NK cell phenotype and
increased expression of activating receptors and chemo-
kine receptors associated with NK cell trafficking and
persistence [83]. The persistence of expanded NK cells
after adoptive transfer has not been extensively studied;
however, a mouse model of IL-21 expanded NK cells
suggests that expanded NK cells can survive for up 21
days without the need for exogenous cytokine stimula-
tion [84]. Adoptive transfer at day 7 post-transplant cor-
related with increased number, function, and phenotype
at day 28, suggestive of persistence [64]. These data sug-
gest that in addition to improved NK cell numbers, ex-
panded NK cells have anti-leukemic efficacy and
potential for in vivo expansion and persistence.

Particularly in patients with urgent medical need such
as in relapsed acute leukemias, an important consider-
ation for adoptive NK cell therapy is the fast turnaround
time needed to generate the therapeutic product. In this
patient population, the time it takes to work up a
donor, collect, and expand NK cells may allow for the
leukemia tumor burden to grow out of control. In
addition, NK cells from cancer patients are low in
number and function and demonstrate limited expan-
sion, providing insufficient numbers for effective au-
tologous therapy [85]. For these reasons, the
development of an allogenic NK cell bank for “off-
the-shelf” therapy is desirable. Approaches include
utilizing cord blood NK cells, iPSC-derived NK cells,
and unrelated “optimal” donor peripheral blood NK
cells. The latter strategy identifies donors who have
HLA and KIR genotypes for optimal education, a high
proportion of activating KIRs, and who have been exposed
to CMV resulting in NKG2C+ “memory-like” NK cells.
We have developed a universal-donor NK cell bank utiliz-
ing these “optimal” donors in collaboration with Be-the-
Match Biotherapies (BTMB), and expanded NK cells from
this bank are being utilized in a clinical trial for relapsed
AML/MDS (NCT04220684). The use of these off-the-
shelf NK cell sources will become increasingly important
in the development of genetically engineered NK cell
programs.
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NK cell recognition of tumors: aberrant receptor/ligand
expression

One advantage of NK cell therapy is the ability of NK
cells to recognize tumors without the need for antigen
presentation. In contrast to T cells, NK cell activation is
tumor antigen-independent and is instead regulated by a
balance of activating and inhibitory NK cell receptor sig-
naling. Activating receptors recognize ligands on the
surface of cancer or viral infected cells that signal dan-
ger, and inhibitory receptors are responsible for recogni-
tion of self. NK cell receptor classes include natural
cytotoxicity receptors (NCR), C-type lectin receptors,
and killer cell immunoglobulin-like receptors (KIRs).
The presence of NK cell activating receptor stress li-
gands on the surface of tumor cells is crucial for NK cell
recognition of these cells as abnormal. NK cell dysfunc-
tion via altered activating receptor expression or tumor
downregulation of NK cell receptor ligands is a common
method of tumor immune escape. For example, the ab-
sence of NKG2D and other NCR ligands on leukemic
blasts allows them to escape NK cell surveillance [86,
87]. The DNAM-1 receptor/ligand axis is altered in pa-
tients with AML with both downregulation of DNAM-1
receptors on NK cells and low expression of DNAM-1
ligands (CD112/155) on AML clones leading to poor NK
cell conjugation and killing [88, 89]. NK cells from pa-
tients with hematologic malignancies exhibit low expres-
sion of activating NCRs, including NKp46, DNAM-1,
and NKG2D which impairs their effector function and
predicts poor response to therapy [8, 90-92].

To address this, monoclonal antibodies to block in-
hibitory KIRs or stimulate NK cell activating receptors
can tip the inhibition/activation balance in favor of NK
cell activation. Inhibitory KIRs recognize HLA mole-
cules, are distinguished by the number of extracellular
immunoglobulin domains (2D or 3D), and are assigned
an “L” to indicate that they have a long cytoplasmic tail
containing immunoreceptor tyrosine-based inhibitory
motifs (ITIMs). IPH2101 is an anti KIR2DL antibody
that is being studied in AML, MM, B cell lymphoma
with pre-clinical, and early clinical evidence of efficacy—
particularly when combined with lenalidomide [93-95].
A follow-up phase II study in MM failed to demonstrate
clinical efficacy, which may be secondary to blockade of
normal NK cell education or licensing through inhibi-
tory KIRs [96, 97]. Clinical trials utilizing fully licensed,
expanded NK cells in combination with IPH2101 may
elicit improved responses.

