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Extracellular vesicles derived from human ")
ES-MSCs protect retinal ganglion cellsand ™
preserve retinal function in a rodent model

of optic nerve injury
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Abstract

Background: Retinal and/or optic nerve injury is one of the leading causes of blindness due to retinal ganglion cell
(RGC) degeneration. There have been extensive efforts to suppress this neurodegeneration. Various somatic tissue-
derived mesenchymal stem cells (MSCs) demonstrated significant neuroprotective and axogenic effects on RGCs.
An alternative source of MSCs could be human embryonic stem cells (ES-MSCs), which proliferate faster, express
lower levels of inflammatory cytokines, and are capable of immune modulation. It has been demonstrated that
MSCs secrete factors or extracellular vesicles that may heal the injury. However, possible therapeutic effects and
underlying mechanism of human ES-MSC extracellular vesicles (EVs) on optic nerve injury have not been assessed.

Methods: EVs were isolated from human ES-MSCs. Then, ES-MSC EV was applied to an optic nerve crush (ONC)
mouse model. Immunohistofluorescence, retro- and anterograde tracing of RGCs, Western blot, tauopathy in RGCs,
and function assessments were performed during 2-month post-treatment to evaluate ONC improvement and
underlying mechanism of human ES-MSC EV in in vivo.

Results: We found that the ES-MSC EV significantly improved Brn3a+ RGCs survival and retro- and anterograde
tracing of RGCs, while preventing retinal nerve fiber layer (RNFL) degenerative thinning compared to the vehicle
group. The EVs also significantly promoted GAP43+ axon counts in the optic nerve and improved cognitive visual
behavior. Furthermore, cis p-tau, a central mediator of neurodegeneration in the injured RGCs, is detectable after
the ONC at the early stages demonstrated tauopathy in RGCs. Notably, after EV treatment cis p-tau was
downregulated.

Conclusions: Our findings propose that human ES-MSC EVs, as an off-the-shelf and cell-free product, may have
profound clinical implications in treating injured RGCs and degenerative ocular disease. Moreover, the possible
mechanisms of human ES-MSC EV are related to the rescue of tauopathy process of RGC degeneration.
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Introduction

Retinal ganglion cells (RGC) are one of the most import-
ant neural cells. Their axons make up the optic nerve
and transfer visual signals to the brain. RGC degener-
ation due to direct physical trauma of the optic nerve
(optic nerve crush; ONC), systemic inflammatory, or
congenital or acquired diseases, such as glaucoma, can
lead to blurred decrease of visual function and ultim-
ately, blindness. Although various medical interventions
that include neuroprotective medicines and surgeries
have been widely employed to rescue neural cell damage,
the outcome has not been promising [1].

Currently, mesenchymal stem cells (MSC) raise new
hopes for treatment of retinal diseases and have been
studied in many experimental models [2-4]. Notably,
the therapeutic efficacy of MSC in models of ONC [5-9]
and glaucoma [10-13] have been reported.

MSCs are frequently isolated from the bone marrow
(BM), adipose and placental tissues, and umbilical cord
blood (for review see [14]). These somatic tissue-derived
MSCs have some drawbacks such as the need for a con-
sistent source of cells and their low passage numbers.
An alternative source of MSCs could be human pluripo-
tent stem cells (PS-MSC) that include embryonic stem
cells (ES-MSC) and induced pluripotent stem cells (iPS-
MSC), with similar phenotypic and molecular character-
istics that make them attractive candidates for regenera-
tive cellular therapy (for review see [15]).

The therapeutic potentials of PS-MSCs in a variety of
disease states have been demonstrated in many animal
models [16-26]. Compared to somatic tissue-derived
MSCs, PS-MSCs proliferate faster, express lower levels
of inflammatory cytokines, and are capable of immune
modulation [15, 24, 26, 27]. Interestingly, ES-MSCs were
able to inhibit efficiently peripheral blood mononuclear
cells (PBMCs), suggesting that ES-MSCs have a high
immunomodulation activity [26]. Therefore PS-MSCs
could be a promising cell source for regenerative
medicine.

