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Mesenchymal stem cell-derived exosomes:
therapeutic opportunities and challenges
for spinal cord injury
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Abstract

Spinal cord injury (SCI) often leads to serious motor and sensory dysfunction of the limbs below the injured
segment. SCI not only results in physical and psychological harm to patients but can also cause a huge economic
burden on their families and society. As there is no effective treatment method, the prevention, treatment, and
rehabilitation of patients with SCI have become urgent problems to be solved. In recent years, mesenchymal stem
cells (MSCs) have attracted more attention in the treatment of SCI. Although MSC therapy can reduce injured
volume and promote axonal regeneration, its application is limited by tumorigenicity, a low survival rate, and
immune rejection. Accumulating literature shows that exosomes have great potential in the treatment of SCI. In this
review, we summarize the existing MSC-derived exosome studies on SCI and discuss the advantages and
challenges of treating SCI based on exosomes derived from MSCs.
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Introduction
SCI is a serious neurological disease because patients
often suffer from poor quality of life. In addition to
motor and sensory impairment, patients also have blad-
der dysfunction an respiratory distress and may die [1].
According to the definition of the International Spinal
Cord Society, SCI is divided into traumatic spinal cord
injury and non-traumatic spinal cord injury [2]. The eco-
nomic impact of SCI on patients is enormous [3].
Current treatments for SCI include surgical decom-

pression [4–6], hemodynamic therapy [7–9], corticoste-
roids [10, 11], and invasive spinal cord pressure
monitoring [12–14]. However, these methods do not

completely restore the function of the injured spinal
cord, and it is urgent to find a new method for treating
SCI.
The role of mesenchymal stem cells (MSCs) in SCI

has been extensively studied, but many studies have
shown that MSCs have many drawbacks, and their
therapeutic effects are more likely to be related to para-
crine action. Exosomes are important mediators of cell-
cell communication and participate in many pathological
processes. The therapeutic potential of exosomes in SCI
has attracted more and more attention in recent years.
This review mainly introduces the potential mecha-

nisms of exosomes derived from MSCs in SCI. Given
the unique role of exosome miRNAs derived from
MSCs, we will introduce them separately. We will also
discuss the prospects and challenges of MSC-derived
exosomes, as MSC-exosomes may become a promising
treatment method for SCI in the future.
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The pathology of SCI
The pathological process of SCI includes two consecu-
tive processes of primary and secondary injury [15, 16].
Primary injury is defined as the immediate mechanical
injury to the spinal cord, which is an irreversible process
[17, 18]. Mechanical injury leads to rupture of the axonal
membranes and the release of inhibitory decomposition
products from the myelin sheath, such as neurite
outgrowth inhibitor protein A, myelin-associated glyco-
protein, oligodendrocyte myelin glycoprotein, and chon-
droitin sulfate proteoglycan, which are all powerful
axonal regeneration inhibitors [19–25]. Physical force is
the main cause of the primary injury, and this force in-
cludes forms of compression, contusion, tear, or tension
[26, 27]. The secondary injury is delayed and progressive.
Inflammatory cells release inflammatory cytokines due
to the destruction of the blood spinal cord barrier
(BSCB) [28, 29]. Secondary injury includes electrolyte
abnormalities and the release of reactive oxygen species

(ROS) and excitatory amino acids, which, in turn, lead
to ischemia, edema, and cell necrosis, and apoptosis at
the injured site [30–39]. Secondary injury is generally
more complicated than the primary injury.

