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Abstract

Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer,
exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy
in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median
overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new
insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also
responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM
resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to
chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth
and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major
intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic
agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional
treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of
effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for
a promising future.
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Introduction
Gliomas are the most frequent primary brain tumors in
adults, accounting for more than 80% of all malignant
cerebral neoplasms [1]. Among these tumors, glioblast-
oma (GBM) is the most common primary intracranial
tumor with a very poor prognosis (WHO grade IV),
representing 57.3% of all gliomas [1, 2]. These tumors

can be divided into IDH wild type, clinically defined as
primary or de novo glioblastoma, which corresponds to
approximately 90% of GBM cases and generally occurs
in patients aged 62 or older, and IDH mutant, corre-
sponding to secondary glioblastoma (approximately 10%
of cases) that progressively develops from low-grade as-
trocytoma and frequently manifests in patients aged 40–
50 years old (Fig. 1) [2, 3]. Currently, the most frequent
molecular alterations associated with primary GBM are
epidermal growth factor (EGFR) amplification or muta-
tion, loss of heterozygosity (LOH) of chromosome 10q
at the phosphatase and tensin homolog (PTEN) locus,
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and TERT gene promoter mutation (Fig. 1). Moreover,
combined deletion of the complete 1p and 19q after un-
balanced translocation between chromosomes 1 and 19
resulting in the 1p19q codeletion, homozygous deletion
of CDKN2A-p16, loss of tumor suppressor genes such as
TP53 and ATRX, and IDH1/2 gene mutations are com-
mon molecular alterations found in secondary GBM
(Fig. 1) [2, 4]. The amplification of the EGFR gene affects
the development and progression of gliomas, conferring
more aggressive properties, and can be used as a thera-
peutic target (Fig. 1) [3, 5]. Recent studies showed that
the TERT promoter mutation essentially accounted for
primary GBM and was associated with aggressiveness
and poor survival (Fig. 1) [6, 7]. Although the presence
of the 1p19q codeletion is associated with higher survival
[8], CDKN2A-p16 deletion was associated with poor
prognosis [8]. The association of TP53 mutation in
GBM and ATRX mutation has not been consistent. So
far, it is known that both can co-occur [9]. Importantly,
IDH mutations are well-established markers of better
prognosis [3, 8]. Genomic studies have also described
five molecular subclasses (mesenchymal, classical (or
proliferative), proneural, neural, and G-CIMP) [10]. Des-
pite improvements in the knowledge and molecular
characterization of glioblastomas, no significant differ-
ence in patient survival has been observed between pri-
mary and secondary glioblastomas, with both showing a
mean survival of 12 to 15 months and a high frequency
of tumor relapse [11].

The gold standard treatment for GBM patients is sur-
gical resection combined with radiotherapy and adjuvant
chemotherapy with the alkylating agent temozolomide
(TMZ) [3, 12]. Although some molecular features have
been proposed as predictive biomarkers of the treatment
response to alkylating agents, such as the methylation
status of the O6-methylguanine-DNA-methyltransferase
(MGMT) promoter, the clinical utility of these markers
is minimal [12, 13]. Some reasons proposed for this re-
sistance may include the diffuse infiltrative nature to the
surrounding brain, which hinders total resection; the
high heterogeneity of GBM, involving distinct molecular
pathways; and, more recently, the presence of stem cell-
like tumorigenic features, including inducing angiogen-
esis, uncontrolled cellular proliferation, resisting cell
death, and genome instability and mutation [3, 12].
Evidence of small populations of tumor cells that are

similar to stem cells, known as cancer stem cells (CSCs)
or tumor-initiating cells, has been known as a cause of
tumor initiation and development since the nineteenth
century and was first described in hematologic malig-
nancies in 1994 [14].
The first evidence of brain stem cells was shown by

Ignatova et al. [15] and later supported by several other
groups [16–18]. In glioblastoma, glioblastoma stem cells
(GSCs) were first identified by Singh et al. as a popula-
tion of cells capable of initiating tumor growth in vivo
[19]. The first accepted GSC surface marker was CD133
[18]. This marker allows the subdivision of stem cells

Fig. 1 Gliomas classification regarding the mutation status of isocitrate dehydrogenase 1 (IDH-1) gene. See text for details (created with Biorender.com)
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into two groups: CD133-positive cells (CD133+), or can-
cer stem cells, and CD133-negative cells (CD133−), or
non-cancer stem cells [20]. CD133 expression also en-
ables the characterization of cell self-renewal capacity, as
there is a decrease in the expression of this surface
marker during cell differentiation [21]. Another critical
feature of CD133+ cells is the capacity to generate neu-
rospheres in vitro and induce brain tumor formation in
in vivo models [19, 22]. Other markers have also been
associated with GSCs that together classify a signature
of these cells. According to Dirks and coworkers, CD15
and CD133 are the most useful surface markers of GSCs
reported to date and stand out compared to other
markers [23]. The presence of dual CD133+/Ki-67+ cells
and associated Nestin or HOX genes is an adverse prog-
nostic factor for GBM progression [24–26]. Another
marker highly expressed in GSCs is the CXCR4 chemo-
kine receptor (CD184), which is associated with CD133+

cells and increased expression of hypoxia-inducible fac-
tor (HIF-1-α) [27, 28]. The same importance should be
assigned to the MUSASHI-1 protein, a regulator of
translation and cellular fate [29]. Other markers, includ-
ing the cell-surface glycoprotein CD44; the cell-surface
gangliosides A2B5, CD90, and SOX2; and ALDH1,
L1CAM, KLF4, SALL4, and GFAP, have also been also
used for the identification of GSCs [29–35]. However,
the specificity of the surface marker CD133 remains un-
clear, with groups reporting the identification of GSCs

that are CD133 negative [36]. Therefore, it is also
noteworthy that although CD133 and CD44 persist
on genetically diverse clones [37], the presence of
more primitive markers, such as OCT-4, SALL4, and
NANOG, among others, needs to be better defined
and may be key to developing novel and effective
treatments for GBMs [38]. The main biomarkers are
summarized in Fig. 2.
Therefore, the promising GSC hypothesis offers new

insight into cancer diagnosis and adds complexity in the
management of brain tumors. The concept that GBM
resistance could be dependent on innate differences in
the sensitivity of clonogenic GSCs to chemotherapeutic
drugs/radiation stimulated the scientific community to
rethink the understanding of GBM growth and therapies
designed to be directed at eliminating these cells or
modulating their stemness [31, 39]. So far, the research
strategies involve the development of drugs that target
cancer stemness, directly or indirectly, in order to target
multiple molecules, either alone or in combination.
This review aims to report intrinsic and extrinsic

mechanisms that mediate chemoradioresistance in GSCs
and therapies based on antitumor agents from natural
sources, derivatives, and synthetics used alone or in syn-
ergistic combinations with conventional treatments. We
will also summarize ongoing clinical trials focused on
these promising targets. Although the development of
effective therapies for GBM remains a major challenge

