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Abstract

Background: The precise, functional and safe insertion of large DNA payloads into host genomes offers versatility
in downstream genetic engineering-associated applications, spanning cell and gene therapies, therapeutic protein
production, high-throughput cell-based drug screening and reporter cell lines amongst others. Employing viral- and
non-viral-based genome engineering tools to achieve specific insertion of large DNA—despite being successful in
E. coli and animal models—still pose challenges in the human system. In this study, we demonstrate the
applicability of our lambda integrase-based genome insertion tool for human cell and gene therapy applications
that require insertions of large functional genes, as exemplified by the integration of a functional copy of the F8
gene and a Double Homeobox Protein 4 (DUX4)-based reporter cassette for potential hemophilia A gene therapy
and facioscapulohumeral muscular dystrophy (FSHD)-based high-throughput drug screening purposes, respectively.
Thus, we present a non-viral genome insertion tool for safe and functional delivery of large seamless DNA cargo
into the human genome that can enable novel designer cell-based therapies.

Methods: Previously, we have demonstrated the utility of our phage M-integrase platform to generate seamless
vectors and subsequently achieve functional integration of large-sized DNA payloads at defined loci in the human
genome. To further explore this tool for therapeutic applications, we used pluripotent human embryonic stem cells
(hESCs) to integrate large seamless vectors comprising a ‘gene of interest’. Clonal cell populations were screened
for the correct integration events and further characterized by southern blotting, gene expression and protein
activity assays. In the case of our hemophilia A-related study, clones were differentiated to confirm that the
targeted locus is active after differentiation and actively express and secrete Factor VIII.

Results: The two independent approaches demonstrated specific and functional insertions of a full-length blood
clotting F8 expression cassette of ~ 10 kb and of a DUX4 reporter cassette of ~ 7 kb in hESCs.

Conclusion: We present a versatile tool for site-specific human genome engineering with large transgenes for cell/
gene therapies and other synthetic biology and biomedical applications.
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Background

Genetic insertions of large transgenes find utility in the
design of gene therapies for monogenic diseases, innova-
tive cell therapies, and in imparting multifunctionality to
cells for biosynthetic applications [1]. A simple approach
for the integration of large multi-transgene cassettes lar-
ger than 10 kb into the human genome remains a niche
application domain where most of the tools (both viral-
and non-viral-based) struggle to make an impact. This is
due to problems of lack of specificity, undesirable geno-
toxicity, low efficiency and safety concerns. For example,
adeno-associated viruses (AAVs) have a packaging limit
of 4.7 kb, and within its capacity, it has shown promising
clinical outcomes with long-term expression of trun-
cated variants of F8 (4371bp) and F9 (1257 bp) in
hemophilia A and B patients, respectively. Although
AAVs wusually express transgenes as an episome,
chromosomal integration still occurs either via homolo-
gous or non-homologous recombination pathways and
can produce long-term effects [2, 3]. On the other hand,
lentiviral-based vectors have superior payload capacity
and carry inserts up to 18 kb; however, it is known that
functional output and packaging efficiency significantly
reduces as the load size increases > 8 kb [4—11]. Further-
more, viral-based transgenesis is cost and labour exten-
sive and can lead to potential accentuating effects such
as genotoxicity, oncogenicity and adverse humoral im-
mune responses [12—15]. In contrast, non-viral CRISPR/
Cas9 tools and other endonuclease-based genome edit-
ing (ZFNs and TALENs) systems are specific towards
their target sequences, but their capability to routinely
integrate payloads is somewhat limited to ~5kb in size
[16]. This is due to their inherent mechanistic principle
of entirely relying on host-encoded recombination path-
ways such as homologous recombination that can be im-
paired in certain human cell types, especially in hES and
somatic cells [17-22].

The most commonly used tool for large DNA trans-
genesis employs transposons that have been shown to
integrate 8—10kb DNA payloads [23]. However, their
utility has been hindered by random transgene integra-
tion. To overcome these challenges, conventional gen-
ome engineering tools must be refined to successfully
achieve functional insertion of large transgenes into the
human genome. Several studies have employed com-
binatorial strategies of different editing tools to achieve
specific insertion of large DNA [21]. Transposons are
being explored in combination with CRISPR/Cas, called
CRISPR-associated transposase system (CAST), to en-
able large DNA (~ 10 kb) integration at specific genomic
locations and has, so far, only been validated in E. coli
[24, 25]. However, another approach where piggyBac
transposase was fused to catalytically inactive dCas9
demonstrated a successful ‘proof-of-concept’ in
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achieving the integration of the transgene at the CCR5
safe harbour site in HEK293 cells, thus enabling targeted
delivery of large DNA cargos in the future [24, 26]. In
addition, the CRISPR Cas systems have been paired with
different homologous and non-homologous end joining
(NHEJ) repair strategies to achieve large DNA knock-
ins, an effective strategy in some eukaryotes but not in
human systems [27-30]. Therefore, there is a void in the
current genome editing toolbox to meet the need of
functional large transgene insertions into the human
genome safely at specific locations. Such an approach
could substantially improve and enable downstream ap-
plications, spanning from engineered cell-based high-
throughput drug screening, stem cells for regenerative
medicine and cancer immunotherapies amongst others.