Stimulation of activating receptors is another way to
tip the balance toward NK cell activation, and as men-
tioned above, tumors often downregulate NK cell recep-
tor ligands to escape immune surveillance. NKG2D is a
one of the most important activating receptors in the
NK cell repertoire and recognizes cellular stress ligands
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MICA, MICB, and ULBP1-6. NKG2D also serves as a
co-stimulatory receptor on cytotoxic T cells. Synthetic
activation of the NKG2D receptor via NKG2D ligand
and antitumor antibody fusion or NKG2D ligand/cyto-
kine fusion is one way to overcome immune escape and
facilitate NK cell-tumor interaction and may also serve a
dual function in activation of T cells [98—100].

A key pathway responsible for NK cell recognition of
tumors is via CD16 receptor recognition of antibody
coated targets in a process called antibody dependent
cellular  cytotoxicity (ADCC). Binding of the
crystallizable fragment (Fc) of IgG to the Fcy receptor
II (FcyRIIla/CD16a) on NK cells creates a bridge be-
tween the NK cell and the tumor cell and leads to NK
cell-mediated tumor lysis. This is an important mechan-
ism of therapeutic efficacy for some anti-tumor mono-
clonal antibodies. In hematologic malignancies,
rituximab (anti-CD20) and daratumumab (anti-CD38)
are NK-cell-dependent antibodies that are widely utilized
for B cell malignancies and MM, respectively. Combin-
ing monoclonal antibodies with adoptive NK cell therapy
may further enhance tumor recognition by expanded
NK cells.

It is worth noting the limitations of monoclonal anti-
bodies and potential technologies to improve them. First,
individual genetic polymorphisms of the CD16a have
variable affinity to bind IgG [101, 102] and patients with
the low affinity CD16 receptor may have suboptimal
clinical responses to monoclonal antibody therapy [103].
In addition, the success of monoclonal antibody therapy
is dependent on functional effector NK cells. With these
concepts in mind, novel antibody constructs to simul-
taneously enhance the NK cell-tumor cell immune syn-
apse and increase NK cell numbers are in development.
Bi-specific and tri-specific killer engagers (BiKEs and
TriKEs) are small molecule constructs composed of a
single-chain variable fragment (scFv) (comprised of the
heavy and variable light chains of an antibody connected
by a short peptide) of one antibody linked to another
scFv and/or cytokine. Most of the BiKEs/TriKEs in de-
velopment include a high affinity anti-CD16 component
to overcome the polymorphism differences in CD16 af-
finity mentioned above. The anti-CD16 component is
combined with one or two tumor antigen-specific anti-
bodies such as CD19/20 in B cell malignancies [104—
107], CD33/CD123 in AML [108-110], CD30 in Hodg-
kin’s lymphoma [111], and HLA class II in lymphoma
[112]. The newer generation of TriKEs incorporate cyto-
kine stimulation to further enhance NK cell function
upon antigen engagement. For example, Felices et al.
engineered a TriKE that is composed of anti-CD16, anti-
CD33, and an IL-15 moiety to drive NK cell activation,
expansion, and persistence [113]. Finally, the role of im-
mune checkpoints in NK cell regulation is described
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below and the addition of inhibitory receptor blockade/
checkpoint blockade such as TGF-f inhibition to an NK
cell engager may be an additional mechanism to improve
NK cell ADCC [114].