Fig. 2 Schematic overview of the cellular components of the microenvironment of glioblastoma (GBM). GSC: glial stem cell; Tumor microenvironment
is a complex network composed of stromal cells (fibroblasts, microglia, astrocyte), mesenchymal cells, stem cells, and immune and inflammatory cells
(macrophages). The main biomarkers of glial stem cells are indicated (created with Biorender.com)
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in molecular oncology, GSC knowledge can offer new
directions for a promising future.

Radioresistance
Role of repair mechanism in mediating radioresistance
Ionizing radiation (IR) from radiotherapy induces differ-
ent types of DNA damage, especially DNA double-
strand breaks (DSBs). Depending on the type of injury
caused, DNA repair mechanisms and DNA damage
checkpoints can be triggered, allowing cells to repair
DNA damage and proliferate again [40]. The cellular re-
sponse to DNA damage has been considered as one of
the leading survival mechanisms of tumor cells after
radiotherapy [40, 41].
Preclinical evidence demonstrates that many of these

protection mechanisms are activated in CSC popula-
tions, possibly resulting in treatment resistance [42]. Bao
et al. showed that CD133+ cell subpopulations are resist-
ant to IR due to a more efficient repair system (phos-
phorylation of CHK1, CHK2, and H2AX form γ-H2AX
foci) than the bulk of tumor cells and undergo apoptosis
less frequently [31]. Moreover, an increase in CD133+

cells was also evidenced in clinical samples from recur-
rent tumors after high-dose radiotherapy treatment [43,
44]. Among other DNA repair-related genes, RAD51
overexpression is observed in GSCs, and BRCA1 and
BRCA2 showed upregulation in glioblastoma cell lines,
which led to reduced DNA damage after irradiation [45,
46]. The activation of ataxia-telangiectasia mutated
(ATM) and ATM- and Rad3-related (ATR) also mediates
radioresistance [47, 48]. In addition, other authors have
reported that, in vitro, CD133+ primary cells are more
radiosensitive than established glioma cell lines, with a
reduced capacity to repair DNA double-strand breaks
and an intact G2 checkpoint but no intra-S-phase check-
point [21]. Therefore, the applicability of CD133+ GBM
as a model of radioresistance is still unclear. These data
highlight the heterogeneity of the in vitro radiosensitivity
that exists among primary cell lines and reveal that
radioresistance may be independent of the intrinsic GSC
characteristics.

Role of microenvironment in radioresistance
One parameter that may influence radioresponse is the
tumor microenvironment. Tumors are comprised of
multiple components other than tumor cells (endothelial
cells and multiple infiltrating inflammatory and immune
cells, together with the extracellular matrix, cytokines,
nitric oxide, and oxygen levels) which are also exposed
to radiation during therapy, and their crosstalk might in-
fluence tumor stem cells’ response to radiation [42, 49].
The critical role of the microenvironment, along with
GSCs, is supported directly and indirectly by the obser-
vation that GSCs reside in specific niches, distinct

compartmentalized regions that present morphologically
and functionally distinct functions (Fig. 2) [50]. The
stem cell niche plays an indispensable role in homeosta-
sis, regeneration, maintenance, and repair. There are at
least three specialized tumor niches in GBM that include
the vasculature as an integral regulatory component, in-
cluding the perivascular tumor niche, vascular-invasive
tumor niche, and hypoxic-necrotic tumor niche. These
niches are dependent not only on normal cell compo-
nents in the tumor microenvironment but also on the
genetic and epigenetic profiles of GSCs. The different
combinations of cell components and functional statuses
of the vasculature promote specific features and func-
tions in the niches, as reviewed by Hambardzumyan and
Bergers [50]. In addition to GSC maintenance, the
niches could undergo dynamic alterations in a temporal
and spatial manner and create a succession of tumor mi-
croenvironments to accommodate the aggressive growth
of a tumor such as GBM into normal tissue, both during
tumor progression and in response to therapeutic
agents. In this context, some therapies could convert a
tumor niche into another niche type instead of eliminat-
ing it, thereby losing their effectiveness. According to
Hambardzumyan and Bergers, it is likely, for instance,
that therapies such as radiation and cytotoxic chemother-
apies, which create hypoxia and necrosis, may enhance
hypoxic niches that will transition into perivascular tumor
niches during tumor relapse [50]. Therefore, the under-
standing of the crosstalk between GSCs and their niches,
which supports GSC self-renewal, tumor invasion, and
metastasis, as well as GSC escape from therapy, has be-
come a promising target. In this sense, Mannino and
Chalmers proposed that radioresistance is a result of inter-
actions between these cells and microenvironmental fac-
tors, i.e., the “microenvironment - stem cell unit” [51].
Brain hypoxia is known to be one of the most critical
characteristics in the tumor microenvironment and is
associated with the promotion of tumor progression and
facilitation of angiogenesis, metabolism, and tumor radio-
resistance [52, 53], in addition to triggering mechanisms
such as hypoxia-inducible factor (HIF) signaling and
epithelial-mesenchymal transition (EMT). HIF signaling
was also reported to be pivotal in GSC regulation [54].
Low oxygen levels were observed to prevent GSC differen-
tiation, induce neurospheres, and maintain the potential
of pluripotent embryonic and stemness markers [55, 56].
The link between hypoxic responses and GSCs was sug-
gested by Li and coworkers, who found a differential re-
sponse of GSCs to the HIF family of transcription factors,
including promotion of their self-renewal [57]. Likewise, a
proof-of-concept study using HIF knockdown in GSCs re-
sulted in reduced stemness in vitro and in vivo [57]. It has
also been described that hypoxia induced the expression
of vascular endothelial growth factor (VEGF) in HIF1- and
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HIF2-dependent GSCs [58]. A close relationship between
CD133+ cells and vascular structures was also found in a
study by Christensen and coworkers [59].
Moreover, two independent groups showed that the

CD133+ subpopulation is capable of de novo tumor
vascularization through direct differentiation into endo-
thelial cells, suggesting that a therapy targeting angio-
genic factors would be required to inhibit GBM stem
cells and tumor neovascularization [60, 61]. Finally, it
has also been shown that GBM cells irradiated under
orthotopic conditions have a higher capacity for DSB re-
pair than GBM cells irradiated in vitro, which resulted in
the induction of fewer γH2AX and 53BP1 foci in
CD133+ cells than in CD133− cells [62]. The authors
also showed an increase in the percentage of CD133+

cells at 7 days after radiation, which persisted at the on-
set of neurologic symptoms, suggesting that CD133+

cells are relatively radioresistant under intracerebral
growth conditions [62].