Important aspects of genome engineering include both
integration of the desired DNA payload and disposing of
undesired non-functional sequences, such as bacterial
plasmid backbones that can elicit humoral responses
due to immunogenic CpG motifs [31-37]. To achieve
this, an alternative class of tools, site-specific recombi-
nases (SSRs), are being employed to generate seamless
vectors via intramolecular recombination using their re-
spective recombination sites within the plasmid [38—40].
Thus, seamless vectors are circular supercoiled mole-
cules obtained by eliminating the prokaryotic sequences
that reduce the size of the vector by about 3 kb. This
strategy can enable higher DNA uptake and reduced cell
toxicity [41, 42]. In the context of human genome engin-
eering, none of the SSRs tools has dual capability to pro-
duce and subsequently target specific endogenous
sequences in the human genome. We previously re-
ported a derivative of the phage lambda integrase (\-Int)
system which is proficient in targeting at endogenous
Long INterspersed Elements (LINE-I) in the human
genome with seamless vectors [43—45]. The derivative \-
Int system deploys self-sufficient intramolecular recom-
bination to generate seamless vectors and executes spe-
cific  human genome insertion by subsequent
intermolecular recombination [44, 45]. Using this en-
hanced strategy, we also demonstrated specific targeting
and sustained expression of CD19 chimeric antigen re-
ceptors (CARs) in hESCs for potential cancer
immunotherapy-related applications [45].

The wild-type A\-Int system normally integrates the ~
48 kb circular phage genome into the host genome.
Here, we used the ability of our engineered A-Int to per-
form large DNA insertions at specific genomic sites in
human cells through our seamless vector approach, and
exemplify the utility of our transgenesis tool for poten-
tial gene therapy approaches in hemophilia A and drug
screening for FSHD disease. We demonstrate functional
seamless transgenesis of both the ~10kb full-length F8
gene and a ~7kb multi-reporter cassette into specific
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LINE-1 sequences in hESCs. The demonstrated simpli-
city of our genome engineering tool provides the basis
for broadly based economical applications in the future.

Materials and methods

Cell culture

The hESC line ‘Genea 019’ (Genea Biocells) was used in
this study. The cells were cultured in BioCoat Collagen
I-coated Plates (Corning) and maintained at 37 °C in 5%
humidified CO, and O, atmosphere in M2 media
(Genea Biocells). Media was supplied with serum and
additionally supplemented with penicillin and strepto-
mycin at 25 U/ml each (Gibco). Passaging solution and
neutralization solution (Genea Biocells) were used for
routine passaging of cells.

Plasmids

To generate F8 expressing pattP4X-pEF1a-FLF8-IRES-
Neo-attH4X, full-Length F8 was amplified from F8 ex-
pressing piggyBac vector (kindly provided by Prof.
Akitsu Hotta, Kyoto University) using high-fidelity DNA
polymerase and cloning primers 5.1F and 5.1R. The
amplified F8 PCR product was cloned in the AfIII linear-
ized pEFla-IRES-Neo vector (Plasmid #28019, Addgene)
to generate pEFla-F8-IRES-Neo. The EFla-F8-IRES-Neo
cassette was amplified using high fidelity DNA polymer-
ase and cloning primers 7.1F and 7.1R and finally cloned
into the master plasmid pattP4X-attH4X using Pstl.

To generate pattP4X-16BS-mNeon-PGKss-Puro-bpa-
attH4X, a linear fragment comprising of 16BS-mNeon
flanked by PstI sites was synthesized (GenScript, USA)
and cloned into the master plasmid using In-Fusion HD
Cloning kit (Takara), eventually adding I16BS-mNeon
cassette in between attP4X and attH4X sequence.
PGKss-Puro was then added to this plasmid by PCR
amplification of the PGKss-Puro-bpa cassette from
pattP4X-PGKss-Puro-bpa-attH4X (in-house), using the
primers PGK_fwd_HR and Puro_bpa rev_HR. The PCR
product was cloned into pattP4X-16BS-mNeon-attH4X
using Nhel as per the protocol of In-Fusion HD Cloning
kit (Takara Bio USA), adding PGKss-Puro-bpa cassette
downstream of 16BS-mNeon cassette.

Cloning was performed using Q5 High Fidelity DNA
Polymerase (New England Biolabs) and In-Fusion HD
cloning kit (Takara). E. coli DH5«a cells were used for
transformation. Plasmids were extracted using QIAprep
Spin miniprep kit (Qiagen) and EndoFree plasmid maxi
kit (Qiagen).

Generation of seamless vector via in vitro recombination
using Int-h/218

The integrase-mediated in vitro recombination reaction
for seamless vector generation was modified from the
method described in [45]. Briefly, recombination was
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carried out in a reaction mixture (20 ul) containing 500
ng substrate vector, 10 mM TE buffer, pH 8.0, 150 mM
KCl, 57 ng/pl of purified single chain Integration Host
Factor (scIHF) [46] and partially purified Int-h/218
(33.25 ng/pl) [43, 47]. Sixty (30 ug DNA in total) reac-
tions were incubated at 37 °C for 60 min and terminated
by adding 0.5% SDS. Reactions were pooled and DNA
was phenol/chloroform/isoamyl alcohol extracted and
precipitated overnight using sodium acetate-ethanol.
The reaction mixture containing unrecombined sub-
strate plasmid and catenated circular DNA were digested
with a suitable restriction enzyme (single cutter on the
bacterial sequence of plasmid) and T5 exonuclease (NEB
MO0363) at 37 °C. The seamless vector was purified from
the digestion mixture using phenol-chloroform extrac-
tion and ethanol precipitation of DNA.

Transfection and antibiotic selection

Parental hESCs (250,000 cells/well) were seeded in 6-
well plates overnight at 50% confluency. The following
day, the cells were reverse co-transfected with the sub-
strate or seamless vector along with Int-C3/Inactive Int
expression plasmid using FUGENE HD Transfection Re-
agent (Promega) at a ratio of 1:3 (DNA: Reagent) using
previously published protocol [44]. Forty-eight hours
post-transfection, transfected cells were collected and
replated onto 10 cm dishes. After 13—14 days of 300 ng/
ml of puromycin or 100 pg/ml of neomycin (stock solu-
tion of 50 mg/ml in water, Gibco, Life Technologies) se-
lection, surviving colonies were manually lifted,
dissociated into single cells and reseeded for expansion
initially in 96-well plates and later in 24-well plates.