Exosomes and MSC-derived exosomes
Exosomes, one of the main subclasses of extracellular
vesicles that can be released into the extracellular envir-
onment, are secreted by almost all types of cells and
exist widely in body fluids [40, 41]. Exosomes have clear
biophysical and biochemical parameters, so they are suit-
able for routine laboratory tests [40, 42, 43]. The diam-
eter of exosomes is generally 30–150 nm, and their
density is 113–119 g mL−1 [44].
The biogenesis of exosomes can be divided into differ-

ent stages (Fig. 1), including the formation of early endo-
somes through invagination of the plasma membrane,
the formation of late endosomes through cargo selec-
tion, and the formation of multivesicular bodies (MVBs)

Fig. 1 a The structure of exosomes derived from MSCs. MSC-derived exosomes express tetraspanins (CD81, CD63, and CD9), heat shock proteins (HSP60,
HSP70, and HSP90), ALG-2 interacting protein X (Alix), TSG101, and adhesion molecules (CD29, CD44, and CD73). Exosomes derived from MSCs carry a
complex cargo, including nucleic acids, proteins, lipids, and enzymes. b Biogenesis of MSC-derived exosomes. The biogenesis of exosomes includes the
formation of early endosomes through invagination of the plasma membrane, the formation of late endosomes through selection of cargo, and the
formation MVB from late endosomes. MVBs contain ILV. The fusion between MVBs and the plasma membrane results in the release of exosomes. The
three ways for exosomes to enter recipient cells are receptor-mediated entry, direct membrane fusion, and endocytosis
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from late endosomes. MVBs contain intraluminal vesi-
cles (ILVs). The fusion between MVBs and the plasma
membrane results in the release of the MVB contents
called exosomes [45–47]. The endosomal sorting com-
plex required for transport (ESCRT) is an important sys-
tem during exosomal biogenesis [48, 49]. However, the
formation of exosomes is not entirely dependent on the
ESCRT complex [50].
MSCs secrete more exosomes than other cells [51].

MSC-derived exosomes not only express tetraspanins as
common exosomal surface markers (CD81, CD63, and
CD9) but also express heat shock proteins (HSP60,
HSP70, and HSP90), ALG-2 interacting protein X (Alix),
tumor susceptibility gene 101 (Tsg101), and adhesion
molecules (CD29, CD44, and CD73) [41, 52] (Fig. 1).
MSC-derived exosomes, like general exosomes, carry a
complex cargo, including, proteins, nucleic acids, and
lipids [53, 54] (Fig. 1). In addition to cytoplasmic pro-
teins, there are a considerable number of membrane
proteins [44, 55, 56], and proteins found in lipid rafts
(Flotillin-1 and Flotillin-2) [57, 58]. Exosomes are also
rich in nucleic acids, which play an essential role in
changing the fate of recipient cells. Among them, micro-
RNAs (miRNAs) have been researched the most [59,
60]. miRNAs encapsulated in MSC-exosomes mainly
exist in the form of their precursors [61]. Emerging evi-
dence shows that the efficacy of MSC treatment results
mainly from paracrine effects, rather than transdifferen-
tiation and implantation of MSCs. Therefore, MSC-
derived exosomes containing various paracrine media-
tors can be used as a cell-free therapeutic strategy [62].
And we launch the idea that MSC-exosomes have great
potential to promote functional recovery and their con-
tents may serve as biomarkers in SCI.

Treating SCI with exosomes derived from MSCs
Exosomes derived from MSCs are easier to obtain and
store and are subject to little ethical restriction com-
pared with MSCs [63]. The volume of exosomes is sig-
nificantly smaller than that of MSCs, so they will not be
captured by lung and liver tissues, and they can pene-
trate the BSCB [64]. Therefore, attention has recently fo-
cused on the use of exosomes to treat SCI (Table 1). We
have summarized the existing studies on MSC-derived
exosomes to treat SCI. The specific mechanisms are as
follows (Fig. 2).