On the other hand, evidence strongly suggests the
dominant mechanism of action of these cells is a
paracrine-mediated effect with secreted factors. MSCs
promote improvement of injured RGC through neuro-
protective and neuritogenic cytokines and reduce in-
flammation with the help of anti-inflammatory and
immunomodulatory properties (for review see [2, 28]).
One effective paracrine-mediated mechanism could be
through the secretion of bilayer membranous extracellu-
lar vesicles (EV), such as exosomes (40—100 nm in diam-
eter) and microvesicles (0.1-1 mm in diameter) [29, 30]
composed of proteins, growth factors, lipids, mRNAs,
and miRNAs, which may possibly induce neural tissue
regeneration through neuroprotective and neuritogenic
effects [31]. The therapeutic efficacy of MSC-EVs has
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been demonstrated in many retinal disease models [32—
40]. However, the long-term effect of PS-derived MSC-
EV on RGC protection and function, as well as on p-tau
abnormalities is unknown.

Tau is a phosphoprotein that is moderately phosphor-
ylated under physiological conditions. Tau hyperpho-
sphorylation  results in its pathogenicity and
neurodegeneration [41]. Accumulation of phosphory-
lated tau that has dissociated from microtubules may re-
sult in tau oligomers and tangles [42]. In particular, tau
phosphorylation in the microtubule binding sites can
affect microtubule dynamicity [43].

Various stress conditions can induce tau hyperpho-
sphorylation, resulting in neurodegeneration [44]. Des-
pite extensive considerations, the actual causative link
between the physical damages and p-tau formation in
RGCs has not been fully understood. In this regard, one
major limiting drawback is the lack of observation of the
early driver of tauopathy process upon the retinopathy.
Recently, it has been demonstrated that phosphorylated
tau at Thr-Pro motifs may result in two distinct cis and
trans conformations. Cis to trans p-tau conversion is
mediated by peptidyl-prolyl cis/trans isomerase 1 (Pinl)
[45]. Pinl suppression upon different stresses could re-
sult in cis p-tau accumulation [45, 46]. It has been
claimed that cis p-tau conformers are almost pathogenic
and prone to aggregation. Among several pathogenic
species, we chose cis pT231-tau. We have reported that
it is extremely neurotoxic and an early driver of tauopa-
thy and the neurodegeneration process [47-49]. We
have demonstrated that various stress conditions would
reflect cis p-tau accumulation.

In the present study, we aimed to test the therapeutic
potential of ES-MSC EV on an ONC mouse model. We
sought to determine the effect of ES-MSC EV on optic
nerve function and potential long-term neuroprotective
effect by evaluating RGC survival, cognitive visual behav-
ior, thickness of the retinal nerve fiber layer (RNFL), and
cis p-tau accumulation.

Materials and methods

Mesenchymal stem cell (MSC) culture

Human ES-MSCs (passages 6 to 12) were provided from
the Royan Stem Cell Bank. The provided MSCs had a
spindle and homogenous morphology, confirmed ex-
pression of typical MSC markers, and were multipotent
[26]. We have generated PS-MSC from different ESC
and iPSC lines before, and they showed similar charac-
teristics [24—26, 50]. Therefore, in here, we used one
ESC line to generate MSC. The origin of human ES cell
line was Royan H6 [51] (Royan Stem Cell Bank). The
cells were cultured in Alpha-minimal essential medium
(a-MEM, 11900073, Gibco) plus 10% fetal bovine serum
(FBS, 10270, Gibco) and 1% L-glutamine (25030024,
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Gibco). We used two concentrations of FBS for different
PS-MSCs, 15% [25] and 10% [24, 26], but we did not ob-
serve a significant difference in both concentrations. The
culture medium was depleted from possible vesicles by
ultra-centrifugation at 110,000¢g for 120min. The
medium was renewed every 3 days. The conditioned
media were stored at — 70 °C until EV isolation.