Role of autophagy in mediating radioresistance
Autophagy is a conserved cellular process that is cru-
cial for maintaining cellular homeostasis and survival
and differentiation. Therefore, it is associated with a
variety of pathologies [63]. In contrast to apoptosis,
autophagy is a double-edged sword that could be ei-
ther protective or detrimental to cells, depending on
the nature of the stimulus (nutrient and growth factor
deprivation or an external insult like radiation) and
the extent of autophagy induction [64]. Recent studies
suggest that autophagy has been recognized as fre-
quently activated in cancer and mediates tumor cells’
response to anticancer therapy, especially radiother-
apy, decreasing its efficacy by contributing to GSC
maintenance and reducing ROS-associated DNA dam-
age [65, 66]. Moreover, radiation preferentially acti-
vates autophagy in CD133+ cells and increases the
levels of the autophagy-related proteins LC3, ATG5,
and ATG12 [67]. The same was found in the radiore-
sistant cell line, in which enhanced autophagic flux
and silencing of the LC3A gene sensitized mouse
xenografts to radiation [68]. However, in a study
examining the induction of autophagy by radiation
and its role in the radioresistance of GSCs, the au-
thors found that GSCs expressed lower levels of
autophagy-related protein LC3 and radiation induced
a low degree of autophagy in these cells [69]. More-
over, a recent study showed that autophagy induction
by the mammalian targets of rapamycin (mTOR) in-
hibitor rapamycin triggers GSC differentiation and en-
hances their radiosensitization in vitro and in vivo,
with rapamycin thus becoming a promising tool for
radiosensitization in glioma [70, 71].

Chemoresistance
Role of repair mechanism mediating chemoresistance
The resistance of GSCs to chemotherapeutic drugs has
been well documented, yet the importance of DNA re-
pair remains unclear. A recent study calls into question
whether the differential and more efficient DNA repair
system is specific to all CSCs, since the effects of TMZ
require efficient DNA repair (mismatch repair system)
[72, 73]. Moreover, the extensive heterogeneity within
GBM can complicate the role of the DNA repair system
in GSCs [72]. The DNA repair protein MGMT is the
best-characterized repair protein and is a crucial modu-
lator of TMZ chemoresistance in GBM [74–76]. MGMT
is expressed in GBM at various levels, and reports of its
expression in the GSC compartments remain conflicting
[77, 78]. Nevertheless, there is consensus that MGMT
expression substantially increases the resistance of GSC
[77–79]. A recent report showed MGMT expression in
half of the CD133+ cell lines tested, and the majority of
these cell lines were resistant to TMZ. This result may
suggest the presence of an alternative MGMT-
independent mechanism of therapeutic resistance [80].

Role of multidrug mediating chemoresistance
Another mechanism involved in chemoresistance is mul-
tidrug resistance. However, its role in GSCs remains an
open question. Normal and cancer stem cells have
higher expression levels of several ABC transporters,
which confer them with efflux ability for the fluorescent
dye Hoechst 33342 and helps GBMs with the efflux of
antineoplastic drugs [81]. In line with this, increased
ABCG1 expression was reported in TMZ-induced cells
(the side population cells in flow cytometry that present
the GSC phenotype) [82], and enhanced expression of
multidrug resistance 1 (MDR1) was found in the che-
moresistant phenotype of CD133+ GSCs compared to
bulk CD133− [83, 84]. Although ABCB1 can be an inde-
pendent predictor for TMZ responsiveness [85], there is
conflicting data regarding TMZ transport by these pro-
teins. Bleu and coworkers showed that TMZ is not a
substrate for the ABCG1 transporter [72, 86] in murine
glioma cells.
On the other hand, ABCG2/BCRP and ABCB1/MDR1

overexpression in GSCs was correlated with higher re-
sistance of GSCs to chemotherapeutic drugs. Accord-
ingly, the use of an ABC transporter inhibitor, such as
verapamil, can decrease temozolomide, doxorubicin, and
mitoxantrone resistance in GSCs [87]. Besides, mela-
tonin (N-acetyl-5-methoxytryptamine) increased methy-
lation levels of the ABC transporter ABCG2/BCRP
promoter, promoting a synergistic toxic effect with TMZ
on GSCs and A172 malignant glioma cells [87]. More-
over, reversan, an inhibitor of the MRP1 protein, in-
creased the sensitivity of primary and recurrent GBM
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cells to TMZ treatment; however, this effect has not yet
been evaluated exclusively in GSCs [88].

Role of apoptosis and autophagy in mediating
chemoresistance
The mechanisms of action of TMZ, such as apoptosis,
senescence, and autophagy, have also been described in
GSCs [72, 89]. Prolonged treatment with TMZ can induce
p53 and p21WAF1/Cip1 and cell cycle arrest (G2/M ar-
rest), although genetic background dependence is ob-
served in GBM cell lines. Continued treatment also
promotes apoptosis, but senescence is the major process
observed in glioma and melanoma tumors or cell lines
[72, 89, 90]. Concerning apoptosis, following TMZ expos-
ure, higher expression levels of antiapoptotic genes were
observed in GSCs than in differentiated cell lines, suggest-
ing a possible link between GSC chemoresistance and
antiapoptotic factors [84, 91]. It was also reported that
drug resistance observed in GSCs might depend on abnor-
malities in the cell death pathway, such as the overexpres-
sion of antiapoptotic factors or silencing of key death
effectors [92]. The autophagy process or autophagic cell
death induction can also be observed in response to TMZ
and contributes to glioma chemoresistance and TMZ
treatment failure [93, 94].
Moreover, in GSCs obtained from freshly resected

GBM specimens, the expression of autophagy-related
proteins (i.e., Beclin-1, ATG55, and LC3) was decreased
in CD133+ cells compared with CD133− cells after TMZ
exposure. The authors suggested that GSCs might not
be susceptible to classical pathways of autophagy [95].
On the other hand, rapamycin induces the differenti-
ation of GSCs by activating autophagy [96, 97]. In-
creased rates and numbers of neurospheres in the
rapamycin group compared with other groups were also
reported. Additionally, stem/progenitor cell and differen-
tiation markers were downregulated and upregulated in
rapamycin-treated cells, respectively [97]. These data
suggest that apoptosis and autophagy might contribute
to GSC chemoresistance.