Anti-inflammatory effects of exosomes derived from
MSCs
The relative levels of pro-inflammatory cytokines, such
as interleukin (IL)-1β, IL-6, and tumor necrosis factor
(TNF)-α, and anti-inflammatory factors are related to
the functional recovery of patients with SCI [83, 84].
Thus, the composition of the pro-inflammatory and

anti-inflammatory environments is highly correlated
with the prognosis after SCI, and inhibiting the forma-
tion of the pro-inflammatory environment is a major
strategy for treating SCI. Romanelli et al. [66] reported
that exosomes derived from human umbilical cord mes-
enchymal stem cells (hUCMSC-exosomes) directly inter-
act with activated microglia in vitro and inhibit the
expression of pro-inflammatory cytokines during sec-
ondary injury. Intravenous injection of hUCMSC-
exosomes into an SCI rat model inhibits the expression
of IL-1β and IL-6, but also inhibits the formation of
scars, thereby contributing to the recovery of motor
function. Neuroinflammation is characterized by the ac-
tivation of resident immune cells initiated by various ex-
ternal stimuli, and this activation is mediated by an
important protein complex-inflammasome called the
nucleotide-binding domain-like receptor protein 3
(NLRP3) inflammasome that plays a key role in the sec-
ondary injury of SCI [85]. The NLRP3 inflammasome is
located in the cytoplasm and is assembled by NLRP3, an
apoptosis-associated speck-like protein containing a cas-
pase recruitment domain, and caspase-1. It is involved in
the regulation of the natural immune response [86, 87].
Some recent studies have shown that the activity of the
NLRP3 inflammasome increases in traumatic brain in-
jury and SCI models [85, 88, 89]. The NLRP3 inflamma-
some may be triggered and upregulated after SCI [88,
90, 91]. Inhibiting activation of the NLRP3 inflamma-
some promotes functional recovery after SCI in rats [88,
90–93]. Huang et al. [65] discovered that exosomes de-
rived from epidural fat mesenchymal stem cells (EFMS
Cs) promote the recovery of neural function and reduce
injured volume. The molecular mechanism is that sys-
temic administration of EFMSC-exosomes into an SCI
model significantly inhibits the activation of NLRP3
inflammasomes and reduces the expression of inflamma-
tory cytokines. In addition, EFMSC-exosomes reduce the
pro-apoptotic protein (Bcl-2-associated X protein, Bax)
after SCI, while upregulating the expression of anti-
apoptotic protein (B cell lymphoma-2, Bcl-2). Sun et al.
[76] obtained similar results. They found that exosomes
derived from hUCMSCs reduce the levels of the pro-
inflammatory cytokines TNF-α, IL-6, interferon-γ, and
granulocyte colony-stimulating factor while increasing
the levels of the anti-inflammatory cytokines IL-4 and
IL-10.

Promotion of macrophage polarization
The therapeutic effect of MSC-exosomes has also been
found to be related to the promotion of macrophage
polarization. Macrophages are heterogeneous cells with
extensive functional plasticity that have been divided
into M1 and M2 types [94, 95]. M1 macrophages pro-
duce pro-inflammatory cytokines, ROS, and nitric oxide
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to promote tissue inflammation and injury. In contrast,
M2 macrophages usually produce anti-inflammatory fac-
tors that reduce the ability of the injured site to produce
pro-inflammatory molecules, thereby resulting in tissue
remodeling. Macrophages can switch from one pheno-
type to another, which is induced by inflammatory fac-
tors after injury or infection [96, 97]. M1 macrophages
have harmful effects in the injured spinal cord, while M2

macrophages promote axonal regeneration even in the
presence of dominant inhibitory substrates [98, 99].
Most macrophages in the injured spinal cord are M1
macrophages, and only a few transient M2 macrophages
exist [99]. The dominance of M1 macrophages and the
decreased number of M2 macrophages after SCI aggra-
vates the injury [98, 99]. Understanding these macro-
phage phenotypes and the characteristics of the

Fig. 2 The therapeutic effects of exosomes derived from different MSCs in the treatment of SCI. MSCs can be obtained from bone marrow, the
umbilical cord, the amniotic membrane, and adipose tissue. Exosomes derived from MSCs have anti-inflammatory and anti-apoptotic effects, as
well as inhibit A1 astrocytes, promote axonal regeneration and macrophage polarization, and protect the BSCB from spinal cord injury
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chemical microenvironment after SCI will help to clarify
how macrophages participate in the pathogenesis of SCI
and to find new treatment strategies. Few reports are
available about exosomes secreted by MSCs that pro-
mote the polarization of macrophages to treat SCI. One
study reported that exosomes derived from hUCMSCs
trigger the polarization of macrophages from the M1
phenotype to the M2 phenotype [76]. Lankford et al.
[100] also demonstrated that intravenously injected
MSC-derived exosomes quickly reach the injured spinal
cord, rather than the uninjured spinal cord, and bind
specifically to M2 macrophages, demonstrating that M2
macrophages can alleviate SCI.

