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Abstract

kidneys and develop new therapeutic strategies.

Renal failure has a high prevalence and is becoming a public health problem worldwide. However, the renal
replacement therapies such as dialysis are not yet satisfactory for its multiple complications. While stem/progenitor
cell-mediated tissue repair and regenerative medicine show there is light at the end of tunnel. Hence, a better
understanding of the characteristics of stem/progenitor cells in kidney and their homing capacity would greatly
promote the development of stem cell research and therapy in the kidney field and open a new route to explore
new strategies of kidney protection. In this review, we generally summarize the main stem/progenitor cells derived
from kidney in situ or originating from the circulation, especially bone marrow. We also elaborate on the kidney-
specific microenvironment that allows stem/progenitor cell growth and chemotaxis, and comment on their
interaction. Finally, we highlight potential strategies for improving the therapeutic effects of stem/progenitor cell-
based therapy. Our review provides important clues to better understand and control the growth of stem cells in
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Introduction

Chronic renal disease (CKD) has become a public
health problem, affecting over 10% of the global
population. In the high-risk populations, the preva-
lence of CKD is up to 50% [1]. Among the etiology
of CKD, acute kidney injury (AKI), characterized by a
rapid decline of renal function, is considered as a key
mediator of CKD and the subsequent end stage of
renal disease (ESRD) [2]. However, although renal
replacement therapies such as dialysis could be a
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substitute for sustaining the basal renal function, the
repair of kidney itself is the main problem which
needs to be solved. Although stem/progenitor cell-
based tissue repair and regenerative medicine have
been gradually investigated, there are still many areas
unexplored. In this review, we summarize the general
characteristics of stem/progenitor cells and their
homing capacity in kidney. We also highlight the
microenvironments involved in stem/progenitor cell
maintenance and provide potential strategies for
improving stem/progenitor cell functions.
Stem/progenitor cells are a group of specific cells that
possess the abilities of self-renewal, multipotent differen-
tiation, and repair after organ injury [3]. Compared with
stem cells, progenitor cells display a limited capability of
differentiation. The microenvironment could greatly
influence their differentiation and self-renewal [4].
Tissue-specific stem cells have been observed in many
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organs, including kidney, bone marrow, gastrointestinal
mucosa, liver, brain, prostate, and skin [4—8]. Stem/pro-
genitor cells can differentiate into epithelial cells, myofi-
broblasts, and smooth muscle cells in embryonic
metanephric mesenchyme [9-11]. The mesenchymal
stem cell (MSC) population plays the important role in
the embryogenesis of kidney [12, 13]. While in the adult
kidney, the two different sources for stem/progenitor
cells including resident renal stem/progenitor cells and
circulating stem/progenitor cells which are mainly
derived from bone marrow, also greatly facilitate the
local repair processes through anti-inflammation and
immune-modulatory effects [14—17]. There have been
some studies showing that stem/progenitor cells could
ameliorate kidney injury and improve renal function in
ischemia/reperfusion injury (IRI) [3, 5, 15, 18, 19], neph-
rotic syndrome [20], acute renal failure by intramuscular
injection of glycerol [21-23], and an adriamycin-induced
model [24].

Circulating stem/progenitor cells include endothelial
progenitor cells (EPCs), hematopoietic stem cells
(HSCs), and bone marrow-derived MSCs (BMSCs).
EPCs, possessing the ability to repair endothelium, are
derived from the bone marrow and can be mobilized to
the peripheral circulation upon a variety of stimuli [25].
HSCs are a kind of stem cells in the bone marrow, own-
ing the capacity to self-renew, proliferate, and differenti-
ate to replenish the blood and immune systems [26].
HSC transplantation is effective in autoimmune disease
[27-29], and also greatly improves renal function in auto-
immune nephropathy such as IgA nephropathy [30, 31],
focal segmental glomerulosclerosis (FSGS) [32], and
crescentic glomerulonephritis [33], by eradicating auto-
reactive immune cells and regenerating a naive, self-
tolerant immune system [34]. A large body of evidences
indicate a great of potential therapeutic effects of BMSCs
on AKI [35-37], CKD [37, 38], FSGS [39, 40], diabetic ne-
phropathy [41-43], renovascular disease [44], lupus neph-
ritis [45, 46], polycystic kidney disease [47], and others
[48-51]. Studies have also shown that EPCs contribute to
endothelial repair in IRI-induced kidney [52, 53] and re-
store the microvasculature, hemodynamics, and renal
function in the stenotic kidney [54—56]. To better under-
stand the role of stem/progenitor cells in kidney, we
would focus on their characteristics and origin, the mech-
anism underlying their effects on kidney recovery, and
strategies of stem/progenitor cell-based therapy in the
following.

The origin of stem/progenitor cells in the adult
kidney

Kidney-derived stem/progenitor cells

Many studies have demonstrated kidney-derived stem/
progenitor cells in the adult kidney, the majority of
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which express MSC markers such as CD44, and kidney
embryonic stem cell (ESC) markers such as CD24 and
Pax-2, but not lineage-specific markers [5, 9, 22, 24, 57,
58], could self-renew and differentiate into mesodermal
lineages, including adipogenic, osteogenic, and chondro-
genic lineages. There are differences of stem/progenitor
cells in different area of the kidney (Fig. 1).

Renal stem/progenitor cells in glomeruli

Resident stem/progenitor cells with mesenchymal
phenotypes have been found in mouse and human
adult glomeruli [59, 60]. These cells can differentiate
into mesodermal lineages, endothelial cells, podocytes,
and mesangial cells under certain cultural conditions.
Different from other kidney-derived stem/progenitor
cells, they do not express CD133. These cells not only
exhibit a MSC phenotype, but also express ESC
markers CD24 and Pax-2 [5, 9, 57], which are nega-
tive in BMSCs. It has been found that CD24*CD133"-
MSC-like cells in Bowman’s capsule belong to renal
stem/progenitor cells [21, 22], but CD133" cells in
glomeruli do not express CD24 and MSC markers
and cannot undergo self-renew [59]. To identify the
origin of these CD247CD133 -MSC-like cells, Bruno
et al. isolated them in glomeruli of an explanted kid-
ney from a male donor transplanted into a female re-
cipient, and found that there was no double X
chromosome in the 48-selected MSC-like cells. Hence,
they believed that these cells were kidney-resident
MSCs rather than BMSCs homing to the kidney. An-
other article shows that although resident kidney
MSCs from glomeruli can differentiate into mesoder-
mal lineages, they are different from BMSCs. Com-
pared with BMSCs, resident kidney MSCs exhibit
mineralized nodules rather than mineralization of the
whole monolayer after differentiating into osteogenic
lineages. Besides, the adipogenic differentiation in
kidney-resident MSCs seems to be less efficient [60]
and also indirectly identified that these stem cells are
not derived from bone marrow.