Extracellular vesicle (EV) extraction and quantification

To isolate EVs, ES-MSCs were cultured in T150 culture
flasks up to 80% cell confluency (days 3-4). The EVs
were extracted from the human ES-MSC culture
medium using ultracentrifugation; all the centrifugation
processes performed at 4 °C. First, the ES-MSC culture
media were centrifuged at 3000g for 10 min; the result-
ant pellet was discarded. The supernatant was subjected
to additional centrifugation at 20,000g for 30 min. The
pellet was washed twice with phosphate-buffered solu-
tion without calcium and magnesium (PBS-, Gibco,
14190-136) and centrifuged again at 20,000¢ for 30 min.
The supernatant was ultracentrifuged at 110,000g for
120 min, and the remaining pellet that contained the
EVs was washed twice with PBS- and centrifuged at
110,000¢ for 120 min. The resultant vesicles were re-
solved in PBS and stored at —-70°C. The EVs were
thawed at 4 °C gradually for downstream tests. Then, the
EVs were measured via dynamic light scattering (DLS,
Zetasizer nano range), and the morphology was checked
through scanning electron microscopy (SEM). Further,
the enriched protein expressions (CD63, CD81, and
TSG101) and a negative organelle marker (Calnexin)
were checked by immunoblotting.

To reduce the batch effect of EVs, initially, we check
out our process by a small batch. Then, we cultured cells
in large-scale platform and EV isolation from pool of
conditioned medium. Finally, the isolated EVs were
characterized and aliquoted to be used in all experi-
ments. By this approach, we used one EV batch which
characterized for all experiments.

Animals

C57BL/J6 male mice, approximately 8—10 weeks of age
were kept on a 12-h day/night cycle. All procedures on
the mice were in compliance with institutional guide-
lines and with the ARVO statement for the Use of Ani-
mals in Ophthalmic and Vision Research. The mice
were anesthetized with a 1:4 mixture of xylazine/
ketamine.

The optic nerve crush (ONC) procedure

We used an operating microscope (Olympus, Tokyo,
Japan) to generate a small incision in the conjunctiva be-
ginning inferior to the left globe and around the eye
temporally. With fine forceps (tweezers #5B forceps,
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World Precision Instruments), the exposed optic nerve
was grasped approximately 1 mm from the globe for 5s.
During surgery, we applied a small amount of surgical
lubricant to the eye to protect it from drying. At the end
of the procedure, gentamycin (Daroupakhsh, Iran) and
1% tetracycline (Daroupakhsh, Iran) ointment were ad-
ministered for postoperative infection control. The ad-
equacy of the injury was histologically validated by
Toluidine blue staining and by sacrificing additional ani-
mals 2 days after surgery [left (crushed) and right (in-
tact) optic nerves].

Experimental design

In addition to the age-matched intact group mice that
did not receive any surgery, the model mice were ran-
domly divided into three groups, 2 days after the sur-
gery. The animals in the three groups received 200 pl
infusions of either MSC (50,000), medium with no cells
(vehicle), or EV (15 pg) [33, 34], via their tail veins. We
evaluated different doses (250,000, 100,000, and 50,000
per injection) and found more survival rate after IV in-
jection by 50,000 MSCs per injection (data not shown).
The injections were performed every other day for three
times per group for each animal. Therefore, totally, each
animal received 45 pg EV or 150,000 MSCs. The sys-
temic injections were repeated every other day for three
times after the crush. EV concentrations were measured
using the bicinchoninic acid assay according to the man-
ufacturer’s instruction (Thermo Fisher Scientific).

Cognitive visual behavior test: visual cliff

The visual cliff test was selected because the depth per-
ception task depends on binocular vision and thus in-
volves the primary visual cortex [52]. For the visual cliff
test, we used a hand-made clear plastic box according to
de Lima et al. [53]. In this box, the animal senses two
shallow and deep sides because of the depth difference.
The bottom of the box related to the deep area is sus-
pended 70 cm above ground when the entire box is over
a checkerboard. The animals were initially placed in the
shallow area, and the time from first spotting until cross-
ing the deep end (decision time) was recorded during a
2-min period. The videos from this cognitive visual be-
havior were evaluated by two investigators blinded to
the experiment, n =15 age-matched intact mice, n =13
for vehicle group, n=9 for MSC group, and n =23 for
EV group.