Reduction in A1 astrocytes
Astrocytes are very important in the process of SCI, as
they can hinder or promote recovery of the CNS [101–
104]. In 2017, Liddelow et al. [105] discovered that two
types of reactive astrocytes, called A1 and A2 astrocytes,
are induced by neuroinflammation and ischemia, respect-
ively. A2 astrocytes play a protective role by upregulating
the expression of certain neurotrophic factors, while A1
astrocytes are rapidly formed after SCI, and have neuro-
toxic effects on myelin, synapses, and neurons. Therefore,
inhibiting A1 astrocytes is a potential treatment for SCI. A
study published in 2019 confirmed that bone marrow
mesenchymal stem cell (BMSC)-derived exosomes effect-
ively promote functional recovery after SCI. One of the
potential mechanisms may be to inhibit the activation of
A1 neurotoxic reactive astrocytes [69]. These results sug-
gest that applying exosome-derived MSCs may be a prom-
ising strategy for treating SCI.
A1 astrocyte marker (complement C3) will upregulate

in a nuclear factor kappa B (NF-κB)-dependent manner
[106]. Some studies have shown that NF-κB signaling is
widely activated by a variety of pro-inflammatory agents,
such as cytokines (TNF-α and IL-1) and ROS [107, 108].
In addition, the secondary inflammation of SCI is regu-
lated by the NF-κB pathway [109], and inhibiting the
NF-κB signaling pathway promotes functional recovery
after SCI [110]. Wang et al. [111] reported that BMSC-
derived exosome treatment effectively reduces SCI-
induced A1 astrocytes by inhibiting nuclear transloca-
tion of NF-κB p65.

Protecting the BSCB
The BSCB is responsible for maintaining the normal
function of the nervous system and its unique character-
istics and functions are regulated by neurovascular unit
cells [112]. The BSCB is formed by the basement mem-
brane, pericytes, capillary endothelial cells, and astrocyte
foot processes [113]. Pericytes, as a part of the neurovas-
cular unit, are very important for maintaining the integ-
rity and barrier properties of blood vessels. Jo et al. [114]

showed that the ability of pericytes to maintain the sta-
bility of microvessels mainly occurs via three possible
mechanisms: promoting the expression of endothelial
tight junction proteins, regulating vesicle transport and
body flow across cells, and moderating the tightness
connection arrangement. In neurological diseases, such
as stroke and ALS, there is increasing evidence indicat-
ing that abnormal migration of pericytes aggravates
these diseases [115, 116]. In clinical practice and animal
models, the destruction of the BSCB is usually the inev-
itable result of SCI [112]. After SCI, the blood vessels at
the injured site are immediately destroyed, and the BSCB
far away from the injured area is permanently destroyed
[117]. Therefore, maintaining the integrity of the BSCB
after SCI is a potential treatment. Previous studies have
shown that intravenous injection of BMSCs promotes
the functional recovery of SCI in rats and accelerates the
restoration of BSCB integrity [68, 118]. Further research
reported that the therapeutic effect of exosomes derived
from BMSCs occurs via the NF-κB p65 pathway to in-
hibit the migration of pericytes, thereby maintaining in-
tegrity of the BSCB after SCI, leading to a reduction of
neuronal cell apoptosis, axonal regeneration, and motor
function [68]. Yuan et al. [119] directly used pericyte-
derived exosomes to treat SCI and found that they re-
duce cell apoptosis, improve microcirculation in the
spinal cord after injury, and prevent BSCB injury and
edema.