Daratumumab is an FDA approved monoclonal anti-
body against CD38 that has changed the therapeutic
landscape for MM with overall response rates of greater
than 80% when combined with chemotherapy [115-
117]. Pre-clinical and clinical reports have indicated that
there may also be a role for daratumumab in T cell ALL
and other CD19/22-negative hematologic malignancies
[118, 119]. NK cells have high levels of CD38 on their
surface and are depleted in patients treated with daratu-
mumab as a result of NK-to-NK ADCC, referred to as
“fratricide” [120]. CD38 negative or low NK cells are re-
sistant to daratumumab-induced fratricide and have im-
proved tumor cytotoxicity when combined with
daratumumab compared to CD38+ NK cells [120]. To
overcome NK cell fratricide induced by daratumumab,
we generated CD38 knock out NK cells (CD38%° NK)
using CRISPR/Cas9. These CD38*? NK cells are resist-
ant to daratumumab-induced fratricide, have a superior
metabolic profile, and improved ADCC against CD38
expressing MM [121]. Ongoing pre-clinical validation
studies will determine if this method could be utilized
across a wide range of CD38 expressing hematologic
malignancies.

Combination drug therapies can increase NK cell re-
ceptor ligands on the surface of tumor cells and may be
another way to improve NK cell recognition of tumors.
For example, poly-ADP-ribose polymerase 1 (PARP1)
plays a role in repressing expression of NKG2D ligands
on AML cells and PARP inhibitors may be a therapeutic
target to increase ligand expression and improve NK cell
detection of leukemia stem cells [86]. In addition to im-
proved NK cell receptor-ligand recognition, NK cells
have improved cytotoxicity in combination with the
PARP inhibitor olaparib against the breast, lung, and
prostate carcinoma cells [122]. PARP inhibitors are also
being utilized in myeloid malignancies, and their com-
bination with adoptive NK cell therapy may further
improve therapeutic efficacy.

Lenalidomide is an effective immunomodulatory
treatment for MM, other B cell neoplasms, and MDS.
In the context of NK cells, lenalidomide decreases the
threshold for NK cell activation upon receptor stimu-
lation, enhances antibody dependent cytotoxicity
(ADCC), and upregulates receptor and ligand expres-
sion on NK cells and tumor cells, respectively [123—
125]. Combination trials with lenalidomide and mono-
clonal antibodies have been promising in B cell
lymphomas and MM, in part due to improved NK
cell recognition of tumor targets via CD16 leading to
ADCC [116, 126-129].
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Finally, with the success of CAR T cell therapy in ALL
and B cell lymphomas, there is a major push in the field
to develop CAR-NK cell therapies. While T and NK cell
effector functions are similar, a CAR NK cell has the
added ability to recognize tumors through innate NK
cell receptors, potentially preventing relapse due to anti-
gen escape. Additionally, allogenic HLA-mismatched NK
cells have been given safely without causing GVHD,
highlighting the potential to produce universal donor or
“off-the-shelf” CAR-NK cells to circumvent cost and
timing constraints seen with manufacturing CAR-T cell
therapy. Finally, NK cells are safe and cytokine release
syndrome and neurologic toxicity have been minimal in
NK cell trials to date. Historically, genetic modification
of NK cells was unsuccessful due to NK cell resistance
to viral transduction. In contrast to T cells, the innate
function of NK cells as our first anti-viral defense ren-
ders them relatively resistant to traditional methods of
gene modification through viral transduction. Viral
transduction of peripheral blood NK cells with lentiviral
vectors using a new baboon pseudo type has significantly
increased high-transduction efficiency [130]. In addition,
successful retroviral transduction has been demonstrated
in the first phase I/II clinical trial utilizing cord blood
derived CAR-NK cells, in which 11 patients with CLL or
NHL were treated with a single dose of “off-the-shelf”
CD19 CAR-NK cells [131]. The CAR-NK cells were
equipped with CD19 CAR, IL-15, and an inducible cas-
pase suicide gene. CAR-NK cells were well tolerated
with no dose-limiting toxicity and no report of cytokine
release syndrome with a response rate of 73%. CAR-NK
cells expanded in vivo and were detectable for a least a
year after infusion. Similar to data reported in CAR-T
cell trials, patients who responded to therapy had a
higher peak expansion of CAR-NK cells than those with
no response. Alternative NK cell sources and newer
methods of genetic engineering have enabled successful
genetic modification of NK cells using non-viral
methods. Non-viral transfection with electroporation
and the use of transposons and CRISPR/Cas9 has led to
improved efficiency and stable genomic insertion of NK
cells [132]. Additional CAR NK cell targets being devel-
oped for hematologic malignancies include CD33, CD38,
CD123, CD20, BCMA, CLL1, and FLT3 [58, 130, 133—
138], and dual-target CARs such as CD19/20 or CD19/
22.