Renal stem/progenitor cells in Bowman'’s capsule

Many studies have confirmed the existence of
CD24*CD133" cells in Bowman’s capsule, especially in
the urinary pole of Bowman’s capsule. Compared with
all other parenchymal cells of the kidney, they show
higher resistance to injurious agents [20, 21, 61-63]. We
can distinguish their source because renal stem/progeni-
tor cells in Bowman’s capsule express CD106, but stem/
progenitor cells in the tubules do not. Besides,
CD133"CD24"CD106" cells exhibit a higher rate of pro-
liferation than those with negative expression of CD106.
These cells with CD133"CD24"CD106"* expression pre-
fer to differentiate toward the phenotypes of podocyte
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Fig. 1 Multiple stem/progenitor cells in kidney, which are located in kidney in situ or originated from circulation, especially bone marrow.
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Furthermore, there are differences in these kidney-derived stem/progenitor cells considering their location. Stem/progenitor cells in glomeruli are
CD24*CD1337-MSC-like cells. The CD133"CD24*CD106"-stem/progenitor cells are primarily located in urinary pole in Bowman'’s capsule. Those
cells closer to the urinary pole have more activities than those closer to the vascular pole. CD133"CD24"CD106 cells are in tubules, especially

proximal tubules, with fewer mitochondria and less cytoplasm and without brush border than other tubular epithelial cells. In addition,
CD90*Pax-2*CD1337-MSC-like cells, Pax-2" tubule-like cells, and Pax-8" cells also locate in tubules. Notably, Sox9*Lgr4"CD133*Pax-2" cells,
primarily located in proximal tubules with epithelial polarity and brush border, could differentiate into proximal tubule, loop of Henle, and distal
tubule segments, but not into collecting duct. In S3 segment of nephron, there is a group of Pax-2" stem/progenitor cells, which have the
perfect repair capabilities although they have an immature tubular epithelial-like phenotype. Renal papilla is also a niche for renal stem/
progenitor cell homing. These CD24*CD133" spindle-shaped cells are primarily located in the very outer part of the papilla which is in close
proximity to tubules. Besides, there are also pericytes and CD133"-kidney-resident MSCs close to the vessel in the interstitium

and the tubular lineage. By contrast,
CD133"CD24"CD106~ cells mainly prefer to the tubular
lineage differentiation [21]. CD133"CD24*CD106" cells
are primarily located in the urinary pole of Bowman’s
capsule, while CD133"CD24°CD106  cells are mostly
expressed in proximal tubules, so they are close to each
other. The abilities of self-renewal and differentiation of
CD133"CD24°CD106™ cells are less than CD106" cells.
However, they both express vimentin, cytokeratin 7, and
cytokeratin 19, highlighting the similarity between the
two cells [64]. CD133"CD24"CD106  cells may derive
from CD133"CD24"CD106" cells and this represents a
more committed step toward complete differentiation
into the tubular lineage [21].

Renal stem/progenitor cells in Bowman’s capsule are a
special type of parietal epithelial cells, which exhibit a
high potential of self-renewal and multilineage differenti-
ation and express kidney ESC as well as MSC marker
CD44, but not lineage-specific markers [20, 22, 65].
These cells also express the stem cell-specific transcrip-
tion factors Oct-4 and Bmi-1 [22]. Oct-4 is normally
expressed in ESCs, for maintaining their immature state,
and is required for the pluripotency of germ cells [66].
Bmi-1 is a critical factor in the maintenance of the self-
renewal ability of adult stem/progenitor cells. Knockout
of Bmi-1 in renal stem/progenitor cells would result in
their apoptosis and decrease in their capacity of self-
renewal [67]. Notably, the abilities of self-renewal and
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differentiation are different considering the location.
Those cells closer to the urinary pole of Bowman’s cap-
sule have more abilities of differentiation and prolifera-
tion than those closer to the vascular pole [20]. Because
renal stem/progenitor cells in Bowman’s capsule express
kidney ESC markers, thus they are also believed as re-
sidual kidney stem/progenitor cells rather than BMSCs.

Renal stem/progenitor cells in tubules and interstitium in
cortex

There are stem/progenitor cells in tubules, especially
proximal tubules [5, 11, 21, 24, 64, 68]. Most of them
are capable to differentiate into tubular epithelial cells
and even could differentiate into mesodermal lineages
such as adipogenic, osteogenic, and chondrogenic line-
ages. But it still has differences. A study shows that these
cells express renal ESC markers such as Pax-2 and have
a spindle-shaped morphology. These cells have a positive
expression of CD90 and CD44, but are CD133-negative
[5]. Other studies show that stem/progenitor cells in tu-
bules are Pax-2 as well as some MSC marker-positive,
although there is no morphologic difference between
them and other tubular cells [11]. A study also shows
that they express MSC markers of CD44 and renal stem/
progenitor cell marker Pax-8. They have a strong ability
of self-renewal and differentiation into tubule epithelial
cells. Interestingly, they could also be induced to differ-
entiate into mesodermal lineages in vitro as well [24].

