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Abstract

Umbilical cord mesenchymal stem cells (UC-MSCs) have certain advantages over other MSCs and about 300 clinical
trials have been registered using UC-MSCs to treat diseases such as osteoarthritis, autoimmune diseases, and
degenerative disorders, yet, only limited success has been achieved. One reason is that in vitro expanded UC-MSCs
show tremendous heterogeneity and their relationship to in vivo UC-MSCs remains unknown. Here, we investigated
freshly isolated, uncultured UC-MSCs by single-cell RNA sequencing (scRNA-seq) and found two populations of UC-
MSCs. Although UC-MSCs share many expressed genes and may have the same origin, they can be clearly
separated based on differentially expressed genes including CD73 and other markers. Moreover, group 1 MSCs are
enriched in expression of genes in immune response/regulatory activities, muscle cell proliferation and
differentiation, stemness, and oxidative stress while group 2 MSCs are enriched with gene expression in extracellular
matrix production, osteoblast and chondrocytes differentiation, and bone and cartilage growth. These findings
suggest that UC-MSCs should be separated right after isolation and individually expanded in vitro to treat different
diseases.
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Letter
Mesenchymal stem/stromal cells (MSCs) are a group of
cells that can adhere to plastic surface and proliferate, ex-
press CD73, CD90, and CD105 but not CD34, CD45,
CD11b, or HLA Class II, and can differentiate into osteo-
blast, chondrocyte, and adipocyte in vitro [1, 2]. They were
first identified in the bone marrow and later detected in
many tissues including adipose tissues, umbilical cord
(Warton’s jelly) (UB-MSC), dermis, and placenta. Among
MSCs of various sources, UC-MSCs have attracted much
interest as these cells show low differentiation status, low

immunogenicity, and easy to standardize [3]. Up to now,
about 300 clinical trials have been registered using UC-
MSCs to treat diseases such as osteoarthritis, autoimmune
diseases, and degenerative disorders, yet, only limited
success has been achieved [4]. MSCs may execute the
therapeutic effects by immune suppression, differentiating
into tissue cells, secretion of extracellular matrix, and
providing pro-surviving signal molecules [1, 5]. However,
the identity of UC-MSCs and their functions remain
incompletely understood, thus hindering the clinical use
of these cells.
scRNA-seq has become a powerful tool to characterize

tissue stem cells [6]. Previous studies have analyzed
cultured UC-MSCs with scRNA-seq and found that UC-
MSCs could be divided into 11 subgroups [7], which
showed differences in expression of genes encoding
extracellular matrix (ECM), protein process, and cell
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cycle-regulating proteins. In this study, we analyzed
MSCs freshly isolated from Warton’s jelly of human um-
bilical cord and compared them to cultured UC-MSCs.
We used a widely-used protocol to isolate human UC-
MSCs (after removing blood vessels). We found that UC
cells isolated with this protocol could adhere to plastic
petri dishes and proliferate for at least 4 passages. Flow
cytometry analysis showed that the cultured cells were
negative for CD34, CD45, CD11b, and HLA-DR but
positive for CD73, CD90, CD105, and CD44 (Supple-
mentary Figure S1a). They also expressed very low levels
of CD146 and CD200 (Supplementary Figure S1a). They
could differentiate into osteoblasts, chondrocytes, or adi-
pocytes in vitro (Supplementary Figure S1b). Thus, these
UC-MSCs meet the criteria of MSCs. We then carried
out scRNA-seq on freshly isolated UC-MSCs. A total of
5330 cells were sequenced at the depth of 3800 genes
per cell (Fig. 1a). t-SNE analysis revealed two popula-
tions of epithelial cells and two populations of MSCs
with the former expressing epithelial cell signature
genes, e.g., EPCAM, KRT13, KRT14, and KRT17, and the
latter expressing mesenchymal signature genes, e.g.,
PDGFRA, COL1A1, COL1A2, and COL3A1 (Fig. 1b–d).
The two epithelial subpopulations have different fea-

tures with one group expressing ECM genes and the
other expressing development-related genes (Supple-
mentary Figure S2A and B), suggesting that group 1 may
represent epithelial progenitors while group 2 may rep-
resent the amniotic or cord-lining epithelia. Interest-
ingly, both groups express CD29 and CD44, which are
believed to be stem/progenitor cell markers, consistent
with the primitive nature of cells of embryonic tissues.
We then focused on the MSCs. The gene expression
profiles of the two MSC subpopulations were similar
(Fig. 1b and d), and both groups expressed PDGFRA,
VIM, COL1A2, and ACTA2 (Fig. 1d and supplementary
Figure S3), suggesting that the two MSC groups might
have the same origin. However, 176 genes were differen-
tially expressed (Fig. 1e and supplementary Table S2),
suggesting that they may have distinct functions.
Examination of cell surface marker gene expression re-