NK cell dysfunction within the tumor micro-environment
Hypoxia

Hypoxia in the TME drives angiogenesis and facilitates
cancer progression and chemotherapy resistance largely
through induction of the hypoxia-inducible factor (HIF)
pathway as well as the PIBK/AKT/mTOR and NFxB
pathways [139]. Within the bone marrow niche, pockets
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of hypoxia are essential for physiologic stem cell func-
tion and severe hypoxic conditions develop in the pro-
gression of hematologic malignancies including MM,
leukemia, and lymphoma via similar mechanisms as
solid tumors [140]. The anti-tumor immune response is
dysfunctional under hypoxic conditions leading to T cell
apoptosis, NK cell dysfunction, and promotion of Treg
differentiation which further facilitates tumor survival
[141, 142]. NK cell cytolytic function is impaired in hyp-
oxic environments in part via decreased surface expres-
sion of activating receptors such as NKp46, NKp30, and
NKG2D and CD16 [143-145]. Even after NK cell recog-
nition of tumor cells, hypoxia-induced autophagy in can-
cer cells leads to degradation of granzyme B, rendering
NK cells in hypoxic tumor microenvironments less cyto-
toxic [146].

NK cell dysfunction in the TME is also due to overex-
pression of the adenosine nucleotidase, CD73. Increased
CD73 expression leads to extracellular accumulation of
adenosine which has significant immunometabolic ef-
fects on NK cells [147] (Fig. 2). Adenosine stimulation of
the A2A receptor on NK cells leads to negative effects
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on NK cell metabolism, cytokine production, and cyto-
toxicity [147]. A2AR blockade can restore NK cell func-
tion in the tumor environment [148] and targeting of
the CD73/adenosine pathway may serve to boost the
anti-tumor immune response as well as suppress tumor
stem cell function [149].

In addition to intrinsic NK cell dysfunction, hypoxia
can also lead to tumor cell immune evasion via upregu-
lation of checkpoint molecules and downregulation of
NK cell ligands [150, 151]. The NKG2D ligand MICA is
downregulated on tumor cells in the setting of hypoxia
via HIF-1la induced expression of ADAMI10 [150, 152]
(Fig. 2). HIFs have also been shown to induce PD-L1 ex-
pression on the surface of tumor cells via interaction
with PD-L1 gene promotors [151, 153]. Therapeutic
blockade of the transcription factor HIF1 or ADAMI10
may overcome hypoxia-induced dysfunction of NK cells
[154].

Checkpoints (PD-1, TIM-3, TIGIT)
In addition to HLA class I-specific inhibitory receptors,
NK cells express traditional immune checkpoint
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Fig. 2 Hypoxia. Hypoxia driven upregulation of CD73 leads to increased adenosine binding at the A2A receptor (A2AR). The A2AR inhibits NK cell
function through the SOCS pathway via downregulation of activating receptors. Increased expression of the hypoxia inducible factor 1-alpha
(HIF1a) in leukemic blasts results in upregulation of ADAM10 and subsequent cleavage of MIC-A—the canonical ligand for the NK cell activating
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molecules such as PD-1, TIM-3, and TIGIT [155]
(Fig. 3). While TIM-3 and TIGIT are expressed in
healthy donor NK cells and are likely involved as con-
ventional checkpoints for NK cells, the role of traditional
T cell checkpoints like PD-1 in NK cell immune toler-
ance is not as well defined [156].