PCR screening to identify recombination events

Genomic DNA was isolated from parental hESCs and
clones using the DNeasy Blood & Tissue Kit (Qiagen).
Approximately 50 ng of genomic DNA from parental
hESCs and clones was used as a template to amplify left
and right recombination junctions. PCR was performed
using GoTaq Flexi DNA polymerase (Promega) accord-
ing to the manufacturer’s instructions. Primer sets were
specific to vector and genomic DNA sequences adjacent
to the site of integration. Primer positions and amplicon
sizes are shown in figures (primer sequences are listed in
Supplementary Table S1). PCR amplicons were gel ex-
tracted using QIAquick gel extraction kit (Qiagen) and
examined by sequencing.

Southern blot hybridization

Genomic DNA was isolated from parental hESCs and
clones using the DNeasy Blood & Tissue Kit (Qiagen).
Approximately 20 ug of each DNA was digested with a
suitable restriction enzyme (New England Biolabs) over-
night at 37 °C. Genomic DNA fragments were separated
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by electrophoresis on a 0.8% agarose gel in 1x TAE
(Tris-Acetate-Boric acid) buffer, with 1 kb DNA marker
ladder (New England Biolabs) and transferred onto a
positively charged nylon membrane (GE Healthcare) via
capillary transfer method. The DNA on the membrane
was UV crosslinked and the membrane was probed at
48°C with PCR-amplified DIG-labelled NeoR probe
using the DIG-High Prime DNA Labelling and Detec-
tion Starter Kit II (Roche) as per the manufacturers’
protocol. The probe-target hybrids on the blot were de-
tected by an AP-conjugated DIG-Antibody (Roche)
using CSPD (Roche) as a substrate for chemilumines-
cence. The blots were exposed to X-Ray film (Kodak)
and developed on a Kodak X-OMAT 2000 Processor.

Gene expression

Total RNA from parental hESCs and clones was isolated
using TRIzol reagent (Invitrogen). The RNA quality and
quantity were assessed by Nanodrop UV-VIS spectro-
photometer (Thermo Fisher Scientific). One microgram
of total RNA from each sample was reverse transcribed
to ¢cDNA using the QuantiTect Reverse Transcription
Kit (Qiagen). Using the QuantiNova SYBR Green PCR
Kit (Qiagen), RT-qPCR was performed on the CFX96
Touch Real-Time PCR Detection System (Bio-Rad). The
actin gene was amplified as an endogenous reference
gene. Expression of the target gene was normalized to
actin gene expression and represented as fold change
using comparative CT method (2722CT method) [48].

FVIII activity assays

Parental hESCs and clones were seeded in 96-well plates
at ~70% confluence and culture supernatants were col-
lected after 24 h. activity was determined by a fluoromet-
ric assay using the Factor VIIIa Activity Assay as per the
manufacturer’s instructions. The assay was performed in
a Corning 96-well microplate with a black flat bottom
and the readings were recorded at kinetic mode (Ex/
Em = 360/450 nm) using BioTek Cytation 5 cell imaging
multimode reader for 8 h at 37 °C. The Factor VIII activ-
ity was normalized to cell viability and represented as
fold change compared to parental hESCs.

MTT assay

Cell viability was measured by MTT assay that quantifies
the reduction of tetrazolium dye - MTT (3-[4,5-dimethyl
thiazole-2-yl]-2,5-diphenyl tetrazolium bromide) in vi-
able cells by mitochondrial NADPH-dependent cellular
oxidoreductase enzymes [49]. MTT reagent (Sigma-Al-
drich) was prepared at a concentration of 5mg/ml in
PBS. After collecting supernatants for Factor VIII activ-
ity, MTT reagent (10 ul) was added in wells (clones and
parental hESCs) and incubated for 3h at 37°C. The
medium in each well was replaced with DMSO to
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solubilize the purple-coloured formazan dye. The plate
was mixed thoroughly and read for absorbance at 570
nm using BioTek Cytation 5 cell imaging multimode
reader.

Differentiation of hESCs

Parental hESCs and clones were differentiated with ret-
inoic acid (RA; Sigma-Aldrich) over a period of 14 days
as described previously [44]. Briefly, cells were initially
cultured in DMEM containing 1 uM RA for 48 h and
subsequently maintained in DMEM without RA for 12
days. Culture supernatants were used to measure Factor
VIII activity and cells were collected for gene expression
analysis.

Statistical analysis

Statistical tests were performed using Graph Pad Prism6
software. Student’s unpaired ¢ test was applied to com-
pare between two groups. Data is represented as mean +
SEM and p value <0.05 was considered statistically
significant.

Results

Production of seamless F8 targeting vector for site-
specific transgenesis

We recently presented a phage M\ integrase (Int)-medi-
ated site-specific transgenesis platform capable of insert-
ing large functional multi-transgene cassettes into a
specific endogenous sequence, termed attH4x, within a
subset of human LINE-1 [44]. The attH4x sequence is
present at about 900 locations throughout the human
genome. An important improvement of our platform
was the inclusion of supercoiled seamless target vectors
devoid of prokaryotic DNA elements. This was achieved
by using Int for in vitro/in vivo site-specific intramolecu-
lar recombination between two directly repeated recom-
bination sequences (so-called attachment (att) sites)
flanking the desired transgene expression cassette in a
supercoiled parental substrate vector [44, 45]. Thus, be-
sides eliminating unwanted bacterial sequences from the
target vector, this approach also reduces the vector size
and can enhance transfection efficiency, reduce innate
immune responses and contribute to sustained gene ex-
pression in human cells [33, 50-52].