Exosomal miRNAs derived from MSCs in SCI
MicroRNA (miRNA) is an endogenous non-coding RNA
with a length of 20–24 nucleotides. After mature miR-
NAs are treated with dicer enzymes, they usually interact
with target messenger RNAs (mRNAs) and bind to the
3′ end, leading to translational inhibition and degrad-
ation of these target mRNAs [120, 121]. Recently, some
miRNAs have been identified as potential new targets
for treating SCI, including miRNA-486, miRNA-21, and
miRNA-126 [122–124]. Accumulating evidence reveals
that exosomes with a bilayer membrane structure can be
used as valuable carriers for targeting miRNAs at the
SCI site. In addition, exosomes can penetrate the blood-
brain barrier or BSCB to enhance the therapeutic effect
of miRNAs [125]. MSCs secrete exosomes containing
high levels of specific miRNAs by transfecting specific
miRNA plasmids in advance [126]. Extensive studies
have indicated that exosomes from MSCs carrying miR-
NAs have efficient repair effects on SCI. Exosomal miR-
NAs currently studied in SCI mainly include miRNA-21,
miRNA-133b, and miRNA-126 (Fig. 3).

MiRNA-21 of exosomes derived from MSCs in SCI
MiRNA-21 expression increases in various injured tis-
sues and organs, suggesting that miRNA-21 is closely
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related to tissue injury [127–130]. Liu et al. [131] re-
ported that miRNA-21 is unregulated in a rat model and
reduces neuronal apoptosis by promoting activation of
the PTEN-Akt signaling pathway and regulating the ex-
pression of the apoptosis-related proteins Bax, Bcl-2,
caspase-9, and caspase-3 [132]. MiRNA-21 is one of the
most common miRNAs secreted by exosomes derived
from MSCs, and it is also the most studied exosomal
miRNA for SCI therapeutic effects. Zhou et al. [72] de-
termined that exosomes derived from miRNA-21-
modified BMSCs significantly promote functional recov-
ery and reduce lesion volume and apoptosis, which was
mainly achieved by downregulating the expression of the
pro-apoptotic gene FasL. The results of miRNA target
analysis tools show that miRNA-21 contains a binding
site complementary to the 3′ untranslated region of the
FasL gene, indicating that the FasL gene is the direct tar-
get gene of miRNA-21. Xu et al. [74] reported that
miRNA-21 of MSC-exosomes regulates apoptosis and
differentiation of neurons in patients with SCI by down-
regulating the expression of PTEN, and that PTEN is a
target gene of miRNA-21. Further research reported that
miRNA-21 of exosomes derived from MSCs not only
targets PTEN but also targets the tumor suppressor gene
programmed cell death 4 (PDCD4). The miRNA-21/
PTEN/PDCD4 signaling pathway improves cell viability
and inhibits cell apoptosis [75]. Ji et al. [73] showed that
the weakened protective effect of exosomes derived from
MSCs on SCI in obese rats was due to insulin resistance
in the rats. Insulin resistance of MSCs reduces the level
of miRNA-21 secreted by exosomes, which further
strengthens the view that miRNA-21 is a potential mol-
ecule for treating SCI.

MiRNA-133b of exosomes derived from MSCs in SCI
MiRNA-133b plays an important role in neuronal differ-
entiation, growth, and apoptosis [133–135]. Some stud-
ies have shown that overexpression of miRNA-133b

promotes functional recovery after stroke in rats [136,
137]. In addition, studies on zebrafish and rodents have
indicated that miRNA-133b is expressed in midbrain
dopaminergic neurons where it regulates the production
of tyrosine hydroxylase and dopamine transporters in
patients with Parkinson’s disease [138]. In a study on the
relationship between miRNA-133b and functional recov-
ery after SCI in adult zebrafish, Yu et al. [139] showed
that decreased expression of miRNA-133b is not condu-
cive to the recovery of motor function and reduces neur-
onal axonal regeneration after using morpholino
antisense oligonucleotides, which inhibit the expression
of miRNA-133b.
Some molecules mediate the protective effect of