Neural retina degeneration and immunostaining

We evaluated the neural retina survival rate as reported
by Kurimoto et al. [54]. The eyes from the various
mouse groups were enucleated on days 21 or 60 after
the crush and placed overnight in 4% paraformaldehyde.
Then, the front part of the eye sphere was cut and the
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retina was removed completely. After blocking the non-
specific background and to promote maximal immunore-
activity of monoclonal antibodies during immunoblotting
with blocking solution, the whole retina was immuno-
stained with anti-Brn3a, BIII tubulin (Tujl), or Cis p-tau
(gifted from Professor Lu), followed by the appropriate
secondary antibodies (Supplementary Table 1). The pres-
ence of the MSCs in the retina was evaluated by human
specific antibody for TRA-1-85. Images were captured
using an IX71 fluorescent and confocal microscope (Zeiss
LSM 800).

Retrograde and anterograde tracing

In order to determine the amounts of intact and
degenerated axons between the different groups, we
examined retrograde and anterograde tracings. For
the retrograde tracing, which is important for finding
connections between the eyes and the brain, we
injected 2 ul of 2% DiICyg (3) (Dil; Molecular Probes,
D282, UK) in each superior colliculus from the mice.
The samples were harvested in 5-7 days. The har-
vested samples were fixed in 4% PFA for 1h,
mounted, and observed with a fluorescent microscope
(IX71, Olympus, Japan). For anterograde evaluation,
Chlorotoxin B (CTB; GenWay Biotech) was injected
into the vitreous of the eyes. The mice were sacrificed
4—6 days after the injection. Longitudinal cryosections
of optic nerves were created by Cryostat at 8 um and
treated by blocking solution for 1h. The axons were
immunostained against CTB or GAP43, and the im-
ages were captured with a fluorescent microscope.

Western blot analysis

The extracted proteins from EVs were loaded on SDS-
PAGE following by fixation and staining with Coomassie
brilliant blue G-250 (Bio-Rad, Hercules, CA) and scan-
ning by GS-800 densitometer (Bio-Rad).

Western blot was employed for expression analysis of
cis p-tau, Tuj 1, and Pin 1 in the retinas along with optic
nerves, as well as EV protein markers including three
positive (CD63, CD81, and TSG101) and a negative or-
ganelle marker (Calnexin). Samples were deep frozen,
and then the proteins were extracted by a Qproteome
Mammalian Protein Prep Kit, according to the manufac-
turer’s instruction (Qiagen). The concentration of the
proteins was determined via a Pierce BCA Protein Assay
Kit, according to the manufacturer’s instruction
(Thermo Fisher Scientific). For both tissue and EVs,
20 pg total protein from each replicate was separated on
SDS-PAGE gels and transferred to PVDF membranes
using a semi-dry electrotransfer system. The blots were
then washed with tris-buffered saline that contained
0.1% Twin 20 for 15 min. Afterwards, blots were blocked
with 2% skimmed milk for 1h for tissue and by 5% BSA
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for EVs. Subsequently the blots incubated with primary
antibodies (Supplementary Table 1, 1.5h at RT for tis-
sue, and overnight at 4°C for EVs). After washing for
three times, the blots were incubated with HRP-
conjugated secondary antibodies, 1h at RT for tissue,
and 1 h at 4°C for EVs. The protein bands were detected
using ECL substrate (Thermo Scientific) and imaged by
a chemiluminescence imaging system (Uvitec, Alliance
Q9). The optical density (OD) of the bands from tissue
blots was quantified by Image] software (https://image;j.
nih.gov; National Institutes of Health, Bethesda, MD,
USA), and ODs were normalized to B-actin for Cis-p
tau, Tujl, and Pinl.

EV labeling and tracking

To trace EVs after intravenous injection in animals, they
were labeled with a luminal fluorescent dye (Calcein-
AM) as previously described [55]. Briefly, EVs were re-
suspended in 100 pL calcein AM solution and incubated
at 37 °C for 20 min. Unincorporated Calcein AM was re-
moved using exosome spin columns (MW 3000).

The presence of Calcein-EVs in the eye was visualized
with UVI gel documentation (UVItec, Cambridge, UK)
and analyzed with UVI photo version Q9 alliance soft-
ware (UVItec, Cambridge, UK).

Statistical analysis

Statistical differences were evaluated by ANOVA and
the Tukey’s post hoc test or the unpaired ¢ test. The data
are presented as mean + SD. P values < 0.05 were consid-
ered statistically significant.