Role of Notch and Sonic hedgehog pathways in
mediating chemoresistance
The increased expression of proteins of the Notch and
Sonic hedgehog (SHH) pathways in CD133+ cells com-
pared with GBM cells has already been described [98].
The comparison between treated and non-treated
CD133+ primary GBM cells showed upregulated expres-
sion of the NOTCH 1, NCOR2, HES1, HES5, and GLI1
genes after TMZ treatment, suggesting the increased ac-
tivity of these pathways [99]. Moreover, the use of Notch
or SHH inhibitors with TMZ reversed the resistance to
TMZ [99].

Epithelial-mesenchymal transition (EMT) mediates GBM
chemoresistance
The epithelial-mesenchymal transition process can also
contribute to GBM chemoresistance. This was exploited
through the gene ZEB1, an EMT regulator, and a known
regulator of stemness and SOX2 in solid tissue cancers
[100]. In GBM, the overexpression of the ZEB1 gene in-
duced the expression of MGMT, resulting in greater
tumor chemoresistance and also induced the expression
of SOX2 and OLIG2, resulting in greater stemness and
higher capacity for tumor formation [101].

Other mechanisms mediating chemoresistance—extrinsic
pathways
Previous studies reported that TMZ might eliminate
CSCs under in vitro conditions [72, 77]. However, pa-
tients treated with TMZ, present no stabilized disease or
recurrence, leading to fatal relapses [74], suggesting that
other mechanisms, such as residual CSC survival, may
occur in vivo. Other extrinsic factors, such as the micro-
environment, contribute to the chemoresistance of solid
tumors [72]. Hjelmeland and coworkers demonstrated
that exposure to an acidic pH environment promoted
malignancy in GBM through the induction of a GSC
phenotype [102]. Moreover, cell-cell interactions and IL-
6 protein expression constitute indirect evidence sug-
gesting that these mechanisms may be relevant for GSCs
[72, 103]. Several reports suggest that tumor cell stem-
ness could be induced by tumor microenvironments
such as hypoxia [57, 79, 104] and drugs such as TMZ
[80]. In line with this, tumor cells can acquire CSC prop-
erties [80, 105]. A recent report showed essential data
concerning the origin, development, and maintenance of
the GSC population after TMZ treatment. In this study,
the authors achieve the conversion of non-GSCs to
GSCs, both in vitro and in vivo, after long-term expos-
ure to clinically relevant doses of TMZ. They showed
that newly formed GSCs expressed molecular markers
associated with parental GSCs, displayed a high rate of
tumor engraftment and had a more invasive phenotype.
These data suggest that the stemness of GSCs may be
governed by cellular plasticity and that TMZ can stimu-
late the dedifferentiation of non-GSCs, explaining the
high rates of tumor recurrence after conventional ther-
apy [80].

Current strategies targeting cancer stem cells
The discovery of pathways essential for modulating
stemness properties has contributed to the identification
of several molecules that could eliminate GSCs, includ-
ing new antineoplastic agents from natural sources
[106–113]. A summary of current potential treatments is
presented in Table 1 and Fig. 3.
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Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

1 Cyclopamine (11-deoxojervine) Target Hedgehog pathway.
Promote inhibition of side and
aldefluor-positive populations.

In vitro
and
in vivo

No [114–116]
PubChem
CID:
442972

2 Guggulsterone Promote intrinsic apoptosis of GSCs
and sensitize cells to SANT-1.
Targeting Ros/NF-κB and Hedgehog.

In vitro No [115, 117]
PubChem
CID:
6450278

3 CX-4945 (Silmitasertib) Target several GSC factors and
markers
Casein kinase 2 selective inhibitor.

In vitro
and
in vivo

Yes [118–121]
PubChem
CID:
24748573

4 SCH 900776 DNA repair inhibitors
Promote radio-chemosensitivity.
Promote CHK1 inhibition.

In vitro
and
in vivo

Yes [122–125]
PubChem
CID:
46239015

5 SAR-020106 DNA repair inhibitor
Promote CHK1 inhibition

In vitro
and
in vivo

Yes [124, 125]
PubChem
CID:
44203948

6 AZD7762 DNA repair inhibitor
Promote radio-chemosensitivity.
Promote CHK1, CHK2, and ATM
protein inhibition.

In vitro
and
in vivo

Yes [120, 124]
PubChem
CID:
11152667

Alves et al. Stem Cell Research & Therapy          (2021) 12:206 Page 7 of 22



Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

7 Debromohymenialdisine (DBH) DNA inhibitors
Promote radio-chemosensitivity.
Promote CHK1, CHK2, and ATM
protein inhibition.

In vitro
and
in vivo

Yes [43, 126–
128]
PubChem
CID:
135451156

8 Erlotinib EGFR inhibitors
Promote proliferation and self-renewal
inhibition.
Promote cell death.

In vitro
and
in vivo

Yes [126–132]
PubChem
CID:
176870

9 Gefitinib EGFR inhibitors
Promote proliferation and self-renewal
inhibition.
Promote cell death.

In vitro
and
in vivo

Yes [126–132]
PubChem
CID:
123631

10 Rapamycin (Sirolimus) Promote GSC differentiation.
Reduce stem cell markers.
Promote radiosensitivity.

In vitro
and
in vivo

Yes [36, 67, 69,
97, 130,
133–135]
PubChem
CID:
5284616

11 Chloroquine (CQ) Promote radiosensitivity
Inhibit autophagy process.

In vitro
and
in vivo

Yes [124, 136,
137]
PubChem
CID:
2719
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Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

12 Cilengitide Promote αv integrin inhibition.
Promote GSCs autophagy, cytotoxicity,
and cell death
Promote radiosensitivity.