miRNA-33b on SCI, such as signal transducer and acti-
vator of transcription 3 (STAT3), RhoA, and cAMP-
response element-binding protein (CREB). STAT3 is dis-
tributed in astrocytes and neurons and is responsible for
neuronal proliferation and differentiation as well as
axonal regeneration [140, 141]. Activated STAT3 medi-
ates inflammation caused by SCI [142]. RhoA is a mem-
ber of the Rho family that is upregulated after SCI in
rats and acts on Rho-associated kinase [143], which is its
direct downstream effector. RhoA is related to the death
of neurons [144]. The transcription factor CREB also
plays an important role in axonal regeneration [145]. Ac-
tivation of CREB is sufficient to overcome myelin inhibi-
tors and promote axonal regeneration in vivo [146]. Qi
et al. [147] demonstrated that miRNA-133b in exosomes
significantly increases the STAT3 phosphorylation level,
which is involved in axonal regeneration in the injured
spinal cord of SCI rats. There is evidence that RhoA is a
direct target of miRNA-133b [134]. In addition, miRNA-
133b in exosomes released by MSCs promotes axonal
growth [148]. Li et al. [77] further demonstrated this re-
sult and showed that systemic injection of miRNA-133b
exosomes protects neurons and promotes the recovery
of motor function after SCI, and this effect was at least

Fig. 3 Exosomal miRNAs derived from MSCs in the treatment of SCI
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partially due to activation of ERK1/2, STAT3, and CREB
and inhibition of RhoA expression. Ren et al. [149]
showed that exosomes containing miRNA-133b signifi-
cantly promote the expression of neurofilament, growth-
associated protein 43 (GAP-43), glial fibrillary acidic
protein, and myelin basic protein by affecting signaling
pathways related to axonal regeneration and promoting
recovery of neuronal function in SCI animals.

MiRNA-126 of exosomes derived from MSCs in SCI
MiRNA-126 has recently been found to promote func-
tional recovery after SCI. In 2015, Hu et al. [124] re-
ported that the expression of miRNA-126 decreases
after SCI, while increasing the level of miRNA-126 re-
duces inflammation and promotes angiogenesis and
functional recovery. This process may be related to the
downregulation of sprouty-related EVH1 domain-
containing protein 1, phosphoinositol-3 kinase regula-
tory subunit 2, and vascular cell adhesion molecule 1
target gene expression. Some scholars have turned their
attention to using exosomes derived from miRNA-126-
modified MSCs to treat SCI. Huang et al. [80] demon-
strated that exosomes containing miRNA-126 promotes
angiogenesis and neurogenesis after SCI, as well as at-
tenuates cell apoptosis, thereby promoting functional re-
covery of an SCI rat model. Yuan et al. [81] indicated
that systemic administration of exosomes derived from
miRNA-126-modified MSCs promotes functional recov-
ery and axonal regeneration. Similar to miRNA-21, it is
likely that miRNA-126 activates ERK1/2, STAT3, and
CREB while inhibiting the expression of RhoA.

Other miRNAs of exosomes derived from MSCs in SCI
In 2019, Yu et al. [71] injected exosomes secreted from
miRNA-29b-modified BMSCs into a rat model. They
showed that these exosomes accelerate motor functional
recovery and reduce pathological damage of spinal cord
tissue in rats with SCI, as well as promote neuronal re-
generation. This mechanism may also be related to regu-
lating the expression of neural regeneration-related
proteins, such as NF200, GAP-43, and GFAP. In
addition, Zhao et al. [150] found that exosomes derived
from BMSCs have neuroprotective effects in the ische-
mic spinal cord. This effect may be due to pre-
transfection of BMSCs to secrete exosomes with high
expression of miRNA-25, thus indicating that miRNA-
25 enhances neuroprotection. Another exosomal miRNA
that has neuroprotective effects is miRNA-544. Li et al.
[151] transfected rat BMSCs with miRNA-544 mimic to
obtain exosomes that highly expressed miRNA-544 and
these exosomes were intravenously injected into a SCI
rat model. The results showed that miRNA-544 acceler-
ates the recovery of neuronal function after SCI. In
addition, overexpression of miRNA-544 in BMSC-

exosomes alleviated the histological defects and neuronal
loss caused by SCI. Liu et al. [152] determined that exo-
somal miRNA-216a-5p transforms microglia from the
M1 pro-inflammatory phenotype to the M2 anti-
inflammatory phenotype by inhibiting TLR4/NF-κB and
activating the PI3K/Akt signaling pathway, thereby in-
creasing treatment potential.