TIM-3 is constitutively expressed on NK cells from
both healthy donors and cancer patients, and high ex-
pression of TIM-3 on NK cells has prognostic signifi-
cance in solid tumors [157, 158]. In hematologic
malignancies, Galactin-9 is overexpressed by tumor cells
and the Tim-3/galactin-9 autocrine loop can lead to
leukemic progression conferring an additional selective
advantage to tumor expression of TIM-3 ligands [159].
High levels of Galectin-9 were seen in plasma of patients
with AML and Galectin-9 secreted by AML blasts im-
pairs NK cell killing of leukemic cells in culture [160].
Blockade of TIM-3 on NK cells isolated from cancer pa-
tients reversed tumor-associated NK cell exhaustion and
restores cytolytic function [161].
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PD-1 is only variably expressed on subsets of healthy
donor NK cells but appears to be upregulated in tumor-
associated NK cells [162]. Similar to its effect on T cells,
stimulation of PD-1 on NK cells leads to impaired cyto-
kine release and degranulation that may be secondary to
impaired lytic granule polarization [155]. In HL and
DLBCL, PD-1" is elevated in both circulating and intra-
tumoral NK cells compared to healthy controls [163]. In
vitro PD-1 blockade with pembrolizumab enhances NK
cell cytotoxicity via direct blockade of PD-1 on NK cells
and indirectly by PD-1 inhibition of NK cell suppressive
tumor-associated macrophages [163]. In addition, PD-L1
blockade may actually directly enhance PD-L1* NK cell
function and provide anti-tumor efficacy even in PD-L1
negative tumors [164]. Dong et al. demonstrated en-
hanced degranulation and cytokine production from PD-
L1" NK cells treated with an anti-PD-L1 antibody. PD-
1/PD-L1 blockade is also being studied in AML, and
multiple studies have reported high expression of PD-L1
on AML blasts [164]. While early clinical trials have

PD-1/PD-L1
Produces impaired
cytokine release and
degranulation

TIM-3/Galectin-9
Produces an
autocrine feedback
loop with inhibition
of NK-mediated

Leukemic
Blast

KIR/MHC Class 1 °*
Produces an
inhibitory signal,

o Blockade of the
raising the )
threshold f exhaustion marker
reshoid for TIGIT on

degranulation

TIGIT/TIGIT Ligand

tumor-associated NK
cells salvages them
from exhaustion

NK Cell

Fig. 3 Immune checkpoints. Binding of leukemic cell-secreted galectin-9 at TIM-3, PD-L1 at PD-1, or TIGIT ligand at the TIGIT receptor inhibits NK
cell cytotoxicity. Similarly, tumor cell expression of MHC Class 1 molecules leads to NK cell tolerance through interaction with inhibitory KIRs.
Blockade of these immune checkpoint pathways reverses NK cell dysfunction in the tumor microenvironment

cytolysis
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hinted at efficacy of checkpoint blockade in AML/MDS,
the role of NK cells in clinical responses to checkpoint
blockade has yet to be defined [165, 166].

The co-inhibitory receptor T cell immunoglobulin and
ITIM domain (TIGIT) is also expressed on NK cells
[167]. NK cells isolated from patients with NHL have
high expression of TIGIT compared to healthy controls
[168]. Zhang et al. found high TIGIT expression on
tumor infiltrating NK cells that exhibited an exhausted
phenotype with impaired cytokine secretion and de-
granulation [169]. NK-cell specific deficiency of TIGIT
prevented tumor metastasis and improved survival in a
mouse model of melanoma. Blockade of TIGIT in vivo
reversed the exhaustion of tumor infiltrating NK cells
and slowed tumor growth, even in a T cell deficient
SCID mouse model. Importantly, the therapeutic effects
of anti-TIGIT therapy depended on the presence of NK
cells. In a pre-clinical model of autologous stem cell
transplant for MM, TIGIT blockade significantly pro-
longed disease control after transplant [170] and is
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currently being utilized in this clinical

(NCT04150965).