As a first step towards future autologous cell replace-
ment therapies for hemophilia A, we employed this
seamless vector transgenesis platform for site-specific in-
tegration of a functional, full-length F8 expression cas-
sette (10.1kb) into the attH4X sequence in hESCs. The
seamless target vector carries the a#tL4X recombination
site and the EFla promoter-driven F8 gene expression
cassette followed by an internal ribosome entry site
(IRES)-driven neomycin resistance marker (NeoR). Tar-
geted recombination into the genomic attH4X will
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Fig. 1 £8 Seamless vector production and targeting strategy for genomic recombination of seamless vector with endogenous attH4x sites in
LINE-1. a A pictorial representation of phage A-mediated intramolecular in vitro/in vivo recombination between attH4X and attP4X (both present
in the parental substrate vector) generating seamless vector £F1a-F8-IRES-NeoR with a recombinant attL4X junction, which can subsequently
intracellularly recombine with attH4X (present in human genome LINE-1). Successful integration will form attL4X (left) and attH4X (right)
recombinant sites flanking the cassette Ef1a-F8-IRES-NeoR at the site of integration. b Agarose gel electrophoresis of parental substrate vector and
F8 seamless vector demonstrating their migration and quality. The supercoiled substrate vector (13,267 bp) migrates at ~8 kb linear control DNA
and supercoiled F8 seamless vector (10,170 bp) migrates at ~5.7 kb in a gel containing ethidium bromide. ¢ A schematic representation of A
-mediated intracellular recombination of attP4X (present in the parental substrate vector) with attH4X (present in human genome LINE-T).
Successful integration will form attL4X (left) and attR4X (right) recombinant sites flanking the cassette EF1a-F8-IRES-NeoR along with bacterial
sequences at the site of integration
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generate attl4X and attH4X sequences flanking the
inserted F8 gene expression cassette (Fig. 1a). We used a
modification of the previously published in vitro vector
production protocol using purified Int [45] that now in-
cludes linearization of both the supercoiled bacterial
backbone and remaining un-recombined substrate vec-
tor by restriction digest in conjunction with the degrad-
ation of linear and nicked DNA by phage T5
exonuclease. Simultaneous digestion of the in vitro re-
combination reaction products by restriction enzyme
and T5 exonuclease greatly facilitated the production of
sufficient amounts of highly purified supercoiled seam-
less F8 vector (Fig. 1b).

Targeted integration of F8 seamless expression vectors
The in vitro manufactured seamless vector containing
the F8 expression cassette plus selection marker was co-
introduced into hESCs together with Int expression vec-
tor to establish F8 knock-in clones. Importantly, since
the intramolecular recombination reaction on the sub-
strate vector can also occur inside cells before intermo-
lecular recombination with the genome (Fig. 1a), we also
tested this alternate route of integration and introduced
the wunrecombined substrate vector to determine
whether in vitro seamless vector production can be
bypassed by intramolecular recombination inside the
cell. In parallel, this would also explore the possibility of
insertion the entire substrate vector into genomic
attH4X via recombination with a#tP4X (Fig. 1c).
Substrate and seamless vectors were co-transfected
in hESCs with either an expression vector for variant
Int-C3 or a catalytically inactive integrase Int INA
[45]. Two days after co-transfection, G418 selection
was applied resulting in stable cell clones after 15
days. Importantly, transfection with Int INA resulted
in 50% fewer clones compared to Int-C3. A total of
fifteen and nine hESC clones were obtained by co-
transfection of catalytically active Int-C3 with the
substrate and seamless vector, respectively (Fig. 2a).
Viable clones were expanded, and genomic DNA was
subjected to junction PCR analysis using consensus
genomic primers (cs_attH4X_F1/F2 and cs_attH4X_
R1) designed to bind adjacent to attH4X sites within
the corresponding LINE-1 (Fig. 2b) [44, 45]. Accord-
ingly, successful integration of the F8 expression cas-
sette in any of the LINE-I loci will result in PCR
amplicons specific for left and right recombinant
junctions using combinations of the genomic (LINE-1)
and cassette-specific primers in F8 or NeoR (Fig. 2b).
Co-transfection with substrate vector and Int-C3 can
convert the episomal substrate vector into a seamless
vector via intramolecular recombination. Hence, either
the entire substrate (via attP4X) or the smaller seamless
vector (via attL4X) can recombine with the genomic
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attH4X sequence (Fig. 1a, c). Analyzing the respective
outcome after co-transfection of the entire substrate vec-
tor with Int-C3 expression vector by PCR would result
in the same product for the left recombination junction
but yields two distinct products for the right junction
PCR, thus allowing us to distinguish between the two
scenarios. PCR screening for substrate vector transfec-
tions revealed only integration events of the seamless
vector via attl4X and genomic recombination. We
found that three out of eight clones (B6, B7 and BS)
were positive for PCR analysis of both junctions (Fig. 2b)
indicating that Int-C3 had first intramolecularly recom-
bined the transfected substrate vector and subsequently
integrated the seamless vector into the genomic attH4X
of LINE-1.

Transfection with in vitro generated seamless vector
resulted in four out of nine viable clones that were posi-
tive for right junction PCR; two clones (F1 and F9) were
tested positive for both junctions. As shown in Fig. 2b,
semi-nested PCRs were performed in order to obtain
sufficient products from all left junctions for sequencing,
whereas right junction PCR amplicons were identified in
primary PCRs (Fig. 2b). PCR products obtained using
LINE-1-specific primers were subjected to sequence ana-
lysis to identify the genomic locus of F8 cassette integra-
tion. The corresponding targeted LINE-1 loci were
subsequently verified by PCR/sequencing using
chromosome-specific primers (Fig. 2b, right panel). Our
combined results demonstrate that at least five clones
(B6, B7, B8, F1, F9) harboured the complete F8 expres-
sion cassette and that three different LINE-1 loci were
targeted by Int-mediated recombination (Supplementary
Table 2).