Most  studies have shown that there are
CD24*CD133"-stem/progenitor cells in the tubules,
which can regenerate tubular cells and improve renal
function after kidney injury [21, 63, 64, 69]. They own
the capacities of self-renewal and differentiation into
tubular cells [21]. Although they are Pax-2 and CD44
negative, they could express vimentin, cytokeratin 7, and
cytokeratin 19, none of which are expressed in the dif-
ferentiated proximal epithelial cells [63, 64]. What is
more, compared with tubular epithelial cells, they have
fewer mitochondria and less cytoplasm and have no
brush border. Some researchers think that there is also a
possibility that this phenotype is the result of the loss of
the brush border because of the dedifferentiation of
these cells toward a more mesenchymal phenotype. As a
result, these cells could be commonly mistaken as renal
stem/progenitor cells in tubules [63, 69].

It has been found that Sox9" cells are in adult kidney,
which own the high capacity of proliferation and meso-
dermal lineage differentiation [70]. These stem/progeni-
tor cells are primarily located in proximal tubules, and
they have epithelial polarity and brush border [68].
These cells express CD133 and Lgr4, the markers of pro-
genitor cells, but have a negative expression of Pax-2 or
common MSC markers. They could differentiate into
proximal tubules, loop of Henle, and distal tubule
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segments, but not into collecting ducts. Sox9" cells are
found in the early stage of kidney development and dis-
appear quickly after birth. They possess the high ability
of proliferation and are the predominant contributor to
repair in tubules after kidney injury. Because most of
epithelial cells except those in collecting ducts and
glomeruli are descendants of Sox9" cells in the kidney,
the studies have different arguments about the increase
in Sox9" cells after kidney injury. They think that al-
though most descendants of Sox9" cells no longer ex-
press Sox9 gene in normal kidneys, it is activated after
kidney injury. The researchers think that de novo activa-
tion of Sox9 rather than the expansion of the resident
Sox9" population contributes more to the recovery of
kidney [68, 70, 71].

Pax-2" cells have been found in the S3 segment of the
nephron, characterized with an immature phenotype of
tubular epithelial cell and the expression of progenitor
and mesenchymal cell markers. These cells have the
abilities of self-renewal, differentiation, and tissue repair.
They can reconstitute three-dimensional nephron-like
structure, including glomeruli, proximal tubules, the
loop of Henle, distal tubules, and collecting ducts, but
not vasculature. They could also migrate into injured
areas and differentiate into mature tubular epithelial
cells in vivo [3, 72, 73].

CD133" cells with MSC and kidney ESC markers are
located in the interstitium in adult kidney cortex. These
cells could differentiate into epithelial or endothelial
cells and grow into tubular structures or functional ves-
sels, but they have limited ability of self-renewal [10].
Because they do not express the hematopoietic markers
CD34 and CD45, they might be of kidney origin. How-
ever, it has also been proposed that these cells may ori-
ginate from a bone marrow-derived population, which
has homed to the kidney a long time ago. Hence, they
have lost their markers of hematopoietic lineage.

Renal stem/progenitor cells in papilla and interstitium of
the medulla

The renal papilla is a niche for adult renal stem/progeni-
tor cells [15, 18, 74—76]. These CD24"CD133" spindle-
shaped cells co-express MSC markers such as stem cell
antigen-1 (Sca-1) and epithelial proteins, have high activ-
ity of telomerase, and can differentiate into mesodermal
lineages and endothelial cells [15, 18]. These cells are
mainly located in the very outer part of the papilla, in
close proximity to the tubules, and some are adjacent to
the tubular basal surface. These cells can also be found
in the cortex and medulla to a less extent [15]. After kid-
ney injury, they proliferate and migrate into injured area
to repair tubules, although their generative capacity is
restricted.
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Lee et al. also found that there are some spindle-
shaped cells with kidney ESC markers in the interstitium
of the medulla. These cells could differentiate into endo-
thelial, osteoblastic, and tubular epithelial lineages
in vitro. Moreover, they are able to differentiate into
endothelial cells and tubular cells and preserve renal
function after ischemic renal injury [19].

Remaining embryonic kidney stem/progenitor cells

Renal progenitor cells in human embryonic kidney ex-
press CD24 and CD133 and have the capacities of self-
renewal and multi-lineage differentiation. Like most
renal stem/progenitor cells, these cells express MSC and
kidney ESC markers, but not hematopoietic markers
such as CD45. They construct the human primordial
nephron in the early stage, but disappear progressively
during nephron development, while the remnant kidney
ESCs which locate primarily in the urinary pole of Bow-
man’s capsule represent < 2% of whole cells in the adult
kidney [23]. However, these cells can differentiate into
many kinds of kidney-resident cells and even into meso-
dermal lineages. After AKI, renal progenitor cell admin-
istration could enhance tissue repair and induce the
recovery of renal function as well as structure. Because
most renal stem/progenitor cells exhibit a similar pheno-
type to embryonic kidney stem/progenitor cells, renal
CD24"CD133" stem/progenitor cells in the adult kidney
may all be derived from renal ESCs [23].

Renal stem/progenitor cells and kidney-resident MSCs
Resident MSCs have also been isolated from adult kid-
neys. Their characteristics are similar to those of ESCs.
These cells are able to differentiate into a wide variety of
lineages, including mesodermal lineages, endothelial
cells, and erythropoietin-producing fibroblasts. After
kidney injury, they migrate into the kidney and promote
the recovery of renal function [77-79]. Some researchers
believe that the MSC-like renal stem/progenitor cells in
embryonic and adult kidneys are merely resident MSCs
in the kidney, including in glomeruli, tubules, intersti-
tium, and papilla [13]. Besides, it has been proposed that
kidney-resident MSCs are derived from perivascular cells
[60], which would explain why renal stem/progenitor
cells can be isolated from many parts of the kidney and
their MSC-like appearance.

Pericytes, which are vascular mural cells with a func-
tion of angiogenesis in kidney [80], modulate the endo-
thelial phenotype and the extracellular matrix
composition to stabilize vessels. Mesangial cells are de-
scribed as the glomerulus-specific pericytes [81]. Of
note, some markers of pericytes such as CD146 and
CD73 are also expressed in MSCs [13]. Hence, pericytes,
exhibiting the potential of mesodermal lineage differenti-
ation, are thought to be renal stem/progenitor cells and
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considered as resident MSCs around capillary walls [13,
82-84].