setting

Indoleamine 2,3-dioxygenase

Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-
dioxygenase (TDO) are intracellular enzymes responsible
for tryptophan breakdown to kynurenine. Through
stimulation of the aryl hydrocarbon receptor (AhR), the
IDO/TDO/Kynurenine pathway promotes immune tol-
erance in the tumor microenvironment via suppression
of NK cells and cytotoxic T cells and promotion of regu-
latory T cells [171] (Fig. 4). The role of tryptophan ca-
tabolism in cancer development and progression is an
active area of research; however, it is clear that IDO is
overexpressed in many different cancer types, including
hematologic malignancies [172]. Functional IDO is over-
expressed by AML blasts which correlates with increased
regulatory T cells and predicts a poor prognosis [172—
174]. IDO is also overexpressed Hodgkin and NHL and
IDO expression in tumor tissue of DLBCL can stratify
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patients at risk for chemotherapy resistance and de-
creased survival [175-179]. In Hodgkin lymphoma, mac-
rophages, dendritic cells, and endothelial cells in the
TME express IDO and high IDO expression is associated
with high-risk features with 5-year overall survival of
67.8% compared to patients with low IDO expression
who have an OS of 91.7% [178]. Karihtala et al. found
that although the percentage of tumor associated macro-
phages expressing IDO in HL samples was low, and high
IDO expression was an independent poor prognostic
factor [179]. Targeting the IDO/TDO/Kyurenin pathway
is of clinical interest given the broad implication in
tumor development and IDO/TDO inhibitors are ac-
tively being studied in the clinic. Selective IDO inhibi-
tors, however, fail to prevent tryptophan metabolism by
the TDO pathway and vice versa so targeting the down-
stream AHR pathway may be more efficient [180]. In
AML, upregulation of AHR ligands by blasts hinders NK
cell development and function via the micro-RNA, miR-
29a/bl [181]. The use of AHR antagonists has the
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potential to restore NK cell development and improve
NK cell killing of AML blasts.

Transforming growth factor-Beta

A key contributor to immunosuppression within the
tumor microenvironment is transforming growth factor-
beta (TGF-P) secreted by tumor cells and tumor-
associated macrophages. The TGF-B family signaling
pathway exerts diverse biological effects depending on
the cell type and physiologic context and includes effects
on cell proliferation, differentiation, communication,
metabolism, and apoptosis. Within the context of can-
cer, TGF-P can have pro- and anti-tumorigenic effects
functioning both as a tumor suppressor in pre-
malignant cells and as a tumor promotor of cancer cell
growth and metastasis [182]. In addition to direct effects
on malignant cells, TGF-f acts as an immunosuppressive
cytokine that inhibits T, B, and NK cell function [182].
Specifically, = TGF-B-induced  phosphorylation  of
SMAD2/SMAD3 in NK cells leads to decreased IFNy
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SMAD /‘\
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Fig. 5 TGF-3. TGF-{3 secreted by leukemic blasts binds to the TGF-(3 receptor on NK cells leading to phosphorylation, trimerization, and
translocation of SMAD complexes across the nuclear membrane. The downstream epigenetic modifications inhibit NK cell function with
decreased cytokine production, impaired cytotoxicity, and downregulation of NK cell activating receptors (NKG2D, NKp30, DNAM-1, TRAIL,

L

TGFB

|

%*TRNL
=3y os

°. % ‘Cytoklne
NK CeII-




Lamb et al. Stem Cell Research & Therapy (2021) 12:211

production [183] and decreased anti-tumor cytotoxicity
with phenotypic downregulation of the activating recep-
tors NKG2D, NKp30, DNAM-1, TRAIL, and CD16
[184-188] (Fig. 5). The effect of TGF-f driven immune
escape is well studied in pediatric and adult solid tumors
[189-197]. In hematologic malignancies, aberrant TGF-
B-SMAD  signaling is implicated in ineffective
hematopoiesis and leukemogenesis and evidence of
TGEF-B-mediated immune escape in leukemia/lymphoma
is emerging [198-200].