Results

Characterization of extracellular vesicles (EVs)

Human ES-MSCs were a homogenous population that
had spindle-shaped morphology (Fig. 1la). To prepare
EVs, the MSC conditioned medium was processed as
shown in Fig. 1b. The final sediment that contained EV
was resolved up to 100 pl of sterilized PBS and kept at —
70 °C. The spherical morphology of the EVs was demon-
strated by SEM (Fig. 1c). The DLS assay verified that the
EVs were approximately 220 nm in size (Fig. 1d). The
protein pattern and concentration of isolated EVs has
been confirmed by Coomassie staining of SDS-PAGE
gel. Furthermore, the isolated EV were positive for the
related markers CD81, TSG101, and CD63 as detected
by Western blot analysis (Fig. 1f) and were negative for
calnexin.

Improvement of visual behavior after extracellular vesicle
(EV) administration

Since there are many reports of paracrine effects of
MSCs on different injuries, we hypothesized that trans-
plantation of the MSCs could improve the functional
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Fig. 1 Isolation and characterization of embryonic stem cell-derived mesenchymal stem cells (ES-MSC) extracellular vesicles (EVs). a Phase contrast
micrograph of passage-9 human embryonic stem cell-derived mesenchymal stem cells (ES-MSCs). b Extracellular vesicles (EVs) were isolated from
conditioned medium of human ES-MSCs using differential ultracentrifugation. The supernatants (Sup.1-3) were submitted to further
centrifugation and the pellets (Pel. 1-3) and Sup. 4 were discarded. ¢ Scanning electron microscopy (SEM) of the EVs. d Size distribution of ES-
MSC EVs was assessed using dynamic light scattering (DLS). Size quantification data demonstrated an average size of 130 nm for the EVs. e The
Coomassie stained gel of loaded EVs. f Representative Western blot analysis for expression of enriched proteins in EVs (two EV membrane
markers [CD63 and CD81], and one laminal marker [TSG101])

recovery in ONC of mice by administration of EVs. Two
days after ONC, each mouse received either 50,000
MSCs, vehicle, or 15ug EV every other day for three
times (Fig. 2a). Toluidine blue staining of the semi-thin
sections obtained from the optic nerve proximal to the

crushed site after 48 h showed a distinct axon degener-
ation and reduced number of axons. We observed that
more than 50% of the axons were lost and had myelin
destruction (Fig. 2b and c). In order to evaluate func-
tional consequences of regeneration and by taking
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Fig. 2 Animal groups and partial recovery of cognitive visually behavior. a Experimental design, time line, injection intervals, and analysis times. b
Toluidine blue semi-thin optic nerve sections with optic nerve crush (ONC) and without crush (intact) which confirmed axonal loss during 2 days
after the injury. ¢ Quantification of toluidine blue semi-thin optic nerve sections in (b). The data demonstrated that more the 50% axons loosed 2
days after injury. Data presented as mean + SD for four optic nerves per group. The data were analyzed by the un-paired t-test. **P < 0.01. d
Decision time through visual behavioral test shows improvement of retinal function in the mesenchymal stem cell (MSC) and EV groups
compared to the vehicle group 60 days post-treatment. Intact group animals are the same age as the healthy mice. Data are shown with a violin
plot and analyzed by one-way ANOVA and post-hoc Tukey's test. *P < 0.05, **P < 0.01

advantage of the animals’ innate aversion to depth, we
assessed depth perception using a visual cliff apparatus
on day 60 post-injury. This test shows the connection
between the optic nerve and the visual cortex. The mice
first entered the shallow area, and we recorded their de-
cision time, which was determined to be the time it took
the mice to cross the deep border area after recognizing
it. As shown in Fig. 2c, the average decision time was
39.53 + 32.41 s for the intact, 6.07 £ 5.23 s for the vehicle,
13.88 £9.36 s for the MSC, and 29.27 +25.13 s for the
EV groups. A significant improvement was demon-
strated in MSC, and EV groups compared to the vehicle
(at least P<0.05). These results indicate that, under
MSC or EV conditions, protecting the host RGCs leads
to partial recovery (vision-driven behavior).