Single copy F8 seamless vector insertion at endogenous
attH4X sites

We employed Southern blot hybridization to confirm
seamless vector insertions at the identified loci and, fur-
thermore, to determine if only a single copy of the F8
expression cassette has been site-specifically integrated
into the LINE-1. Two restriction endonucleases with rec-
ognition sites within the cassette and in the vicinity of
the three predicted targeted LINE-1 loci were independ-
ently used for digestion of genomic DNA. Using a
vector-internal probe hybridizing to NeoR, it was pos-
sible to identify single-copy insertions at the three loci
based on restriction fragment patterns (Fig. 3a).

The Southern blots obtained with Nsil and Kpnl-
digested genomic DNA from four out of the five above-
mentioned clones, and untargeted hESCs DNA as con-
trol, clearly revealed single-copy integration of the seam-
less cassette for each clone/locus (Fig. 3a) and confirmed
the stable integration of the seamless vector in intron 2
of CDCA7L (Cell Division Cycle Associated b 7 Like;
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Fig. 2 PCR analysis of left and right recombination junction and characterization of site-specific integration of seamless vector at LINE-1 in clones.
a The table includes the amount and combinations of vector (substrate vector and seamless vector) and Integrase expression vectors transfected
in hESCs to establish neomycin resistant £8 knock in clones. b Schematics of left and right junction of the integrated seamless vector in LINE-1.
Gel in left panel: PCR analysis showing products of semi-nested PCR obtained with forward primers specific to LINE-1 (F1/F2)/genomic locus (Ch7
1175F, Ch2 1282F, ChX 1093F) and reverse primer (82R) in F8 using template from primary PCR performed using same forward primers and
reverse primer (348R) in £8. Gel in right panel: PCR analysis showing products of PCR obtained with forward primer in NeoR gene (Neo 650 F) and
reverse primers specific to LINE-1 (R1)/genomic locus (Ch7 440R, Ch2 440R, ChX 831R). Arrows indicate primer position and orientation. Expected
PCR amplicon sizes are mentioned for each primer pair at the bottom of each gel. Lanes: L, 1 kb DNA ladder; W, no DNA control; ES, genomic
DNA from parental hESCs; F1, F9, B6, B8, genomic DNA from clones. 50 ng of template DNA was used for primary PCRs and 1 pl of primary PCR

reaction was used as template for semi-nested PCRs

Chr7) in clones F1 and F9, intron 4 of CCDCI41 findings demonstrate the ability of our transgenesis tool
(Coiled-Coil Domain Containing 141, Chr2) in clone B6  to target endogenous attH4X sites within LINE-1 ele-
and intron 7 of DMD (Duchenne Muscular Dystrophy, —ments with a 10.1-kb-sized therapeutic gene expression
ChrX) in clone B8 (Fig. 3a, b, Supplementary Table 2).  cassette. As exemplified by the independent targeting of
With respect to clone B7, the Southern blot data sug- the CDCA7L locus on chromosome 7 (for clones F1 and
gested the existence of restriction site polymorphism F9), the data also revealed the possible existence of hot-
near the targeted LINE-1 locus (data not shown) and spot recombination loci for targeted transgene insertion
hence was not analysed further. Altogether these mediated by mutant phage lambda Int-C3 [45].
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the targeted clones

Fig. 3 Southern blot hybridization of clones targeted with F8 seamless vector. a Schematics of integrated F8 seamless vector at the LINE-T with
information on location of restriction sites within the cassette and in the hESC genome. The Table summarizes the targeted locus and genomic
location of seamless vector integration for the clones, based on the genomic fragment sizes. Total genomic DNA from parental hESCs and clones
harbouring the complete F8 seamless vector was digested with Nsil and Kpn/ and subjected to hybridization with DIG-labelled PCR probe
complementary to 309 bp in NeoR gene. Bands indicate NeoR gene containing genomic fragments which correlate with the predicted size
thereby confirming single copy F8 seamless vector integration at LINE-1. L,
genomic DNA from clones; + in Nsil Digestion indicates 0.1 ng of linearized substrate vector; + in Kpnl Digestion indicates 0.1 ng of NeoR
containing Kpnl digested fragment (3969 bp) of substrate vector. b An illustration of the location of transgene integration in chromosomes for

, 1 kb DNA ladder; ES, genomic DNA from parental hESCs; F1, F9, B6, B8,

F8 expression and catalytic FVIII activity in LINE-1
targeted clones

We next investigated if the targeted loci permitted sus-
tained transgene expression. Quantitative RT-PCR ana-
lysis was performed to analyse the F8 mRNA expression
levels of the four F8 transgenic clones (F1, F9, B6 and
B8) normalized to the endogenous F8 levels in untar-
geted hESCs. We observed a significant increase in the
amount of F8 mRNA in all transgenic clones (Fig. 4a).
We included untargeted hESCs transiently transfected
with the substrate F8 expression vector (1 ug) as a posi-
tive control, which, expectedly, showed the highest ex-
pression levels (Fig. 4a). These data demonstrated that
the EFla-F8-IRES-NeoR expression cassette is sustain-
ably expressed in hESCs from these three targeted LINE-
1 loci.