Some Glil* cells around the vasculature expressing
the typical MSC markers are considered as immature
pericytes. They possess mesodermal differentiation cap-
ability in the kidney, and contribute greatly to kidney fi-
brosis. It has been revealed that around 45% of
myofibroblasts in the kidney are derived from these
Glil* MSC-like cells [80]. Another study has also shown
that pericytes are the main source of myofibroblasts in
the kidney [85]. These suggest stem/progenitor cells may
also have the bad side effects besides repair.

Circulating bone marrow-derived stem/progenitor cells
homing to the adult kidney

Bone marrow-derived stem/progenitor cells (BMDCs)
can be released from bone marrow into the peripheral
blood and then move into the injured area to improve
the renal function after attracted by a variety of growth
factors and inflammatory cytokines released from the in-
jured area [53, 86—90]. It has been reported that in male
patients who have received a kidney transplant from a
female donor, there are some BMDCs with a Y chromo-
some in the kidney with the expression of a tubular epi-
thelial cell or podocyte phenotype. This demonstrates
that circulating BMDCs can home to the kidney and dif-
ferentiate into tubular epithelial cells and podocytes [91].
Imasawa et al. also found that after tail vein injection
of enhanced green fluorescent protein (EGFP)-labeled
BMDCs and subsequent sufficient perfusion with PBS
to remove circulating EGFP" cells in glomeruli, the
remaining EGFP™ cells exhibit several characteristics
and markers of glomerular mesangial cells. The num-
bers of which increase in a time-dependent manner,
suggesting BMDCs own the ability to migrate into the
kidney and transdifferentiate into mesangial cells after
kidney injury [92].

It is reported that BMDCs can fuse with somatic cells
[93, 94], which can also lead to the presence of BMDC
markers and somatic cell markers in the same cells.
However, these studies cannot elucidate whether the
endothelial cells, tubular epithelial cells, podocytes, and
glomerular mesangial cells detected in this study arise
from transdifferentiation or cell fusion [91, 92, 95-99].
In order to answer this question, a study performed the
transplantation of bone marrow from female mice into
male Fah™/~ mice. The presence of the host marker Y
chromosome in Fah™ tubules, the donor marker, would
indicate cell fusion. The study shows that at least half of
the bone marrow-derived tubular epithelial cells are gen-
erated by cell fusion. However, Fah™ Y™ tubular epithelial
cells may also be generated by cell fusion, rather than
from direct transdifferentiation of BMDCs, because it
may be the result of decreased division, loss of the Y



Huang et al. Stem Cell Research & Therapy (2021) 12:197

chromosome, or the artificial limitations of tissue section
analysis [100].

After administration of male mouse HSCs into female
ischemic mice, there are some cells exhibiting a renal
proximal tubular cell phenotype and carrying a Y
chromosome, indicating that HSCs could be recruited
and transdifferentiate into tubular epithelial cells [87,
101, 102]. Another study shows that HSCs can also
transdifferentiate into glomerular mesangial cells [103].
Because the frequency of cell fusion is rare per 10° bone
marrow cells and the number of HSC-derived cells
greatly exceeds the frequency of cell fusion, the re-
searchers believe that HSCs are unlikely to be involved
in the cell fusion, although it cannot be completely ex-
cluded [87]. Ikarashi et al. found that after administra-
tion of EGFP"-bone marrow cells in progressive
glomerulosclerosis rat model, some glomerular endothe-
lial cells express the endothelial cell markers PECAM-1
or RECA-1 with the colocalization of EGFP, suggesting
the involvement of EPCs in glomerular endothelial cell
turnover [104]. Other studies also show that EPCs in the
injured kidney could differentiate into endothelial cells
and contribute to the rebuilding of glomerular capillaries
[89, 105-107]. Researchers believe that EPC-derived
cells are prone to transdifferentiate rather than cell fu-
sion, because cell fusion is a very low-frequency event.
The numbers of EPC-derived cells greatly exceed the
frequency of cell fusion. Furthermore, cell fusion would
result in the loss of cell function and lower expression of
EGEFP, which is contradictory with its significant thera-
peutic effects [104]. Ezquer et al. found that after tail
vein injection of EGFP*-BMSCs, they exert a renopro-
tective effect on diabetic nephropathy mice. EGFP*-
BMSCs are found in the kidney of diabetic mice while
they are undetectable in normal mice, suggesting that
the injured kidney could recruit BMSCs [41]. Another
study shows that after transplanting the bone marrow of
EGFP-positive rats into wild-type rats, BMSC transdif-
ferentiate into mesangial cells to provide structural sup-
port for glomerular capillaries [108]. Other studies also
show that BMSCs are able to transdifferentiate into
podocytes, mesangial cells, tubular epithelial cells, etc.
both in vitro or vivo [88, 109-111]. Although cell fusion
is a low-frequency event and it is contradictory with the
significant therapeutic effects, it cannot be completely
excluded considering it as a repair mode.

Interaction between stem/progenitor cells and
kidney microenvironment

After kidney injury, kidney cells could release a variety
of growth and inflammatory factors, including insulin-
like growth factor-1 (IGF-1), hepatocyte growth factor
(HGE), basic fibroblast growth factor (bFGF), and vascu-
lar endothelial growth factor (VEGEF), to promote tubule
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regeneration and kidney repair [112—115]. Moreover, it
has been reported that renal stem/progenitor cells, resi-
dent MSCs, and BMDCs could self-renew, migrate into
the injured area, and then differentiate to aid tissue re-
pair [11, 18, 21, 73, 78] (Fig. 2).