Mesenchymal stem cells (MSCs) and extracellular vesicles
(EV) protect retinal ganglion cells (RGCs)

In an attempt to study the neurotrophic or neuroprotec-
tive effect of the treatments on ONC, we assessed the ef-
fects of MSC and EV injections on RGC survival. We
examined the Brn3 marker to evaluate the effect of the
treatments on RGCs degeneration in crushed mice ret-
ina at 21 and 60 days after the injury (Fig. 3a). The num-
ber of labeled RGCs within the retina was quantified and
compared between groups (Fig. 3b). In animals that had
intact visual system, the labeled cells had a density of
5128.00 + 1783.89 RGCs/mm?. Three weeks after infu-
sion of the vehicle, the number of labeled RGCs had re-
duced to 1979.78 +1434.05 RGCs/mm”® with an
additional decrease after 60 days (487.19 + 351.90 RGCs/
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for Brn3a. b Quantification of Brn3a+ cells by immunostaining in (a). Brn3+ cells were counted in 12 areas and averaged to estimate the RGC
survival per mm? in four to six optic nerves per group. Data are given as mean + SD and analyzed by one-way ANOVA and post-hoc Tukey's test.
***P < 0,001. ¢ Immunostaining of retina for Tuj1 that shows the Brn3a expression trend

MSC EV

D
6000

S
o
o
o
1

2000

Tuj1+ cells/mm?

mm?). In contrast, the MSC injections significantly pro-
tected the RGCs from neurodegeneration on day 21
(2708.21 + 2598.60 RGCs/mm?) and day 60 (1809.25 +
992.76 RGCs/mm?). The EV injections also had a signifi-
cantly protective effect against neurodegeneration on
day 21 (432149 +1653.20 RGCs/mm?) and day 60
(1996.28 + 2215.81 RGCs/mm?). We examined Tuyjl, an-
other RGC-specific marker, on day 60 post-injury. We
observed more Tujl+ cells in the MSC- and EV-treated
groups than the vehicle group (Fig. 3c).

These results demonstrated a significant improvement
in decision time and RGC survival rate on day 60 post-

injury in both MSC and EV groups in comparison with
vehicle group. But there was not a significant difference
between MSC and EV groups. Therefore, we continued
our experiments with EV group.

Next, we assessed the effects of the EV injections on
RGC projections to the brain. A retrograde tracing ap-
proach that used microinjections of Dil into the superior
colliculi and its detection within the RGCs layer of the
retina was used. Our findings on the 60th day post-
crush showed that the EV group had more regenerating
axons than the vehicle group (Fig. 4a). In order to study
the ganglion axonal integrity, we employed the
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Fig. 4 Retro- and anterograde axonal tracing 60 days post-treatment. a The intact retinal ganglion cells (RGCs) soma in the vehicle and
extracellular vesicle (EV) groups that was retrogradely stained with DilC18(3) (Dil; red). b, ¢ Longitudinal cryosections and immunostaining against
chlorotoxin B (CTB) in the intact group of the anterograde shows the left (L) and right (R) optic nerves. CTB was only injected in the left optic
nerve. Data from the anterograde tracing shows that more CTB+ axons extended the length of the optic nerve in the EV group, whereas smaller
numbers in the vehicle were seen, even at a distance of 300 to 600 um in distal site of crush. d Quantification of CTB+ RGCs axons in the optic
nerve in (c). Data are shown as mean + SD for four optic nerves per group. The data were analyzed by the un-paired t test. ***P < 0.001. e A
longitudinal section of the optic nerve with EV, which shows numerous axons with GAP43 expression

EV

200 pm

EV, 300-600 um post crush

anterograde tracing test using CTB, which passes
through axonal terminals (Fig. 4b). The left eyes from
the vehicle and EV groups received 3 pl of toxin in the
vitreous while the right eyes were intact. The optic nerve
was thoroughly harvested (without stretching). The left
eyes that received CTB passed it along with their axons.
The right eye from the intact group was used as the
negative control. We also assessed 300 to 600 um distal
to crush area and found significant more CTB+ axons in
this region in the EV group than the vehicle (Fig. 4c and
d). More axons in the EV group stained positive for the

growth-associated protein GAP43, as a marker of regen-
erated axons of RGCs (Fig. 4d).