We also determined if the produced F8 mRNA was
translated into protein and secreted from hESCs into the
media in a biologically active form. We examined FVIII
activity by a fluorometric assay in hESC culture superna-
tants, using again transiently transfected (100 ng) hESCs
as positive and parental hESCs as negative controls. The
fluorometric assay measures the ability of activated FVII
Ia to generate Factor Xa in the presence of calcium and
phospholipids, which further proteolytically cleaves a
specific substrate to release a fluorophore that can be
quantified. The FVIII activity was normalized to untar-
geted hESCs and to cell viability as measured by MTT
assays to account for possible differences in cell density
and growth rates of clones. Coinciding with the observed
increase in F8 mRNA expression, we found a significant
increase in FVIII activity with all targeted hESCs clones
and transiently transfected cells (Fig. 4b). Interestingly,
we also noted that untargeted hESCs did express a sub-
stantial level of biologically active FVIII protein when
compared with unexposed cell culture media as negative
control, which may open interesting possibilities for
non-recombinant FVIII production at a larger scale
using hESC fermenters. Taken together, these results
clearly indicated that the LINE-1-targeted cell clones, re-
gardless of the transgene locus, produced biologically ac-
tive FVIII and that clone B8 exhibited both the highest
F8 mRNA expression and protein activity.

Since many future applications of hESCs and induced
pluripotent stem cells (iPSCs) will likely involve differen-
tiation of stem cells into specific desired cell types, e.g.
platelets, we next tested how F8 transgene expression
might be affected by the differentiation status of our tar-
geted hESC clones. Hence, we employed an established
retinoic acid (RA)-induced differentiation protocol
which typically results in a mixture of various cell line-
ages and differentiation states when hESCs are cultured
in DMEM containing 1 pM RA for 48h and subse-
quently maintained in DMEM w/o RA for 12 days [53].
The results showed that the expression of the F8 trans-
gene cassette in the four differentiated cell clones was
substantially reduced when compared to undifferentiated
hESCs, but remained significantly higher in the two
clones that carry the transgene in the same genomic
locus (clones F1 and F9) compared to the endogenous
F8 transcript levels in parental differentiated cells
(Fig. 4c). Control qRT-PCRs measuring expression of
the key pluripotency factor genes Oct4, Nanog and Sox2
confirmed that the most cells in the transgenic hESC
clones and parental hESCs had lost their pluripotent
stem cell state (Fig. 4d—f). Furthermore, FVIII activity
tests revealed that differentiated cells from clone F1 are
still secreting biologically active clotting factor when
compared to differentiated untargeted cells (Fig. 4g).

A-Int-mediated reporter insertion for drug screening
applications in FSHD disease

The human DUX4 gene is located within a D4Z4 se-
quence repeat array in the subtelomeric region of
chromosome 4q35. It is known that contraction of these
D474 macro-satellite sequences is associated with de-
creased cytosine methylation and an open chromatin
structure, leading to infrequent sporadic expression of
the DUX4 gene in the skeletal muscle that results in
facioscapulohumeral muscular dystrophy (FSHD) [54—
56] (Fig. 5a). Given that DUX4 expression is difficult to
detect in FSHD muscle cells, we employed our transgen-
esis system to generate a seamless vector comprising of
a cassette harbouring a DUX4-responsive artificial pro-
moter with 16 DUX4 binding sites upstream of a re-
porter gene (mNeon/fluorescent protein) and a
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Fig. 4 Gene expression and FVIII activity in hESCs and transgenic clones. a F8 gene expression was determined by RT-gPCR analysis and
performed at 24 h for F8 mRNA expression in parental hESCs cells, transgenic clones and transiently substrate vector-transfected hESCs. F8 mRNA
expression was normalized to the level of invariant control human beta-actin and represented as fold change compared to parental hESCs. ES,
cDNA from parental hESCs; F1, F9, B6, B8, cDNA from transgenic clones; + indicates transiently transfected hESCs with 1 ug of substrate vector. b
FVIII activity in hESCs and transgenic clones. 48 h culture supernatants of parental hESCs cells, clones and transiently transfected hESCs were
subjected to FVIII fluorometric activity assay to measure the secreted FVIIl. The FVIII fold activity was normalized to cell viability and represented
as fold change compared to values obtained with parental hESCs. Cell viability was measured using the MTT assay. ES, parental hESCs; F1, F9, B6,
B8, clones; + indicates transiently transfected hESCs with 100 ng of substrate vector. c-f Gene expression in retinoic acid differentiated hESCs and
clones. The RT-gPCR analysis was performed for £8 and pluripotency markers Oct4, Nanog, Sox2 mRNA expression in differentiated parental hESCs
cells and transgenic clones on day 14 of differentiation. Corresponding gene expression in differentiated hESCs/clones was compared to that in
undifferentiated hESCs/clones. mRNA expression was normalized to the level of invariant control human beta-actin and represented as fold
change compared to respective parental/differentiated hESCs. g FVIIl activity in differentiated hESCs and transgenic clone F1. Culture supernatants
of differentiated hESCs and clone F1 were subjected to FVIII fluorometric activity assay to measure the secreted FVIIl. The FVIII fold activity is
represented as fold change compared to differentiated parental hESCs. ES, parental hESCs; F1, F9, B6, B8, transgenic clones; D denotes retinoic
acid differentiated hESCs/clones
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Fig. 5 Schematic representation of disease modelling for FSHD, and proposed methodology for potential drug screening. a The genetic defect in
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chromatin relaxation causing aberrant expression of the transcription factor DUX4 causing FSHD disease. b An illustration of transiently testing
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downstream antibiotic selection cassette (PuroR driven
by the PGK promoter: Fig. 5b). The mNeon expression
as a readout was first validated with the episomal re-
porter by co-transfecting a DUX4 protein-expressing
construct (pCMV-DUX4) into hESCs (Fig. 5b and data
not shown). In order to generate the stable DUX4 re-
porter cell lines, our transgenesis platform was used to
integrate the seamless reporter vector into LINE-1 of
hESCs (Fig. 6a). PCR analysis confirmed both left and
right junctions indicating specific and complete integra-
tion of the reporter cassette in three transgenic cell
clones (M27, T13, T25) (Fig. 6b, Supplementary Table 2).
The functionality of the inserted reporter in these clones
was confirmed by ectopic expression of the DUX4 pro-
tein using pCMV-DUX4 expression vector.