In vitro
and
in vivo

Yes [138]
PubChem
CID:
176873

13 AZD2014 (Vistusertib) Promote mTORC1/2 inhibition.
Promote radiosensitivity.
Promote DNA double-strand break re-
pair inhibition.

In vitro
and
in vivo

Yes [133, 139–
141]
PubChem
CID:
25262792

14 Eckol Promote radiosensitivity and TMZ
sensitivity.
Reduce neurosphere formation and
stem cell markers
Target PI3-kinase-Akt and Ras-Raf-1-Erk
signaling pathways.

In vitro
and
in vivo

No [107]
PubChem
CID:
145937

15 Nordy Promote GSC differentiation.
Reduce proliferation, stem cell
markers, and self-renewal
Target ALOX5

In vitro
and
in vivo

No [108]
PubChem
CID:
319062914

16 Resveratrol Promote radiosensitivity and
differentiation of GSCs.
HIF inhibitor.
Induce apoptosis of CD133+ cells.
Target STAT3 pathway

In vitro
and
in vivo

No [106, 109]
PubChem
CID:
445154

17 STX-0119 Promote inhibition of GSCs
proliferation.
Reduce stem cell markers.
STAT3 inhibitor.

In vitro
and
in vivo

Yes [142]
PubChem
CID:
4253236
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Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

18 ER400583-00 HIF inhibitors
Reduce neurosphere formation and
stem cell markers
Inhibit VEGF signaling
Promote microenvironment
modulation.
Reduce HIF-1 expression.

In vitro
and
in vivo

No [57, 106,
111, 143–
148]
Not
available
on
PubChem

19 WP1193 Analog of natural product caffeic acid
benzyl ester
Reduce proliferation and stem cell
markers
Induce apoptosis
Promote G1 arrest decrease of cyclin
D1 and p21(Cip1/Waf-1) increase
Inhibit JAK2/STAT3

In vitro
and
in vivo

No [112]
Not
available
on
PubChem

20 All-trans-retinoic acid (Vitamin A acid) Promote differentiation
Reduce proliferation and nestin stem
cell markers
Promote apoptosis
Target ERK1/2 signaling

In vitro
and
in vivo

No [149–154]
PubChem
CID:
444795

21 Tanshinone IIA Promote suppression of GSC
proliferation.
Reduce stem cell markers.
Promotes the increase of GSCs
differentiation markers.
Induce GSCs apoptosis.
Reduce the IL6/STAT3 signaling
pathway.

In vitro
and
in vivo

No [155]
PubChem
CID:
164676

22 Oleanolic acid Promote suppression of JAK-STAT3 ac-
tivation in M2 polarization of tumor-
associated macrophages.

In vitro No [156]
PubChem
CID:
10494

23 WP1066 Promote STAT3 inhibition
Decrease the surviving fraction of GSC

In vitro
and
in vivo

Yes [157, 158]
Not
available
on
PubChem
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Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

24 Bevacizumab
>Bevacizumab light chain
DIQMTQSPSSLSASVGDRVTITCSASQDISNYLNWYQQKPGKAP
KVLIYFTSSLHSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYS
TVPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNN
FYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLT
LSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
>Bevacizumab heavy chain
EVQLVESGGGLVQPGGSLRLSCAASGYTFTNYGMNWVRQAPG
KGLEWVGWINTYTGEPTYAADFKRRFTFSLDTSKSTAYLQMNSL
RAEDTAVYYCAKYPHYYGSSHWYFDVWGQGTLVTVSSASTKGPS
VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKK
VEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVT
CVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVS
VLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
LPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP
VLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS
LSLSPGK

Promote disruption of vascular niche
and reduce tumor proliferation.
Promote radiosensitivity.
Reduce proliferation and block GSC
ability to induce endothelial cell
migration.
VEGF inhibitor

In vitro
and
in vivo

Yes [113, 124,
132, 159–
163]
DrugBank:
DB00112

25 Cediranib (AZD2171) Promote disruption of the vascular
niche and reduce tumor proliferation.
Promote radiosensitivity.
Reduce proliferation and block GSC
ability to induce endothelial cell
migration.
VEGF inhibitor

In vitro
and
in vivo

Yes [164–166]
PubChem
CID:
9933475

26 Honokiol Promote PI3K/mTOR signaling
inhibition.
Promote proliferation inhibition of
side positive populations.
Promote TMZ-resistant cell sensitivity.
Promote DNA double-strand break re-
pair inhibition.

In vitro
and
in vivo

Yes [75, 95,
167–169]
PubChem
CID:
72303

27 Manassantin B Target hypoxia-inducible factor-1. In vitro No [111]
PubChem
CID:
10439828

28 Curcumin Induce GSCs apoptosis.
Target hypoxia-inducible factor-1.

In vitro
and
in vivo

No [145, 148,
170]
PubChem
CID:
969516

29 SU5416 (Semaxinib) Reduce neurosphere formation and
stem cell markers
Reduce HIF-1 expression
Inhibit VEGF signaling
Target PI3K/AKT/p70S6K1 signaling
pathway

In vitro
and
in vivo

No [147]
PubChem
CID:
5329098
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Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

30 Cannabinoids therapies Promote differentiation.
Inhibit gliomagenesis.
Target cannabinoid type 1 (CB1) and
type 2 (CB2) receptors.

In vitro
and
in vivo

No [157]
PubChem
CID:
9852188

31 Vorinostat (SAHA) Promote GSC differentiation.
Promote G1/S arrest of GSCs.
Inhibit histone deacetylases (HDACs).

In vitro
and
in vivo

Yes [150, 164,
165, 171]
PubChem
CID:
5311

32 Sahaquine Promote HDAC inhibition
Reduce GSC viability
Reduce invasiveness

In vitro No [138]
Not
available
on
PubChem

33 VX680 Pan-AURK inhibitor
Induce apoptosis
Reduce tumor growth

In vitro
and
in vivo

No [172]
PubChem
CID
5494449

34 MLN8237 (Alisertib) Promote GSC colony formation
inhibition.
Promote radiosensitivity and TMZ
sensitivity.
Aurora-A kinase inhibitor.

In vitro
and
in vivo

No [173–175]
PubChem
CID:
24771867

35 Metformin Promote inhibition of GSC self-
renewal.
Reduce GSC viability.
Promote inhibition of CD133+

proliferation.