We also evaluated the thickness of the RNFL by stain-
ing for the Tujl marker at 60 days post-injury (Fig. 5a).
A comparison of the RNFL thickness in whole retina
demonstrated improvement after the EV injections
(106.19 + 6.69 um) compared to the vehicle administra-
tion (84.75 + 13.46 um). However, the difference between
the EV and intact groups was not statistically significant
(Fig. 5b). Tracing of the EVs with Calcein demonstrated
the vitreal accumulation of EVs, post-injection. However,
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were analyzed by the un-paired t test. ***P < 0.001. ¢ Representative image of mice eye from dorsal view, enucleated 15 and 30 min post-
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we could not find MSCs in the sections of the retina by
immunostaining for human specific antibody for TRA-1-
85 (Supplementary Fig. 1). Generally, these data demon-
strated the ability of EVs to protect RGCs or regenerate
and/or through both effects.

Extracellular vesicle (EV) treatment suppresses the
tauopathy process and ameliorates cistauosis in
degenerating retinal ganglion cells (RGCs) upon optic
nerve crush (ONC)

The immunostained retinal sections with cis p-tau anti-
body demonstrated prominent cis p-tau in those crush
models. However, the EV injections reduced cis p-tau
levels and blocked the tauopathy process. There were no
cis p-tau+ sections in those crush models at 6 and 12h
after the trauma. There was cis p-tau accumulation at
24 h, which increased by day 3 (Fig. 6a). In this time
after the injury, we observed cis p-tau exclusively in the
RGC cytoplasms while they were limited to only the
RGC layer. To examine cis p-tau localization, the sec-
tions and whole injured retinas were double stained with
Tuj 1 and cis p-tau. Our findings at 21 days post-injury
showed that cis p-tau formed in the inner nuclear and
RGC layers in addition to the vasculature, but not in the
photoreceptor cells (data not shown). Data from whole
mount co-stained with Tuj 1/cis p-tau confirmed the

presence of cis p-tau in the injured RGC axons (Fig. 6a).
As shown in Fig. 6b and c, there were no significant dif-
ferences in Pinl expression levels in the three groups
(Fig. 6b, c and d), while there was an obvious inverse re-
lationship between Tujl and cis p-tau. We examined
axonal degeneration after cis p-tau formation at 60 days
post-crush. We observed degenerating axons that posi-
tively stained with cis p-tau in the vehicle group, but not
the EV group (Fig. 6e).

Discussion

The therapeutic potential of somatic tissue-derived
MSCs has been demonstrated in animal models of ONC.
It has been shown that MSCs have a neuroprotective
and regenerative effect [5-9]. The ONC model of a CNS
injury is characterized by RGC death and the inability of
axons to regenerate. Therefore, RGC are neither replace-
able nor capable of axon regeneration. In this study, we
observed significant, sustained neuroprotective and axo-
genic effects, in addition to preservation of retinal func-
tion, after injections of MSCs and EVs. Compared to
somatic tissue-derived MSCs, ES-MSCs showed faster
proliferation and express lower levels of inflammatory
cytokines and capability of immune modulation [15, 24,
26, 27]. Furthermore, ES-MSCs show an increased
growth rate during early in vitro expansion [24, 26, 27]
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mean + SD for four samples per group. The data were analyzed by the un-paired t test. *P < 0.05, **P < 0.01. d Single laser confocal plane shows
the degenerating double-positive ¢is p-tau and Tuj1 neurons observed in the vehicle group 60 days post-treatment. The axons in the extracellular
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and overcome the limitations of harvesting MSCs from
adult tissues that include the availability of suitable do-
nors, invasive procedures, limited number of cells

obtained during the harvesting process, and restricted
in vitro expansion capacity. PS-MSC have a high immu-
nomodulatory effect [15, 26], which may related to their
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high secretions of anti-inflammatory cytokines, TGF-3
and IL-10, and low production of pro-inflammatory cy-
tokines such as IFN-y [15, 56, 57].

Secreted neurotrophic factors such as platelet-
derived growth factor and brain-derived neurotrophic
factor are important for neuroprotection of RGCs [31,
58]. Other secreted factors, such as Wnt3a, have been
implicated in the neuroprotective effect of MSCs on
CNS neurons [35].