Microinflammation

Recruitment of stem/progenitor cells

The stromal-derived factor-1 (SDF-1)/chemokine (C-X-
C motif) receptor 4 (CXCR4) axis plays an important
role in the migration of BMDCs and renal stem/progeni-
tor cells [116, 117]. SDF-1, a main regulator of migration
and mobilization for BMDCs [118], is upregulated in the
surrounding resident cells of necrotic area [14, 119,
120]. CXCR4 and CXCR7, the receptors of SDF-1, are
highly expressed in renal stem/progenitor cells [119, 121].
CXCR4 is essential for migration, and CXCR?7 plays a sig-
nificant role in adhesion to endothelial cells and survival
of kidney stem/progenitor cells [119]. CXCR4 and CXCR?
are also expressed in BMDCs [118, 122-125]. Studies also
show that the upregulation of SDF-1 in injured areas in-
creases the expression of CXCR4 in BMSCs [126, 127].
Moreover, the role of CXCR4 or CXCR7 in BMSCs is
similar to that in renal stem/progenitor cells [128]. A
study shows that the SDF-1/CXCR4 axis plays an import-
ant role in BMSC migration as well as in survival and
cytokine secretion in the injured area by activating the
Akt and Erk pathways [127].

CD44—hyaluronic acid (HA) interaction also plays
an important role in the migration of BMDCs to the
injured area [129-132]. HA is the major ligand of
CD44, which is expressed in BMSCs, will increase
after tissue injury in both chronic and acute kidney
injury [129, 130, 132]. A study shows that CD44-HA
interaction also plays an important role in the stimu-
latory effects of SDF-1 on BMDC migration [132]. In
addition, osteopontin is also upregulated after kidney
injury [133, 134], which promotes the expression of
its receptor integrin Bl in BMSCs, and leads to the
migration of BMSCs in a dose-dependent manner
[117, 135]. Moreover, it has been found that
CD44v6, another receptor of osteopontin, which is
also expressed in BMSCs, may also play an import-
ant role in the migration of BMSCs to the injured
kidney [135, 136]. The capacity of BMSCs to reshape
themselves, depending on their stiffness, is related to
the structure of the cytoskeleton and significant for
migration due to the physical ability when crossing
tissue and vessels [137]. Osteopontin also lowers the
expression of cytoskeleton proteins through FAK/
ERK1/2 pathway, contributing to BMSC migration by
reducing cell stiffness [117].

Besides, growth factors and proinflammatory cytokines
released by the injured area, including bFGF, VEGF,
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cells, T cells, NK cells, and dendritic cells, which constructs the local immune microenvironment to affect the stem/progenitor cell-induced tissue
repair. Overall, the various factors in the local microenvironment build up an intricate network to cooperatively assist stem/progenitor cell
functions and finally promote stem/progenitor cell-dependent tissue repair through their beneficial effects on angiogenesis, anti-inflammation,
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platelet-derived growth factor (PDGEF), transforming
growth factor B1 (TGF-B1), IGE-1, HGF, tumor necrosis
factor-alpha (TNF-«) [138—140], and interferon-gamma
(IEN-y) [140], also play a significant role in the migra-
tion of BMSCs [117, 141]. However, the sustained up-
regulation of PDGF, a powerful growth factor in BMSC
recruitment and tissue repair in the injured kidney
[142], could also lead to renal fibrosis by activating myo-
fibroblasts, mesangial cells, or smooth muscle cells
[143]. It has also been found that FGFs, a factor playing
an important role in stem cell self-renewal [144], is
released after kidney injury to be the requisite for the

recruitment of kidney stem/progenitor cells and main-
tenance of cell adhesion [145].

Anti-inflammation and tissue repair of stem/progenitor cell

Differentiation is not the only mechanism by which
renal stem/progenitor cells or BMDCs repair the injured
kidney; this is also accomplished through a paracrine
mechanism. It has been found that extracellular vesicles
(EVs) could form an important part of the paracrine sys-
tem. EVs are small, lipid membrane-enclosed subcellular
structures carrying biomolecules of proteins, lipids, nu-
cleic acids, and sugars. They are released from cells into
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the extracellular environment and even could reach re-
mote areas. EVs include exosomes, microparticles, or
microvesicles [146—149]. Notably, kidney stem/progeni-
tor cells could secrete IL-15, endothelial growth factor,
HGF, leukemia inhibitory factor, inhibin-A, decorin,
VEGEF, and recombinant human bone morphogenetic
protein (BMP)-7 through direct release or through shut-
tling mRNA or miRNA using EVs, to repair renal injury,
alleviate inflammation, and retard fibrosis [14, 150—152].
A study shows that the effects of EVs of kidney stem/
progenitor cells may primarily depend on the shuttling
of mRNA or miRNA, because after treatment with
RNase, EVs are not effective on improving kidney func-
tion and aiding recovery. Meanwhile, physiological doses
of RNase cannot degrade the RNA in the EVs, but high-
dose can [152].

Besides, BMSCs also play a significant role in anti-
inflammation and facilitating tissue repair after kidney
injury. Several studies have suggested that the main pro-
tective mechanism of BMSCs in kidney is through para-
crine action rather than differentiation [153—-156]. They
performed the study using the Y chromosome as a
marker of donor BMSCs; they could not find BMSCs
within the tubules in that infusion of BMSCs, and
BMSCs were rare in the renal interstitium. However,
they found kidney failure was ameliorated [155].

Moreover, conditioned medium from cultured BMSCs
not only induces migration and proliferation of renal
epithelial cells and greatly alleviates proximal tubular cell
death in vitro, but also inhibits kidney injury after intra-
peritoneal administration [155]. BMSC administration
downregulates TGF-f, [FN-y, IL-6, and IL-1f expression
and further represses inflammation and fibrosis through
the direct secretion of repairing cytokines or release of
EVs [14, 42, 153, 157-159]. The administration of
BMSCs also inhibits the expression of apoptosis-related
proteins such as Bax, cytochrome ¢, and caspase-3, in-
creases the activity of superoxide dismutase (SOD), and
regulates autophagy-associated proteins such as Beclin 1,
PINK1, Parkin, p-Parkin, LC3B, and MAPK signaling-
related proteins to decrease apoptosis and oxidative
stress [160—163]. However, one study also shows BMSC
could differentiate into myofibroblasts upon long-term
stimulation by TGF- [164].