In vitro
and
in vivo

No [176–181]
PubChem
CID:
4091

36 Telomestatin Polyketide component
Induce apoptosis and impair the
migration potential of GSCs.
Promote telomeric and nontelomeric
DNA damage in GSCs.

In vitro
and
in vivo

No [182]
PubChem
CID:
443590

Alves et al. Stem Cell Research & Therapy          (2021) 12:206 Page 12 of 22



Given the requirement for hedgehog (Hh) signaling in
GSCs, a recent study investigated cyclopamine (11-deox-
ojervine) (1) and guggulsterone (2) [114, 185]. Cyclopa-
mine can specifically inhibit the Hh pathway [117] as
well as the side and aldefluor-positive populations,
resulting in cultures unable to form colonies in preclin-
ical studies and GSCs sensitized to radiation [118, 185].
Another important protein able to target different path-
ways (Hedgehog, Notch, and β-catenin) is casein kinase 2
(CK2) [119]. In GBM, CK2 expression and activity lead
to tumor suppressor inhibition and oncogene activation
contributing to gliomagenesis [119]. Moreover, CK2 in-
hibition promotes O6-methylguanine-DNA-methyltrans-
ferase downregulation and sensitizes glioma cells to
TMZ [121]. CX-4945 (3) is potent, selective, and highly
bioavailable compared to other CK2 inhibitors [121].
This novel molecule and its analogs target several GSC
factors and markers and exhibit promising results in
preclinical studies of several types of tumors, in vivo
models and human clinical trials [121, 186].
Regarding the cell cycle and DNA damage repair [122,

123], there are several CHK1 and CHK2 inhibitors;
CHK1 inhibitors in clinical development include SCH
900776 (NCT00779584) (4) and SAR-020106 (5) [124,

125]. AZD7762 (NCT00413686) (6) and debromohyme-
nialdisine (DBH) (7) are novel potent checkpoint kinase
inhibitors that inhibit both CHK1 and CHK2. AZD7762
was shown to potentiate chemotherapy response in sev-
eral different settings and resulted in the abrogation of
DNA damage-induced cell cycle arrest in vitro and
in vivo in combination with DNA-damaging agents [126,
127]. The use of DBH and radiation treatment is syner-
gistic: together they are able to abrogate the radioresis-
tance of CD133+ cells, suggesting new options for
combination radiotherapy [31, 128].
EGFR is a crucial receptor in the protocols described

for growing GSCs, making clear that this pathway is ne-
cessary for GSC survival [129, 130]. Thus, it would be
rational to use EGFR inhibitors to promote the inhib-
ition of GSC proliferation and self-renewal and induce
cell death [129, 137]. First-generation EGFR inhibitors
such as erlotinib (8) and gefitinib (9) have been used in
the clinical treatment of glioma patients, although less
than 20% of patients presented a response to these treat-
ments. However, EGFR inhibition has been observed to
enhance the chemo- and radiosensitivity of human gli-
oma CSCs [136, 137]. It is believed that the low response
to these inhibitors is associated with loss of the tumor

Table 1 Summary of current therapeutic strategies for some natural products and their chemical derivatives in GSCs. The structure,
biological targets, analysis methods, clinical phase andchanism of 38 natural compounds/or derivatives are described (Continued)

Compound Therapeutic/structure Biological targets/mechanism of
action

Evaluated Clinical
trials

Ref.

37 Harmine Alkaloid component
Promote self-renewal inhibition.
Promote GSC differentiation.
Promote neurosphere formation
inhibition.

In vitro
and
in vivo

No [183]
PubChem
CID:
5280953

* For chemical structures, SDF files were retrieved from PubChem [184], and 2D structures were built on MarvinSketch (MarvinSketch 19.27.0, 2019,
ChemAxon (http://www.chemaxon.com)
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suppressor PTEN, which is usually deleted or mutated in
gliomas and plays a critical role in maintaining neural
precursor cells via activation of the mTOR pathway
[133, 139]. Clinical results with rapamycin (10) have
been described in patients with high-grade GBM [140,
141] and have demonstrated that treatment with rapa-
mycin or combination with EGFR inhibitors may provide
an alternative treatment for TMZ-resistant gliomas, re-
gardless of EGFR status [134, 142].
Related to autophagy, the cell death and survival re-

sponse can be influenced to favor cell death through sev-
eral therapies that inhibit autophagy processes [155].
Chloroquine (CQ) (11) is an applicable autophagy in-
hibitor known to trigger apoptosis in conventional au-
tophagic tumor cells and to improve mid-term survival
in glioma when administered in addition to conventional
therapy [187, 188]. Regarding GSCs, triple combinations
of γIR, low-dose CQ, and PI3K/Akt pathway inhibitors
or high-dose CQ alone induced strong cytotoxic effects
in radioresistant GSCs [187]. Moreover, inhibitors such
as bafilomycin A1 or beclin 1 and ATG5 shRNAs also
sensitize GSCs to radiation and reduce their viability and
capacity to form neurospheres [134, 189]. Likewise,

radiation and the inhibition of αv integrin by cilengitide
(12), which is currently in clinical evaluation, induce au-
tophagy in GSCs, increasing cytotoxicity and reducing
cell survival [190].
In addition, the association of mTOR inhibitors and

radiation led authors to evaluate the effects of AZD2014
(13) [156], a competitive dual mTORC1/2 inhibitor, un-
like rapamycin, an allosteric inhibitor, on the radiosensi-
tivity of GSCs in in vitro and in vivo studies [191].
Beyond these properties, AZD2014 also penetrates the
blood-brain barrier and has been reported in a Phase I
clinical trial as a single agent [156, 159, 160]. The au-
thors showed that AZD2014-mediated radiosensitization
in GSCs promoted the inhibition of DSB repair as evalu-
ated by a clonogenic assay according to γH2AX foci.
Additionally, in GSC-initiated orthotopic xenografts,
AZD2014, when combined with radiation, significantly
prolonged mouse survival even when administered for
only 3 days. These data indicate that AZD2014 may be a
radiosensitizer applicable to GBM therapy [192].
Moreover, other molecules can decrease the stemness

properties of GSCs, including eckol (14) [107], Nordy (15)
[108], resveratrol (16) [109], STX-0119 (17) [161],