As shown by fluorescence microcopy, activation of re-
porter expression in the three clonal cell lines can be
achieved via transient expression of DUX4 (Fig. 6¢). Im-
portantly, the transfection efficiency in these reporter
cell lines is sufficient to transiently express DUX4 and
activate the reporter in a sufficient number of cells for
downstream applications. For example, potential high-
throughput small compound screening can be per-
formed on DUX4-activated cells (within a 24—48 h time
window) to identify molecules that antagonize DUX4-
mediated activation of the mNeon reporter (Fig. 6d) and
thereby identify potential lead compounds.

Discussion
Genetic engineering attributes that offer flexibility for
large transgene insertions equivalent to 10kb or more

can have profound implications for cell/gene therapy
and synthetic biology applications. However, as the gen-
omic transgene insert size increases, multiple genotoxic
effects due to random integrations, epigenetic silencing
and chromosomal aberrations, amongst others, represent
potential complications. Therefore, both versatility and
safety features of genome editing tools are critical, espe-
cially for gene therapy applications of monogenic dis-
eases that necessitate large transgene insertions for
curative outcomes. Hemophilia A (F8 coding sequence
-7 kb), DMD (Dystrophin coding sequence — 14 kb) and
skin disease Recessive Dystrophic Epidermolysis Bullosa
(COL7A1 coding sequence —9kb) are examples of dis-
eases for which replacement corrections of dysfunctional
large genes could yield clinical benefits. In order to val-
idate the utility of our previously reported \-Int-based
seamless transgenesis tool [44, 45] in achieving large
DNA transgenesis, we have demonstrated here its use in
the insertion of the full-length F8 gene for hemophilia A
as an example of a disease model.

Gene therapies for hemophilia A provides a tractable
alternative to the present standard of care confined to
prophylaxis, management of bleeding incidences and re-
placement therapy that includes repeated infusion of
clotting factors to replace the missing/low endogenous
FVIII protein [57-62]. Ideally, replacing the dysfunc-
tional F8 gene with a functional copy would be the most
desirable way to benefit more than 400,000 affected
hemophilia A patients worldwide [63, 64], but such gen-
ome engineering pursuits are extremely challenging
owing to the large size of the gene [64, 65]. Hence,
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Fig. 6 Seamless vector production and targeting strategy for DUX4-mNeon reporter cassette at endogenous attH4x sites in LINE-1. a A schematic
representation of A-Int mediated in vitro intramolecular recombination between attH4X and attP4X (both present in the parental substrate vector)
generating DUX4-mNeon reporter seamless vector with a recombinant attL4X junction, which can subsequently intracellularly recombine with
attH4X. Successful integration of the reporter resulted in attL4X (left) and attH4X (right) recombinant sites flanking the site of integration. b PCR
analysis using genomic DNA from the puromycin resistant clones (obtained with co-transfection of DUX4-mNeon reporter seamless vector and
Int expressing vector Int-C3) resulted in three clones (M27, T13, T25) positive for left junction with forward primers specific to LINE-1 (F1/F2) and
reverse primer (mNeon rev) and a M27 clone positive for right junction with reverse primers specific to LINE-1 (R1/R2) and forward primer (Puro
fwd). Lanes: L, 1 kb DNA ladder; W, no DNA control; G, genomic DNA from parental hESCs; 27,13,25; genomic DNA from M27, T13 and T25
puromycin resistant clones. ¢ Transfection of transgenic clones M27, T13 andT25 with DUX4 expression vector pCMV-DUX4 triggered mNeon
expression in a substantial fraction of cells at day 2, indicating the functionality of the Dux4 binding sites of the integrated reporter. GFP-control,
vector pCMV-GFP was used as a transfection control. d An illustration of the future application of our proposed methodology for high-throughput
drug screening upon mNeon reporter activation with CMV-DUX4 plasmid. The reporter activity (mNeon expression) can be modulated
depending on the compounds (inhibitors/activators) used for the screening

truncated F8 variants as a substitute have been pursued
to mimic FVIII-mediated physiological coagulation ef-
fects. AAV and other vectors have been widely used as a
carrier for the truncated version of the F8 gene; how-
ever, certain safety issues persist [64, 66—-68]. An ex-
ample of remaining adverse virus-mediated oncogenic
effects has been concretely pointed in a canine model of
hemophilia administered with AAV gene therapy in a
decade long follow-up study, wherein DNA payload in-
sertion was evidenced near genes that regulate cell
growth [69, 70]. Many precedented ex vivo pioneering
studies [71-76] have also been attempted to either gen-
etically correct or introduce a separate functional copy
of truncated F8 into different types of cells by lentiviral,
transposons and CRISPR Cas systems with a fair degree
of success, yet still requiring significant improvements.
In addition, lentivirus-based transduction of truncated
F8 variants into patient-derived iPSCs and directed dif-
ferentiation to megakaryocyte [75] and endothelial cell-
lineage [74] for functional FVIII production have
achieved some success, albeit some adverse effects of
random integrations linger. CRISPR Cas tools were also
used to correct F8 chromosomal inversions in patient-
derived iPSCs and subsequent liver endothelial differen-
tiation, an approach that could only benefit a subset of
hemophilia patients who harbour such inversions [71].
Contrastingly, a CRISPR-Cas-mediated universal gene-
correction knock-in strategy of introducing BDD-F8
gene at the endogenous F8 locus of hemophilia A
patient-derived iPSCs differentiated into endothelial cells
also did not yield optimal levels of FVIII [76]. This could
be because the human F8 locus is located on the X-
chromosome and only one copy has been inserted at this
locus which did not allow sufficient expression and yield
of the FVIII protein. In addition, deletion of the protein’s
B-domain results in a reduced rate of FVIII secretion,
which could be attributed to misfolding and degradation
of the BDD-FVIII protein compared to the full-length
FVIII protein. Furthermore, this approach is marred with
common issues of CRISPR, including indels,