Hypoxia and angiogenesis

Hypoxia is one of the most common features of tissue
injury [159]. A study shows that hypoxic microenviron-
ment could enhance the migration of BMSCs [141]. The
expression of SDF-1 in kidney is increasing after ische-
mic or hypoxic injury [120, 128, 165]. Besides, hypoxia
also increases the expression of CXCR4 in BMSCs [128].
It indicates that hypoxia may play a significant role in
the recruitment of stem/progenitor cells into injured
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kidney by SDF-1/CXCR4 axis. After renal stem/progeni-
tor cells migrating into the injured area, the microenvir-
onment of low-oxygen tension induces them to
proliferate and produce erythropoietin to limit renal fi-
brosis via activating the hypoxia-inducible factor-2a
(HIF-2a) axis by prolyl hydroxylase [76, 166, 167].
Erythropoietin could also increase the expression of
SDF-1 in kidney [168]. Hence, the interaction between
hypoxic microenvironment and renal stem/progenitor
cells may form a positive cycle for recruiting stem/pro-
genitor cells and subsequent repair.

Kidney-resident MSCs could release the EVs carrying
VEGF, bFGF, and IGF-1, the proangiogenic factors, to
contribute repair through their anti-apoptotic and angio-
genic effects [152, 169, 170]. Hypoxic culture of MSCs
could induce the secretion of these pro-vasculogenic fac-
tors [159], such as IGF-1, VEGF, bFGF, HGF, and thy-
mosin 4 (TB4), to facilitate tissue repair and ultimately
promote kidney protection [51, 113, 154, 171-174].
Similar to kidney-resident MSCs, studies have shown
that BMSC-derived EVs could also protect against kid-
ney injury through anti-apoptotic and angiogenic effects
[159, 175]. The biological effects of BMSC-derived EVs
may mainly depend on the contained RNA, including
mRNA and microRNA, because RNase could abolish the
effects of EVs [176]. The EVs, as a tool of transportation,
can shuttle the specific subset of cellular RNAs of
BMSCs, especially RNAs associated with transcription
and proliferation, to modulate energy metabolism and
cellular pathways of recipient cells [35, 169, 176—178].
Studies have shown that more EVs are engrafted into
the injured kidney than the normal after injection. Fur-
thermore, the majority of EVs are taken up by tubular
epithelial cells and peritubular capillaries, but some also
by glomeruli [169]. However, the underlying mechanism
is still a mystery.

A study shows that EPCs could be mobilized into
glomeruli after kidney injury. They would self-renew,
differentiate into glomerular endothelial cells, and ex-
press hypoxia-inducible factor 1 (HIF-1), the key tran-
scription factor driving VEGF expression [54, 179], to
rebuild the glomerular capillary structure [89, 180].
Moreover, EPCs can also enhance renal growth factor
expression and retard oxidative stress in ischemic kidney
[181]. Like MSCs, EPCs can also ameliorate kidney in-
jury and enhance angiogenesis through EVs release for
delivering miRNA, because some researches show the
renoprotective effects of EVs are lost after treatment
with RNase or specific miRNA-antagomirs [182—184].

Local immune response

Studies have shown that after kidney ischemia injury,
mature dendritic cells are increased. As an antigen-
presenting cell, dendritic cells would induce T cell
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proliferation and migration to inspire the immune re-
sponse [185]. T cells, especially CD4"-T cells, are an im-
portant source to persist inflammation in CKD patients
[16, 186, 187]. Abnormal activation of T cells leads to a
release of proinflammatory cytokines such as TNF-a and
IFN-y [186], which play an important role in the recruit-
ment of BMSCs [138-140]. B cells may also play a role
in kidney injury. A study shows that B cell deficiency
plays a protective role in renal IRI mice [185]. The net-
work of dendritic cells, T cells, and B cells constructs
the local immune microenvironment to affect the stem/
progenitor cell-induced tissue repair.

Studies show that MSCs and renal stem/progenitor
cells in papilla exhibit the capacity of immunomodula-
tion [15, 16, 74]. They can greatly reduce T cell prolifer-
ation through cell-cell contact and inhibit the
stimulatory effects of dendritic cells on T cells and the
secretion of prostaglandin E2, an anti-inflammation fac-
tor [15, 16, 188, 189]. BMSCs also exert an inhibitory ef-
fect on the proliferation of T cells and natural killer
cells, inhibit alloantigen recognition and processing of
dendritic cells, and modulate B cell functions, including
proliferation and antibody production to trigger im-
munosuppression [16, 17, 190-194]. Studies have shown
that BMSCs could not only inhibit dendritic cell matur-
ation, but also inhibit the antigen-presenting function by
inhibiting their migration into lymph nodes, downregu-
lating IL-12 expression, and upregulating IL-10 expres-
sion [195-197]. BMSCs also inhibit the cytotoxic activity
of NK cells by decreasing NKp30 and natural killer
group 2 and downregulating member D, the receptors
for natural killer cell activation, and target-cell killing
[198]. BMSCs also contribute to the transition of T cells
from a proinflammatory state to an anti-inflammatory
state and inhibit the formation of cytotoxic T lympho-
cytes [198, 199], which may partly explain the kidney
protective function of BMSCs in autoimmune nephropa-
thy. Compared with T cells, the influence of BMSCs on
B cells is controversial. Some studies have shown that
BMSCs can inhibit B cell proliferation, differentiation,
and chemokine secretion, whereas other studies have
shown that BMSCs could promote the proliferation and
stimulate the secretion of antibodies [198].

Strategies of stem/progenitor cell therapy for
kidney injury

Preconditioning

After kidney injury, BMSCs, EPCs, HSCs, and kidney
stem/progenitor cells migrate into the injured area,
but the local microenvironment may also lead to
their apoptosis because of ischemia, inflammation,
deficiency of oxygen and nutrition, and the upregula-
tion of oxidative stress as well as immunological
rejection. Studies have shown that the function of
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EPCs and BMSCs in CKD is greatly impaired [200—
202]. Undoubtedly, the efficacy of stem/progenitor
cells primarily depends on their ability to migrate
into injured areas and their survival time. A strategy
to improve stem cell homing and survival seems
necessary.