Fig. 3 A schematic representation of the molecular signaling hallmarks of glial stem cell (CSC) and the effect of natural compounds and synthetic
drugs on these molecular targets. In the dark red circle are represented natural compounds that target each hallmark. In light red are represented
chemicals/synthetic drugs that targeted each hallmark in GSC. See text for details (created with Biorender.com)
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ER400583-00 (18) [110], WP1193 (19) [111], angiogenesis
inhibitors [143], all-trans-retinoic acid (20) [144], and
Tanshinone IIA (21) [145]. Some of these molecules are
linked to targets the microenvironment and thus indir-
ectly modulate the stemness properties of cancer cells.
However, these drugs cannot be used for a specific tumor
type because the role of each niche in different tumor
types and how they differ from one another is not yet
known. This class includes molecules that primarily target
angiogenesis and hypoxia [107, 108, 110, 111, 145].
Eckol (14), a phlorotannin compound from Ecklonia

species, has been shown to attenuate in vitro anchorage-
independent growth on soft agar and reduce sphere for-
mation and GSC markers. Moreover, the CD133+ sub-
population and self-renewal-related proteins were
decreased in response. The authors suggested that eckol
activity could target PI3K/Akt and MAPK signaling
pathways. Importantly, eckol treatment also decreases
the resistance of GSCs to IR and TMZ and tumor for-
mation in xenograft mice [107, 146].
The synthetic dl-nordihydroguaiaretic acid compound

Nordy (15) was also shown to inhibit self-renewal prop-
erties, induce GSC differentiation, and decrease the GSC
pool in vitro and in vivo. Alox-5 is a Nordy target that
promotes the invasion and proliferation inhibition of
GSCs. Moreover, Nordy promotes GFAP upregulation,
angiogenesis inhibition, and stemness marker downregu-
lation [108, 147].
Regarding pluripotency, signal transducer and activa-

tor of transcription 3 (STAT3), which is associated with
the cell cycle and survival, regulation, immune response,
and differentiation, has been described as a critical initi-
ator and regulator of tumorigenic transformation in
GBM and implicated among GSC maintenance factors.
STAT3 has been related to oncogenic or tumor-
suppressive roles in GBM depending on the tumor geno-
type [111, 167]. These novel therapies may be the basis
for the next generation of GBM treatment. STAT3 sig-
naling includes small molecules such as oleanolic acid
(22) [168], STX-0119 (13) [161], and WP1066 (23) [157].
Resveratrol (16) (RV), a polyphenol in grapes, is known to
be a potential noncytotoxic tumor-preventive drug target-
ing STAT3 signaling. In glioma, RV can induce apoptosis,
enhance radiosensitivity in the CD133+ cell population,
and decrease tumorigenicity in xenotransplant experi-
ments. Furthermore, RV was able to inhibit cell prolifera-
tion and decrease cell motility by modulating the Wnt
signaling pathway and EMT activators [109, 193].
Another novel molecule recently investigated is WP1066

(23), an analog of the natural product caffeic acid benzyl
ester and a potent STAT3 pathway inhibitor. In glioma, this
potent small-molecule inhibitor showed promise as a thera-
peutic agent by targeting GSCs and will be investigated in a
clinical trial for patients with recurrent malignant glioma

and brain metastasis from melanoma (recruiting,
ClinicalTrials.gov). In addition, WP1066 can cross the
blood-brain barrier and is orally bioavailable [157, 194].
Antiangiogenic agents that disrupt GBM-initiating cell

maintenance have been widely investigated, but so far,
only modest results have been obtained. Moreover, some
reports have indicated that glioma develops resistance to
the employed antiangiogenic treatments [195, 196]. To
date, in highly vascular tumors such as gliomas [149,
197], angiogenesis inhibition has improved progression-
free survival, although no cure has been achieved. Clin-
ical trials using bevacizumab (BEV) (24) and cediranib
(AZD2171) (25) (Phase I) alone or in combination have
demonstrated efficacy in GBM patients [164, 165]. In
in vivo experimental studies with mice, BEV treatment
decreased GSCs and the growth rate of GBMs [2].
Regarding clinical trials, BEV (24) has been combined

with irinotecan (Phase II) and pazopanib, also an oral
multitarget angiogenesis inhibitor (GW786034) (Phases I
and II) [143, 164, 165]. A study also demonstrated that
BEV or interferon-beta could enhance radiosensitivity in
orthotopic GBM [171]. However, recent studies suggest
that inhibition of angiogenesis is even a driving force for
tumor conversion to a higher malignancy state, inducing
a phenotypic change from single-cell infiltration to mi-
gration of cell clusters along normal blood vessels, which
is reflected in higher invasion, enhanced metastatic ac-
tivity and dissemination [150, 196].
Moreover, antiangiogenic therapy changes tumor vascu-

lature, leading to hypoxia [196]. The hypoxia phenotype
has been demonstrated as a marker of antiangiogenic ther-
apy resistance by HIF-1α and stromal-cell derived factor-1α
(SDF-1α) upregulation leading to the recruitment of various
pro-angiogenic bone marrow-derived cells [196]. For hyp-
oxia modulation, compelling data demonstrate that the
downregulation of HIF2-α can increase stem cell/pluripo-
tency markers, neurosphere formation, and the VEGF path-
way [57, 151]. Thus, several molecules that inhibit or
indirectly modulate the expression of HIF-1 have been
investigated, although they showed little efficacy either
alone or in combination with standard antitumor agents
[152]. For instance, honokiol (26), manassantin (27) B from
Saururus cernuus and Saururus chinensis, curcumin from
Curcuma spp. (28), resveratrol (16), SU5416 (29), and
ER400583-00 (18) are inhibitors that have been developed
[106, 109, 110, 153, 164, 198, 199].
Honokiol (26) is one of the biphenolic bioactive com-

pounds isolated from Magnolia officinalis, possessing
multifunctional activities in addition to crossing the
blood-brain barrier [173, 174]. Honokiol specifically in-
hibits PI3K/mTOR signaling activation in gliomas [173,
175], promotes the elimination of GSCs, and reverses
TMZ resistance using GBM8401 SP cells, which appear to
have higher expression of MGMT and to be more
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resistant to TMZ. This inhibition is accompanied by a
greater induction of apoptosis and reduced expression
levels of EGFR, CD133, and Nestin, suggesting that hono-
kiol might have clinical benefits for GBM patients, mainly
those who are refractory to TMZ treatment [75, 173, 176].
Furthermore, several agents, such as cannabinoids