chromosomal aberrations and translocations [76]. A
plausible direction of genome-editing strategies may in-
volve introducing the F8 coding sequence into putative
safe harbour and high expression loci, such as AAVS1 or
CCRS5, but such approaches need to be rigorously evalu-
ated. To this end, non-viral tools like transcription
activator-like effector nickases (TALENickases) identi-
fied the multicopy ribosomal DNA (rDNA) locus as a
safe and effective target for F8 gene integrations and ex-
pression in hemophilia A-affected iPSCs. Unfortunately,
they achieved a significant increase in the FVIII protein
in the lysates of the targeted iPSCs but failed to achieve
desirable FVIII protein in cell supernatants, indicating
potential problems with folding and secretion of the
FVIII protein [72].

To address the complex issues with hemophilia A gene
therapy designs, we conceived a non-viral-based trans-
genesis of F8 at potentially safe harbour sites in human
ESC genome. We took advantage of our previously re-
ported \-Int system to generate seamless vectors har-
bouring the full-length F8 gene using in vitro site-
specific intramolecular recombination between two
DNA recombination sequences (attH4X and attP4X)
[44, 45] flanking the F8 expression cassette in a 14-kb
supercoiled parental substrate plasmid. Our seamless
vector approach should minimize potential adverse host
immune responses to bacterial sequences [31-37]. The
attL4x harbouring ~ 10.1 kb F8 seamless expression vec-
tor is then targeted to attH4x in the hESC genome. This
approach also reduces the vector size, which, in turn, en-
hances DNA transfer. Our transgenesis strategy is poten-
tially superior to Piggy Bac transposon-mediated full-
length F8 insertion with respect to controlled and spe-
cific transgene insertion at predetermined LINE-I sites
[77]. The Piggy Bac system offers no control over inte-
gration sites, which bears a potential risk for insertional
mutagenesis and unwanted genotoxicities [77-79]. A
paralleled approach in our study of introducing the sub-
strate plasmid for Int-C3 to catalyze intracellular intra-
molecular recombination to convert the episomal
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substrate vector into a seamless vector before integration
into LINE-1 elements is an important advance since it
greatly simplifies the entire platform by eliminating
seamless vector production at a larger scale in vitro.
However, further experiments need to verify that the cir-
cular bacterial backbone DNA that is generated by intra-
molecular recombination inside cells is not randomly
inserted in the host cells’ genome.

Our proof-of-concept study with transgenesis of F8 re-
sulted in five hESC clones (B6, B7, B8, F1, F9) that har-
boured the complete F8 expression cassette in three
different LINE-1 loci. Southern blot and sequencing ana-
lysis confirmed stable single copy integrations at so-
called LINE-1 hot spots in four clones, a feature that will
further simplify our platform technology and can be
exploited in the future with other transgene constructs.
Interestingly, the targeting site in clone F1 is identical to
hotspots documented in our previous report [45]. This
locus lies on chromosome 7 and is part of an intron 2 of
CDCA7L responsible for regulation of cell division and
apoptosis signalling pathway. We confirmed the expres-
sion and activity of the F8 transgene from this targeted
locus. We also showed that F8 transgene expression can
be retained in differentiated hESCs, an important valid-
ation for our technology’s use in future stem cell and cell
therapy approaches. The fact that we can target several
endogenous attH4X sequences in parallel and test for
functional transgene expression in differentiated cells
represents an additional bonus of our transgenesis
method to eventually generate the desired transgenic cell
product.

In a second approach, we expanded the applicability of
our platform for the further development of reporter cell
lines for drug screening applications. We had previously
generated a hESC-derived pluripotency reporter cell line
that has already been successfully used in safety assess-
ments of lead compounds for the treatment of tubercu-
losis [44, 80]. Here, we employed a seamless transgenesis
approach for hESC-derived reporter cells related to
FSHD disease. FSHD is a genetic muscle disorder caused
by the loss of transcriptional repression of DUX4 gene,
resulting in its aberrant expression and subsequent pro-
gressive muscle wasting predominantly in the face,
shoulder blades and upper arms [81, 82]. The DUX4
protein is a transcription factor that targets a large set of
genes and initiates a cascade of downstream signalling
pathways that inhibit myogenesis and induces oxidative
stress and cell death in FSHD skeletal muscle [83—-85].
Various efforts are underway to model the disease in
cultured cells for further studies of FSHD and to identify
molecules that would interfere with pathogenic DUX4
expression or activity [84—87]. Given the high transfec-
tion efficiency that we can achieve with hES cells and
their ability to differentiate into muscle lineage, herein,
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we reported the development of an alternative hESC-
based reporter system comprised of large gene(s) cas-
sette that can be adapted for high-throughput screening
of drugs for FSHD disease. We constructed a DUX4 tar-
get gene reporter comprising of binding sites of DUX4
driving the mNeon gene that responds to DUX4 stimula-
tion. We demonstrated that ectopic expression of DUX4
protein triggered the expression of the fluorescent re-
porter. We think it is feasible that these cell lines can be
employed for high-throughput drug screening to identify
small lead compounds that suppress DUX4’s activity as
a transcriptional activator.

Conclusion

We presented a simple A-Int transgenesis platform as
a non-viral alternative to achieve large transgenic in-
sertions into the human genome for cell/gene therapy
and synthetic biology applications, including drug
screening.
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