Huang et al. investigated the effect of TGF-p on NK
cell targeting of leukemia cells in vitro. The authors
found that TGEF-p significantly decreased NK cell killing
of leukemia cell lines secondary to leukemia cell down-
regulation of the NK cell ligand CD48 as well as de-
creased ICAM-1 binding affinity resulting in impaired
effector-target interaction [201]. In pediatric B-ALL, NK
cell number and cytolytic function are significantly re-
duced at diagnosis compared to healthy controls [202].
Rouce et al. demonstrated that NK cells from the
leukemia patients had an abnormal phenotype with in-
creased expression of the inhibitory receptor NKG2A
and reduced expression of the activating receptor
NKp46 [202]. The authors found increased levels of
TGEF-B in the supernatants of ALL blast cultures and
showed significant elevation in SMAD2/3 phosphoryl-
ation in NK cells isolated from patients with leukemia as
well as NK cells co-cultured with ALL blasts. Import-
antly, blockade of TGF-f partially corrected the ALL-
induced NK cell dysfunction highlighting a potential
therapeutic target. In AML, defective NK cells at diagno-
sis are associated with increased risk of relapse and tran-
scriptional analysis shows differential expression of
TGE-p signaling pathways between highly functional NK
cells and dysfunctional NK cells from patients with
leukemia [3]. Decreased number and function of NK
cells in the TME of lymphoma predicts a poor prognosis
[203]. Similar to other solid tumors, TGE-f is expressed
at high levels by both lymphoma cells and regulatory T
cells within the lymphoma tumor microenvironment
which is likely one of the immune escape mechanisms
employed by lymphomas [204, 205]. Taken together, it is
clear that similar to solid tumors, TGF-$ plays a sub-
stantial role in tumor progression and immune evasion
in hematologic malignancies.

Therapeutic antibodies and small molecule inhibitors
targeting the TGF-P pathway are in development, but
progress has been slow and focused primarily on solid
tumors such as glioblastoma, pancreatic cancer, NSCLC,
and hepatocellular carcinoma [206]. Galunisertib is a
first in class oral inhibitor of the TGF-P receptor type 1
kinase that has shown some clinical efficacy as mono-
therapy or in combination with standard of care therap-
ies [206]. In a phase II/III trial using galunisertib in low-
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intermediate risk MDS, 32% of transfusion-dependent
patients had hematologic improvement with an accept-
able safety profile. Interestingly, > 90% of patients had a
>20% reduction in plasma TGF-p levels and the authors
found an increase in NK cell numbers during treatment
with galunisertib. The use of galunisertib in combination
with ex vivo expanded NK cells with antibody therapy
reversed the TGF-B-induced suppression of cytotoxicity
and led to reduction of tumor growth and improved sur-
vival in patient-derived xenografts of neuroblastoma
[207]. Similar combination therapies utilizing TGF-p
pathway inhibition combined with adoptive NK cell
therapy have not been utilized in clinical trials to date
but may enhance NK cell function in vivo.

In addition to direct TGF-p receptor blockade, NK cell
engineering strategies have been utilized to overcome
TGE-f inhibition of NK cells including TGE-f receptor
knock out, the addition of dominant negative TGF-p re-
ceptors, and a TGF-f chimeric receptor with an intracel-
lular NK cell activating domain [208-210]. Our lab
utilized DNA-free Cas9 RNP editing of peripheral blood
NK cells to successfully knock out the TGF-p receptor
rendering them resistant to TGF-B-mediated suppres-
sion [208]. Yvon et al. genetically engineered cord blood
NK cells using retroviral transduction to insert a domin-
ant negative TGF-f receptor (DNRII) [210]. These
DNRII-expressing NK cells exhibited normal expansion
with irradiated feeder cells and had improved cytotox-
icity of glioblastoma cells compared to non-transduced
NK cells when exposed to TGF-fB. Utilizing the same
genetic modification platform, NK cells were engineered
to express TGF-PB receptors coupled with intracellular
NK cell-specific activating domains to take advantage of
receptor stimulation by TGF-f in the TME. The conver-
sion of an inhibitory signal to an activating signal not
only made these NK cells resistant to TGEF-3 but also led
to increased NK cell activation and improved tumor
control in a model of TGF-fB secreting neuroblastoma
[209].