Stem cell preconditioning is a promising way for us.
These strategies include incubation or co-injection
with cytokines or chemical compounds, hypoxia
stimulation, and genetic modification [203]. Hypoxic
or ultrasound preconditioning, incubation with TGEF-
Bl or IGF-1, and co-injection with erythropoietin can
increase the expression of CXCR4 in BMSCs, further
promoting BMSC homing to the kidney through the
CXCR4/SDF-1 axis [128, 168, 204—210]. Leflunomide
also increases mobilization of BMSCs, HSCs, and
EPCs in the peripheral blood and promotes their mi-
gration into the injured kidney [211]. Hypoxic pre-
conditioning upregulates the expression of CXCR7 in
BMSCs [212], and not only improves BMSC chemo-
taxis but also enhances secretion of therapeutic sol-
uble factors, such as VEGF, IGF-1, HGF, FGF, and
angiopoietin and increases cell viability in injured area
[128, 159, 213]. Preconditioning with sevoflurane can
also produce protective effects on BMSC survival by
minimizing apoptosis and recovering the loss of mito-
chondrial membrane potential [214]. Erythropoietin
can not only enhance the proliferation and kidney
protective function of BMSCs [215, 216], but also
protect the kidney by enhancing mobilization and re-
cruitment of EPCs [217, 218]. Statin pretreatment
ameliorates oxidative stress, inhibits the inflammatory
response in the injured kidney, and increases the sur-
vival of implanted BMSCs [219], and also increases
EPC recruitment and reduces apoptosis [220]. Pre-
treating BMSCs with melatonin enhances their sur-
vival after migration into the injured kidney [221,
222]. Administration of pioglitazone could improve
the function of MSCs and EPCs by reducing endo-
plasmic reticulum stress and mitochondrial fusion
[223-226].  Pretreatment  with  the  dipeptidyl
peptidase-4 inhibitor sitagliptin, an agent for incretin-
based therapies for type 2 diabetes [227], can enhance
EPC mobilization by increasing plasma SDF-la con-
centrations, possibly be an effective strategy for the
treatment of diabetic nephropathy [228].

Genetic modification is also a useful way of precondi-
tioning to enhance stem cell homing to the kidney.
CXCR4-overexpressing BMSCs constructed by lentivirus
infection have a stronger ability of homing to the kidney
and enhanced paracrine actions to produce HGF, BMP-
7, and the anti-inflammatory cytokine IL-10 [229].
Kallikrein-modified BMSCs through lentivirus infection
also have stronger anti-oxidative, anti-apoptotic, anti-
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inflammatory, and angiogenic effects on kidney injury
[230]. MiR-let7c-overexpressing BMSCs can deliver
more miR-let7c through EVs to injured kidneys, further
reducing the expression of fibrosis-related genes and
renal fibrosis [231]. MiR-126-overexpressing BMDCs
have an enhanced ability of mobilizing into injured areas
by regulating the CXCR4/SDEF-1 axis [232].

Application of bioactive molecules secreted by stem/
progenitor cells

As described above, many studies indicate that the bio-
active molecules secreted by stem/progenitor cells also
play an important role in restoring renal function. Their
application could have multiple advantages in clinical
applications, including the prevention of stem/progeni-
tor cells from directly exploring the injured microenvir-
onment and an easier productive and storage process
[233]. The function of stem cells in CKD is impaired,
and allogenic stem cells may be rejected, so the use of
bioactive molecules secreted by stem cells is a potential
strategy to overcome this problem. Theoretically, cell-
free therapies may exhibit superior safety compared with
direct delivery of stem cells. BMSC-derived conditioned
medium promotes the regeneration of injured kidney tis-
sue, reduces renal inflammation and fibrosis, and re-
stores the microvascular structure in unilateral ureteral
obstruction (UUQO), 5/6 nephrectomy, and diabetic ne-
phropathy models [48, 233-236]. The effect of EVs from
BMSCs on the recovery of kidney is similar to adminis-
tration with BMSCs, so the application of EVs is also a
potential strategy for us. Studies show that allogenic
kidney-resident MSC-derived EVs can decrease apop-
tosis, enhance tubular proliferation and tubule forma-
tion, and reduce inflammatory cell infiltration in IRI and
UUO models [170, 237]. Besides, both autologous and
allogenic BMSC-derived EVs can improve renal function
in IRI, drug-induced nephropathy, UUO, and subtotal
nephrectomy models [169, 177, 178, 238—-241].

Biomaterials

Biomaterials, which can improve the migration of stem/
progenitor cells, enhance their function, and provide a
favorable microenvironment, should also be taken into
consideration [242]. As described above, bioactive mole-
cules secreted by stem cells exhibit many advantages in
restoring renal function, but they are unstable and are
rapidly degraded in vivo. To maintain a certain blood
concentration, a multiple-dose protocol is required. Bio-
materials such as hydrogel, which ensures controlled re-
lease of bioactive factors, can solve this problem [243].
EVs also require a frequent dosing because they are rap-
idly cleared from the body by the reticuloendothelial sys-
tem after injection into the circulation [244].
Preconditioning with biomaterials is a promising strategy
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to overcome rapid clearance. Combining or wrapping
EVs in a biomaterial matrix can maintain their bioavail-
ability after administration, permitting sustained and
controlled release, to enhance therapeutic efficacy [159].
Hydrogels, especially modified hydrogels, could enhance
the retention and stability of EVs [245]. A study shows
one kind of mesoscale nanoparticles could package small
molecules and even large biomolecules such as DNA
which is not dependent on the encapsulated cargo and
exhibit 26-fold renal selectivity without side effects such
as immune reactions as well as liver or kidney impair-
ment [246]. Preconditioning with biomaterials can also
enhance stem cell survival, engraftment, and homing. In-
jectable biomaterials such as hydrogels could increase
the retention of stem cells after transplantation [242].
MSC spheroids entrapped in Arg-Gly-Asp-modified al-
ginate hydrogels exhibit decreased apoptosis and in-
creased survival as well as VEGF secretion after
transplantation [247]. In addition, the fate of stem/pro-
genitor cells homing to injured areas mainly depends on
the local microenvironment. Biomaterials could provide
a stem cell niche-like microenvironment for transplanted
stem/progenitor cells in vivo [159]. Preconditioning of
pro-survival peptides with a slow-releasing of collagen
matrix can enhance survival of BMDCs after ischemic
injury [248]. Porous alginate cryogels, a synthetic niche,
can enhance the paracrine effects of MSCs [249]. More-
over, the use of biomimetic macroporous polyethylene
glycol hydrogel is an effective method to significantly
promote the multiplication of HSCs before transplant-
ation in vitro by mimicking the natural microenviron-
ment of HSCs [250].