Challenges and prospects
The main obstacles to the repair of an injured spinal
cord include the weakened ability of axonal growth, in-
sufficient repair of endogenous cells, and the presence of
inhibitory molecules at the injured site [153–156]. Over-
coming these obstacles would lead to an ideal method
for treating SCI. MSC transplantation seems to be an at-
tractive option. However, the direct transplantation of
MSCs has potential risks. For example, one study re-
ported that BMSCs that have not been genetically modi-
fied could have chromosomal abnormalities even during
early passages, leading to the formation of malignant tu-
mors [157]. Moreover, MSCs cannot differentiate into
neurons. Immunochemistry, molecular marker, and cell
morphology studies indicate that although MSCs have
neuron-like characteristics after transplantation, it is dif-
ficult to regard them as real neurons [158, 159]. The ex-
pression of neuronal antigens may simply be due to the
immature nature of the MSCs [160]. During in vitro cul-
ture, MSCs gradually lose their potential to proliferate
and differentiate [161, 162]. According to current evi-
dence, the curative effect of MSCs seems to be related to
their paracrine activity but has little to do with the
mechanism of cell replacement [163]. Moreover, the dis-
advantages of MSCs, such as tumorigenesis, low survival
rate, and immune rejection, make it difficult to continue
the treatment of SCI using MSCs [164].
Similar to MSCs, MSC-exosomes have the same char-

acteristics of homing to the injured tissue, and have the
advantage of nanometer size, allowing them to pass
through the BSCB and play an important role in the re-
pair of the nervous system. More importantly, based on
their relatively small molecular structure, natural mo-
lecular transport characteristics, and good biocompati-
bility, exosomes have shown great application potential
as drug carriers in recent years. Traditional drugs often
have a number of defects, such as poor water solubility,
quick removal by the body, poor biocompatibility, unsat-
isfactory distribution in vivo, and low permeability to
cells, which limit their efficacy and clinical application.
However, exosomes combine the advantages of cell and
nanotechnology in drug delivery. For example, exosomes
improve the stability of drugs; exosomes have a natural
targeting ability based on donor cells when delivering
drugs, and exosomes are nano-molecules with cell sur-
face substances, so they have strong biological barrier
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permeability and can selectively penetrate a tissue injury.
Therefore, we speculate that exosomes will be a promis-
ing drug-delivery system to treat SCI. Another advantage
of exosomes derived from MSCs is that they are not
tumorigenic. No study has reported on the tumorigen-
esis potential of MSC-exosomes [165]. Although there is
a lack of a direct comparison of the characteristics of
exosomes derived from different MSCs in SCI models,
we believe that umbilical cord mesenchymal stem cells
(UCMSCs) may be one of the best sources because they
are easier to obtain than BMSCs, and do not involve eth-
ical issues.
Although exosomes have great potential to treat