(30), are known to exert antitumor action on GBM by
apoptosis induction and tumor angiogenesis inhibition
and have been recently evaluated in GSC differentiation
control. The study provides further support for the hy-
pothesis that cannabinoid changes reduce glioma initi-
ation (neurosphere formation and cell proliferation)
in vivo. These effects were greater in combination with
TMZ and correlated with an increase in cell differenti-
ation [177, 200]. Another strategy to reduce the tumori-
genic potential of GSCs and promote differentiation is
to induce bone morphogenic proteins (BMP) signaling
[165, 178]. The potential of BMP induction of astrocyte
differentiation from normal neural precursors has been
reported in vitro and in vivo [149, 205]. Most import-
antly, BMP4 has been shown to trigger a significant de-
crease in GSCs [165, 178, 179]. Even with BMP
signaling, it was identified that BMP2 heightens sensitiv-
ity to TMZ in GSCs in which MGMT expression was
described as directly downregulated by HIF-1α at the
transcriptional level [180, 201].
The epigenetic modulation of histone acetylation by

histone deacetylase (HDAC) activity has been associated
with several cancer types [182, 202]. The HDAC inhibi-
tor, vorinostat (suberoylanilide hydroxamic acid, SAHA)
(31), and sahaquine (32) are currently in Phase I clinical
trials [138, 183, 203] in GBM. In vitro, SAHA has shown
antiproliferative effects by blocking G1/S phase progres-
sion, increasing the levels of apoptosis-related genes and
inducing the expression of cleaved PARP and p-γH2AX
in GSCs [204]. Sahaquine inhibits HDAC6, leading to a
reduction in the viability and invasiveness of glioblast-
oma tumors and brain tumor stem cells [138]. Most im-
portantly, HDAC inhibitor treatment under culture
proliferation conditions suggests the induction of dif-
ferentiated cell states in adult mouse neural stem cells
[205].
In addition, all-trans-retinoic acid (ATRA) (20), a dif-

ferentiating agent used in clinical practice, is a natural
compound derivative of retinoic acid, also known as
vitamin A [202, 206]. Some findings reported its capacity
for differentiating stem cells as well as normal neural
progenitor cells and downregulating the expression of
the stem cell marker nestin [207, 208]. An additional
study revealed that a combination of ATRA and pacli-
taxel was able to synergistically reduce GBM tumor
growth in both in vivo and in vitro models [209]. GSCs
differentiated into glial and neuronal lineages even at
low concentrations of ATRA. Moreover, ATRA

decreased proliferation and self-renewal of neurospheres
and promoted apoptosis at high concentrations, targeted
ERK1/2 signaling, induced cell cycle arrest at the G1/G0
to S transition, decreased cyclin D1 expression, and in-
creased p27 expression [206, 210].
Another agent with antiproliferative and prodifferen-

tiation effects in GSCs is aurora-A kinase (AURK), a
crucial serine-threonine kinase [211, 212] observed to be
variably overexpressed in gliomas [211, 213]. AURK is
also a vital kinase that governs self-renewal capacity in
GBM tumorsphere cultures [172]. These authors used a
pan-AURK inhibitor, VX680 (33), followed by radiation,
in cell culture and xenograft models, and demonstrated
the induction of apoptosis and reduction of tumor
growth [172]. Hong and coworkers also demonstrated
that MLN8237 (alisertib) (34) [214–216], a highly select-
ive AURK inhibitor, inhibits colony formation in GSCs
and potentiates the effects of radiation and TMZ in glio-
blastoma monolayers and GSCs [217]. Importantly,
MLN8237 is relatively non-toxic to normal human
astrocytes.
Another emerging antiglioma drug is metformin (35),

a drug used mainly for the therapy of type 2 diabetes
and polycystic ovary syndrome [218, 219]. Metformin
treatment in vitro was able to block cell cycle progres-
sion (G0/G1 phase), although cell death was not ob-
served in GBMs [220]. In a recent report, metformin
selectively and remarkably affects GSC viability in vitro
[221]. The authors showed that AKT and the transcrip-
tion factor forkhead box O3 (FOXO3) are involved in
the molecular mechanism of metformin activity in GSCs
[222, 223]. The effects of metformin were also validated
in preclinical glioma orthotopic animal models, in which
metformin administration resulted in a decrease of the
self-renewing properties and tumor-initiating subpopula-
tion [162, 224]. Clinical trials on the use of metformin
alone and cancer treatment (including glioma) and pre-
vention are ongoing [219, 224].
Maruccia and coworkers reviewed exciting results ob-

tained with forty-nine different natural products, including
flavonoids, alkaloids, polyketides, and acid derivatives
[225]. One terpene or terpenoid compound class that has
been reported in GSCs is the retinoic acids (all-trans),
which are potent differentiating agents [144, 226]. The ret-
inoic acids induce the in vitro differentiation of GSCs and
impair the secretion of angiogenic cytokines and GSC
motility, promoting synergistic therapy. The antitumor
mechanism is associated with the downregulation of
Wnt/-catenin signaling [166]. Well-characterized polyke-
tides are telomestatin (36) and derivatives from Streptomy-
ces anulatus, able to induce apoptosis and impair
migration potential of GSCs in vitro and in vivo and to
moderately change non-GSCs and normal neural precur-
sors. Moreover, these macrocyclic compounds also
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promoted telomeric and nontelomeric DNA damage in
GSCs [227, 228]. Two different alkaloids have been re-
ported to be active against GSCs: cyclopamine (1) from
Veratrum californicum and harmine (37) from Peganum
harmala [55, 115, 170]. It was demonstrated that harmine
inhibits self-renewal and induces GSC differentiation. In
particular, harmine inhibits neurosphere formation of hu-
man primary glioblastoma GSCs and AKT phosphoryl-
ation [229].

Conclusion
The development of effective therapy for GBM remains
a significant challenge in molecular oncology due to sev-
eral questions mentioned above. Here, we have discussed
several bioactive products that have been reported to
modulate GSCs and shown to be essential for thera-
peutic applications. Although the detailed underlying
mechanisms are unknown, bioactive products hold
promise for the development of new drugs to treat gli-
oma. Advances in understanding the pathomechanisms
of glioma and the identification of GSC properties and
therapeutic targets in the GSC subpopulation offer new
directions for the development of novel therapies, either
isolated or in combination, using personalized targeting
for primary brain tumors, which is further emphasized
in strategies for basic and translational research with
natural compounds.
Papers of special note have been highlighted as either

of interest (76, 93) or of considerable interest (15, 39, 78,
112) to readers
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