Finally, our lab developed a novel platform using TGEF-
B stimulation during expansion with IL-2 and irradiated
feeder cells. Addition of TGF-B during expansion (TGE-
B imprinting) does not affect their proliferation and
paradoxically and results in hyperinflammatory NK cells
that produce large amounts of IFNy, TNFa, and GM-
CSF when co-cultured with tumor cells even in the pres-
ence of TGF-p [211].

Conclusion and future perspectives

Cellular immunotherapy is on the forefront of progress
in cancer research. The success of CD19 CAR T cells
provided momentum to develop novel cell therapy strat-
egies in both hematologic malignancies and solid tu-
mors. NK cells provide an alternative cell source with a
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similar effector function but with decreased toxicity and
the potential for an “off-the-shelf” model. Specifically, in
contrast to T cells, the adoptive transfer of NK cells has
not led to cytokine release syndrome or GVHD in the
allogenic setting. In hematologic malignancies, innate
NK cell tumor function is suppressed by cancer directed
therapies and the tumor microenvironment and improv-
ing NK cell function is vital to the success of cancer
treatment. Historically, most clinical trials of adoptive
cell therapy have utilized products that are manufac-
tured on a patient-by-patient basis. The high cost of
manufacturing per patient delays in care while awaiting
a product and variability in the final cell composition
make “off-the-shelf” cell therapy highly desirable. Recent
optimization of expansion techniques, validation of the
safety and scalability of different NK cell sources, and
the ability to safely use donor NK cells with minimal
HLA matching will allow for true “off-the-shelf” NK cell
therapy. To this end, NK cell banks are being developed
and will be a timely and cost-effective way to standardize
the use of NK cells in cancer therapy. In the future, re-
storing both the number and function of NK cells
throughout a patient’s treatment course may become
standard of care by using NK cells from established
banks.

The broad applicability of NK cells stems from their
ability to kill tumor targets without antigen presentation
and pre-clinical and clinical data supporting the use of
NK cells across a wide range of malignancies is being
published. Particularly with the ubiquitous use of anti-
body therapy and the importance of NK cells for ADCC,
adoptive transfer of NK cells will likely become a univer-
sal way to improve the efficacy of this therapeutic mo-
dality. In addition to their anti-tumor function, NK cells
are important for viral surveillance and exploiting their
natural cytotoxicity against viral infected cells may prove
to be an additional benefit of the use of NK cells in im-
munocompromised patients. In vitro data suggests that
NK cells may be effective against viral, bacterial, and
fungal pathogens [212]. In the setting of haploidentical
HSCT for AML, patients treated with NK cells had
lower rates of viral reactivation including CMV and BK
virus [64]. Clinical trials evaluating the efficacy of adop-
tive NK cell therapy for treatment of SARS-CoV-2 are
underway and if successful may pave the way toward
broad use of NK cells for infection indications.

While there is much optimism for the use of adoptive
NK cell therapy in hematologic malignancies, tumor im-
mune evasion remains a barrier to success and strategies
to overcome these barriers are actively being investigated
(Fig. 6). Specifically, progress made in our ability to gen-
etically engineer NK cells opens up the field to seem-
ingly unlimited therapeutic potential. Novel CAR targets
and NK-specific CAR constructs are under development
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in vivo persistence of adoptive NK cells include use of
lymphodepleting chemotherapy, repeated NK cell doses, exogenous
cytokine stimulation, and cytokine secreting “armored” NK cells.
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directed at the tumor antigen to encourage NK cell ADCC, bispecific
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chimeric antigen receptors. ¢ Strategies to decrease immune evasion
in the tumor microenvironment include (clockwise from the top left)
genetic knock out/in of proteins to enhance NK function (ex. CD38
knock out), small molecule inhibitors or immunomodulatory drugs
(ex. PARP inhibitors to upregulate NK activating receptors), priming
the NK cells ex vivo for preservation of function in vivo (ex. TGF(3
imprinting preserving cytolysis and cytokine secretion upon re-
exposure to TGF B in the TME), and checkpoint blockade
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and will be the next major breakthrough for the success
of NK cell therapy in hematologic malignancies. With
the recent advances discussed in this review, we are on a
cusp of an exciting time in the field of adoptive NK cell
therapy.
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