vealed that neither group expressed CD31, CD34, CD45,
or CD11b (Fig. 1d and supplementary Figure S4). They
expressed low levels of CD73, CD90, and CD105, the
common MSC markers, although CD73 was mainly
expressed in group 1 MSCs (Fig. 1d and supplementary
Figure S4). Moreover, they expressed low levels of
CD200 but not CD106 or CD146 (Fig. 1d and supple-
mentary Figure S4). Thus, the surface marker expression
pattern of uncultured UC-MSCs is different from cul-
tured UC-MSCs.
MSCs in the bone marrow are believed to be skeletal

stem cells, which can be marked by PRRX1, TWIST2,
LEPR, GREMLIN1, GLI1, PTHRP, and/or CTSK [8]. We

analyzed the expression of these markers and found that
both UC-MSC groups expressed TWIST2 (and TWIST1)
but not PRRX1, GLI1, GREMLIN 1, or LEPR, and a por-
tion of group 2 cells expressed PRRX1, PTHRP, or CTSK
(Fig. 1d and supplementary Figure S5a). In addition,
there is evidence that MSCs are pericytes although later
studies produced conflicting results [9, 10]. Our scRNA-
seq data showed that UC-MSCs expressed some of the
pericyte markers including DESMIN, CD13, and CD248
but not NG2, ANG1/2, or RGS5 (Supplementary Figure
S5b), suggesting that UC-MSCs are not typical pericytes.
The lack of pericytes can be explained by removal of the
blood vessels and associated cells during MSC isolation.
KEGG pathway analysis revealed that group 1 UC-

MSCs were enriched with TNFα, IL17, TLR, TGFβ, in-
fection, NOD, NF-κB, and PGE pathways, many of
which are immune-related (Fig. 1f and Supplementary
Figure S6a-c). These pathways drive the expression of
chemokines and immunomodulatory including PGE2,
suggesting that group 1 MSCs may play a role in im-
mune response and/or regulation. In addition, group 1
cells were enriched in the expression of genes in control-
ling pluripotency (Fig. 1f), whereas group 2 cells were
enriched in the expression of genes in protein metabol-
ism, extracellular matrix, and glucose and amino acid
metabolism pathways (Fig. 1f). These results suggest that
the two UC-MSC groups may have different functions.
Gene Ontology enrichment analysis revealed that

group 1 MSCs expressed genes in biological activities in-
cluding inflammation, muscle proliferation, cell differen-
tiation, and oxidative stress response while group 2 cells
expressed genes enriched in ECM synthesis, bone and
cartilage growth, and glucose metabolism (Fig. 1g), con-
firming that the two UC-MSC subpopulations may have
different functions.
This study shows that the standard UC-MSC isolation

protocol also yields epithelial cells, which can be re-
moved by FACS sorting based on their cell surface
markers (CD24+CD44+PTHRP+) (Supplementary Figures
S4-S5). More importantly, we find that UC-MSCs can be
divided into two subpopulations based on differentially
expressed genes especially cell surface markers such as
CD73. Group 1 MSCs have features that are reminiscent
of the therapeutic activities of MSCs including immuno-
modulation, pro-survival, and differentiation potentials,
whereas group 2 MSCs have features suggesting that
they are at a more differentiated state than group 1
MSCs and may be useful for repairing degenerated
cartilage.
While this study identifies two subpopulations in

freshly isolated UC-MSCs, a recent study shows that cul-
tured human UC-MSCs can be divided into 11 groups.
KEGG and GO analyses show that none of these 11 sub-
populations expresses immunomodulatory genes [7].
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These findings, taken together, suggest that freshly
isolated UC-MSCs give rise to more subpopulations
during in vitro expansion, and moreover, these cells
may lose their original gene expression patterns and
activities. It will be interesting to compare the thera-
peutic effects of the two uncultured UC-MSC sub-
populations against cultured cells on osteoarthritis
and autoimmune disorders. Moreover, right culture
conditions are needed to maintain pluripotency and
the major features of the UC-MSC subpopulations for
future cell-based therapy.
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