SCI, there are still a number of challenges that need
to be addressed before exosome therapy for SCI can
be used in clinical trials. First, the source of the exo-
somes must be determined, and the content and
function of exosomes obtained under different culture
conditions (such as hypoxia and growth factors) are
also not consistent [166]. In addition, MSC-exosome
separation methods must be standardized. There is no
consensus on the method to separate exosomes, and
different methods of separating exosomes have advan-
tages and disadvantages. In fact, there are significant
differences in protein and RNA contents among dif-
ferent separating methods [167]. The most commonly
used method is ultracentrifugation, but the purity of
exosomes obtained by this method is low, and the
exosomes can be contaminated by other EVs with
similar diameters [168], so it is necessary to explore a
more efficient method. Another problem that needs
to be solved is the storage, preservation, and trans-
portation of exosomes. Although exosomes are more
stable and suitable for long-term preservation than
MSCs, a study published in 2018 showed that it is
possible to purify exosomes by lyophilization [169].
This would help produce ready-to-use batches of exo-
somes, which could be easily transported; however,
further research is needed to demonstrate whether
lyophilization will change the characteristics of exo-
somes. Before exosomes can be used in clinical trials
it will also be necessary to verify the half-life of
freshly isolated and cryopreserved exosomes after in-
jection. The contents of exosomes also need to be
further studied to understand which components can
be used to treat SCI and which may be harmful. Fur-
ther research is needed to probe the relationship be-
tween injection frequency, dosage, and the therapeutic
effect of MSC-exosomes to maintain the long-term ef-
fect, and whether single or multiple administrations
will have a negative effect, which is very important
for the correct use of exosomes to treat SCI. Research
on the treatment of SCI with exosomes derived from
MSCs is in the exploratory stage; the number of

studies is small and most of them are based on ro-
dents, particularly Sprague-Dawley rats. However,
there are anatomical differences between human and
rodent spinal cords. The SCI area of the rodent
model is small, while the SCI area of humans is often
larger, which leads to more tissue loss. Additionally,
the human nervous system is more complex and
more advanced than that of rodents. The process of
human SCI is characterized by an immune response,
a vascular response, an inflammatory reaction, and
glial scar formation, which is also significantly differ-
ent from SCI in rodents. Thus, the scope of research
needs to be expanded further using larger animals
(such as dogs) for research. In addition, although exo-
somes have a demonstrated therapeutic effect on SCI,
the specific therapeutic mechanism and target are not
exactly clear, and most studies have focused on the
role of miRNAs; there is less research on the role of
other components of exosomes, so further research is
needed to clarify the therapeutic effects of exosomes.
Furthermore, although MSC-exosomes are superior to
MSCs in the treatment of SCI, the production tech-
nology for MSC-exosomes needs to be improved be-
fore it can be used in clinical practice. Studies have
shown that MSCs secrete only a small number of
exosomes (1–4 μg of exosome protein can be ex-
tracted from 106 cells/day) [170]. Therefore, long-
term cell culture and a large number of MSCs are
needed to produce sufficient numbers of exosomes
for clinical applications. However, the expression of
growth factors decreases significantly in late-passage
MSCs, which would reduce the therapeutic effect of
growth factors and its mRNAs secreted by exosomes
[171]. As mentioned earlier, the obstacles to SCI re-
covery include the weakened ability of axonal growth
and insufficient endogenous cell repair but, unfortu-
nately, current research on MSC-derived exosomes
does not aid recovery through these mechanisms. In
addition, there is a lack of research for horizontal
comparison of exosomes from different MSCs in SCI,
and the differences in the therapeutic efficacy of exo-
somes from different MSCs remain unclear.

Conclusions
In conclusion, the treatment of SCI is a great chal-
lenge, and there is no effective strategy to restore lost
function. The pathological process of SCI is very
complex and is the result of multiple factors, which
hinders the development of treatments leading to a
full recovery. Therefore, understanding the patho-
logical mechanism is conducive to better treatments
for SCI. Because of the poor plasticity and weak re-
generating ability of the CNS, the recovery of neural
function is greatly limited. As an intercellular
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communication medium, exosomes are superior for
treating SCI, particularly exosomes derived from
MSCs. Exosomes derived from MSCs can pass
through the BSCB and can be used as good drug car-
riers, which has great therapeutic potential in SCI.
We must optimize MSC-derived exosomes to improve
their therapeutic effect in SCI. More research is re-
quired to clarify the specific role of exosomes in SCI.
If these problems can be solved, it will provide a
comprehensive theoretical basis for the clinical trans-
formation of MSC-derived exosomes in the treatment
of SCI, and bring hope for clinical treatment of SCI.
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