Although PS-MSCs have proven therapeutic benefits
[16-26] and they have potential for differentiation into
neural-like cells, however, the generation of functional
neuronal cells from a somatic MSCs did not report.
Moreover, several evidences strongly suggest the domin-
ant mechanism of action of these cells is a paracrine-
mediated effect with secreted factors and it is easier to
use their cell-free active components. EVs can be iso-
lated relatively easily; they benefit paracrine repair with-
out the risks [59], are easy to store, and do not
proliferate. These qualities are important for the gener-
ation of a cell-free therapy. The reports have demon-
strated that the therapeutic effect of EVs were reliant
both on proteins and miRNA [32]. Here, we have shown
that ES MSC-derived EV were of benefit for RGC sur-
vival and retinal function without a loss of efficacy. The
therapeutic efficacy of these MSC-EVs has been demon-
strated in models of experimental autoimmune uveitis
[33], ischemia [34], glaucoma [35, 36], ONC [37, 38],
and light injury of retinal pigmented epithelium [39, 40].
While MSC-EVs have demonstrated therapeutic effects,
the fibroblast-EVs do not have any significant effects on
neuroprotection and neuritogenesis [35, 38].

It is important to recognize that our ES-MSC EVs
were injected at 2, 4, and 6 days post-ONC as opposed
to previous studies that performed a single transplant of
MSCs [5-9] and EVs [33-36, 39, 40] on the day of sur-
gery. Two previous studies have similarly delivered three
injections in 3 weeks BM MSC-EVs in an ONC model
[35, 37, 38]. We chose this treatment regime to partially
emulate the continuous secretion of ES-MSC-derived
exosomes. It has been demonstrated that RGC are not
the only target of MSC-EVs [38]; thus, it is not clear if
the therapeutic effect we observed was via a direct effect
on the RGC or through retinal intermediaries.

The significant neuroprotection afforded by ES-
MSC EVs was corroborated by our decision time data
through the visual behavioral test, which demon-
strated significant protection of RGC axons measured
as RGC survival, retrograde and anterograde tracing
tests, and RNFL thickness in addition to RGC axon
regeneration demonstrated by in vivo GAP-43
expression. The effect of BM MSC-EVs on neurite
outgrowth has been reported in vitro [38] and in vivo
[60, 61].
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Additionally, we demonstrated that EV treatment sup-
pressed cis p-tau accumulation, as an early driver of
tauopathy and the neurodegeneration process [47-49].
We found a remarkable increase in acute cis p-tau levels
after the crush. This, in turn, disrupts the axonal micro-
tubule network, spreads to other neurons, and leads to
apoptosis, which is a process termed “cistauosis”. Not-
ably, we observed cis p-tau 24 h after the crush, but not
at the earlier time points. From day 3 onward, there was
a significant increase in cis p-tau, as we observed prom-
inent cis p-tau accumulation in whole retina Tujl+ neu-
rons on day 21 post-injury. The increased cis p-tau level
corresponded to the Tujl decrease, which demonstrated
retinal cistauosis. Also, we observed prominent neurode-
generation in the untreated group. Interestingly, EV
treatment could heal the RGC degeneration, which likely
occurred via amelioration of cis p-tau.

Conclusion

Taken together, human ES-MSC and ES-MSC-derived
EVs promote neuroprotection and functional preserva-
tion of RGC in an ONC mice with rescue of tauopathy
process. Ease of isolation, storage, and transplantation
without the complication and risks related to cell trans-
plantations makes ES-MSC a good candidate as an ad-
junctive therapy to RGC degeneration. This would
provide a potential future treatment for optic nerve re-
pair secondary to traumatic and compressive. EV may
provide an off-the-shelf resource in appropriate time for
treating degenerating RGCs. However, these findings are
limited due to using of one human PS cell line for gener-
ating MSC and EV. Further studies to determine the ES-
MSC EV effective molecules and their targets for
optimization and translational purposes and more hu-
man PS cell line-derived MSC and EVs are needed. In
translating to the clinic, some issues such as treatment
dosage, administration route, and immune compromised
subjects remain to be clear.
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