Bioengineering methods

Bioengineering may be a potential strategy for replacing
injured kidneys in the future. Kitamura et al. found that
kidney stem/progenitor cells in the S3 segment are able
to reconstitute a three-dimensional nephron-like struc-
ture in vitro [72]. Moreover, there are three main proto-
cols to induce human kidney organoids formation by
kidney progenitor cells from ESCs or induced pluripo-
tent stem cells (iPSCs) [251]. The first protocol, put for-
ward by Taguchi et al, who were inspired by the
analysis of embryonic renal precursor cell populations,
constructs kidney progenitor cell-based kidney organoids
by ESCs or iPSCs [252]. The Taguchi protocol induces
ESCs or iPSCs into kidney progenitor cells, which then
generates kidney tubules and glomerulus-like structures,
and are efficiently vascularized after transplantation
[253]. The second protocol, called the Takasato protocol,
uses a two-dimensional induction of kidney progenitor
cells, followed by three-dimensional culture, generating
kidney organoids which contains nephrons, collecting
ducts, and interstitium, as well as endothelial cells, based
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on the adoption of ESCs or iPSCs. The renal organoids
exhibit absorptive capacity for dextran [254—256]. The
third protocol, the Morizane protocol, like the Takasato
protocol, is divided into two-dimensional and three-
dimensional steps, but requiring less time, to construct
organoids containing epithelial nephron-like structures
[257]. ESCs/iPSC-derived functional kidney organoids,
which can be derived from patients’ own cells, present
great potential for kidney replacement therapies in the
future [258]. Nevertheless, there are many challenges
that need to be overcome before the application of kid-
ney organoids in humans, including strategies to im-
prove the scalability and vascularization of organoids.
Moreover, it has been found that cells in kidney orga-
noids are much more immature than cells in the adult
kidney, and there are off-targeted non-renal cells within
organoids [251].

The application of a decellularized extracellular matrix
(dECM) scaffold, providing a 3D environment
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mimicking the natural tissues. The forms of which in-
cludes gels, patches, sections, blocks, and coatings, will
also play a significant role in regenerative medicine and
bioengineering in the future [242]. dECM scaffolds from
kidney, in which there are no cells, or important cell-
associated immunogenic markers, but only a native renal
architecture and extracellular matrix protein, create a
niche similar to the natural renal tissues, facilitate the
recruitment of stem/progenitor cells, enhance neovascu-
larization, and promote restoration of kidney function
[259, 260]. dECM scaffolds from porcine, preserving the
native renal architecture, extracellular components, and
an intact vasculature network, may be a promising plat-
form for kidney bioengineering due to the kidney defi-
ciency for replace treatment [261]. SDS-treated dECM
scaffolds from porcine show no cytotoxicity to primary
human renal cells and depressed immunoreactivity by
the thorough clearance of porcine cellular material
[262]. A study shows that after implantation of the
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Fig. 3 There are four potential strategies for improving the therapeutic effects of stem/progenitor cell-based therapy, including preconditioning,
application of biomaterials, bioactive molecules, and bioengineering. Preconditioning mainly includes hypoxia, genetic modification, and
administration with cytokines or chemical compounds. Biomaterials include hydrogels, biomaterial matrix, and other novel materials. The
application of the bioactive molecules and EVs secreted by stem/progenitor cells is also helpful. And the application of dECM scaffold and ESCs
or iPSCs to regenerate a functional whole organ is a prospective strategy in the future
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porcine dECM scaffold into the porcine kidney, the scaf-
fold is easily reperfused, can sustain blood pressure, and
is tolerated during the study period without blood ex-
travasation. However, inflammatory cells and complete
thrombosis can also be observed [263]. In a study, the
researchers plant mouse ESCs in dECM scaffolds of rat
kidney to induce recellularization and organoid con-
struction in vitro, and then implant it into a uninephrec-
tomized rat. The result shows that these recellularized
scaffolds are easily reperfused, could tolerate blood pres-
sure, and produce urine with no blood leakage for
approximately 2 weeks [264]. Although the regeneration
of functional whole organs has not been accomplished
and there are many obstacles still need to be overcome,
the combination of stem/progenitor cells and dECM
scaffolds will hopefully overcome these challenges one
day and take an advance in regenerative medicine [265].

Conclusions

There is a range of stem/progenitor cells, including
kidney-resident stem/progenitor cells in the different
areas of the kidney, with their own characteristics, and
those that are derived from bone marrow and then
home to the kidney. After kidney injury, these stem/pro-
genitor cells can migrate into injured areas through a
complicated mechanism, where they exert a protective
effect on the inflammatory and hypoxic microenviron-
ment of the injured kidney through differentiation or
paracrine functions.

There are some appropriate and promising strategies
for stem/progenitor cell-based therapies (Fig. 3). Stem
cell preconditioning is an effective strategy to improve
stem cell homing and survival, so as to enhance their
kidney protective effect. However, the stem/progenitor
cells” function is impaired in CKD patients, leading to
the unsatisfactory therapeutic effects, but allogenic stem/
progenitor cells may be rejected. The application of bio-
active molecules secreted by stem/progenitor cells could
overcome this challenge. Because the combination with
biomaterials can overcome the rapid clearance of stem/
progenitor cells and their bioactive products in vivo, en-
hance their renal selectivity, and provide a welcome
microenvironment to promote their survival and func-
tion, this strategy should also be taken into consider-
ation. Finally, with the potency to biotechnological
generation of a functional whole kidney in the future, a
bioengineering method may be a promising future
prospect.
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