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Abstract

Bone diseases such as osteoarthritis, osteoporosis, and bone tumor present a severe public health problem.
Osteogenic differentiation is a complex process associated with the differentiation of different cells, which could
regulate transcription factors, cytokines, many signaling pathways, noncoding RNAs (ncRNAs), and epigenetic
modulation. DNA methylation is a kind of stable epigenetic alterations in CpG islands without DNA sequence
changes and is involved in cancer and other diseases, including bone development and homeostasis. ncRNAs can
perform their crucial biological functions at the RNA level, and many findings have demonstrated essential
functions of ncRNAs in osteogenic differentiation. In this review, we highlight current researches in DNA
methylation of two relevant ncRNAs, including microRNAs and long noncoding RNAs, in the initiation and
progression of osteogenesis and bone diseases.
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Introduction
Bone is the primary connective tissue of the human body
and undergoes constant renewal and remodeling during
growth, damage, and normal homeostasis. Nowadays, bone
diseases, including osteoarthritis, osteoporosis, and bone
tumor, become prevalent and severe public health threats.
However, bone regeneration ability declines with age and
changes in some pathologic conditions, eventually leading
to the reduction of bone density or osteoporosis. Osteo-
genic differentiation is a complex process involving tight
coordination of proliferation and differentiation of different
cells, synthesis, and mineralization of extracellular matrix
[1]. It is achieved through a multi-tiered regulatory system

by transcription factors, cytokines, many signaling path-
ways, and epigenetic modulation [2].
Epigenetic modifications, such as methylation and his-

tone modifications, implicate in the heritable genetic
changes without DNA sequence alteration often related to
human disease [3]. DNA methylation is a kind of stable
epigenetic modifications and refers to the addition of a
methyl group (CH3) to the C-5 position of cytosine, which
usually occurs in CpG islands [4]. CpG islands enrich
cytosine and guanine sequences and account for 1% of the
genome [5, 6]. Approximately 60% of CpG islands are
found in gene promoters and are usually demethylated in
normal cells [5, 7, 8]. DNA methyltransferase (DNMT)
enzymes, including DNMT1, DNMT3A, and DNMT3B,
can catalyze DNA methylation, changing the DNA epi-
genetic status [9]. DNMT1 is highly related to maintaining
DNA methylation, while DNMT3A and DNMT3B have
the ability to promote the DNA methylation rate [10]. The
aberrant DNA methylation statuses play an essential role
in the pathological process of some diseases [11]. Previous
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studies determined that DNA methylation was involved in
the process of osteoblastic differentiation [12] and osteo-
clast formation [13], as well as the transformation of
osteoprogenitor cells into osteoblasts [14].
Noncoding RNAs (ncRNAs) are RNA molecules tran-

scribed from the genome without open reading frame and
protein-coding ability, but they can perform their crucial
biological functions at the RNA level [15]. According to the
transcript size, ncRNAs can be roughly divided into small
noncoding RNAs and long noncoding RNAs (lncRNAs).
Small noncoding RNAs are < 105 nucleotides in length, in-
cluding microRNAs (miRNA), transfer RNAs (tRNAs), and
circular RNAs (circRNAs), while lncRNAs were longer than
200 nucleotides [16]. Recently, ncRNAs were implicated in
several genetic, biological, and cellular processes, including
cell cycle control, epigenetic modification, cell differenti-
ation, and stem cell regulation [17, 18]. In this review, we
highlight the current studies of two significant ncRNAs, in-
cluding lncRNAs and miRNAs, in pathogenesis and pro-
gression of osteogenesis and bone disease.

Cells differentiation
Under the stimulus of different microenvironments, mesen-
chymal stem cells (MSCs) have the potential to differentiate
into osteoblasts, adipocytes, or chondrocytes [19], which are
strictly regulated by cellular signaling molecules, cytokines,
transcriptional factors, and multiple genes [20]. During em-
bryonic development and bone regeneration in fracture
healing, bone formation occurs through two interrelated
mechanisms: intramembranous osteogenesis and endochon-
dral osteogenesis [21]. In the process of intramembranous
osteogenesis, MSCs directly differentiate into osteoblasts.
Osteoblast differentiation is the primary step in the process
of bone formation, and its regulatory pathways include a
variety of signaling pathways such as bone morphogenetic
protein (BMP), runt-related transcription factor 2 (RUNX2),
transforming growth factor-beta (TGF-beta), and mitogen-
activated protein kinase (MAPK) signaling pathway, as well
as various transcription factors regulated by ncRNAs [22].
However, during endochondral osteogenesis, MSCs first dif-
ferentiate into chondrocytes and form chondroid tissue,
which is eventually replaced by bone tissue [23].
Many studies have put forward that the differentiation of

MSCs into osteoblasts and adipocytes is the opposite. A
variety of genes have been proposed to participate in the
cell fate decision. For example, in the regulation of some
genes such as PPARG and CXCL12, MSCs differentiate
into adipocytes and promote adipogenesis, while inhibited
osteogenesis [24, 25]. Besides, the researchers found that
Wnt/β-catenin was activated in the differentiation of MSCs
towards osteoblasts whereas inhibited in the differentiation
towards adipocytes [26]. As with the idea that “bone loss is
fat gain” [27], osteogenic and adipocytic differentiations are

a two-way balance process that, if broken, can result in
some human diseases, such as osteoporosis [28, 29].
A deeper understanding of the regulatory mechanism

underlying cell lineage of MSCs is helpful to explore the oc-
currence and development of osteogenic diseases. In recent
years, considerable numbers of studies have reported the
function of DNA methylation in the MSCs differentiation.
For example, Sorensen et al. [30] found hypermethylation
of lineage-specific promoters was associated with the differ-
entiation restriction of MSCs. Likewise, a study by Malvi-
cini et al. [31] revealed that the downregulated OCT4 in
MSCs triggered hypermethylated modifications, further
impairing the ability of MSCs to differentiate into osteo-
blasts and adipocytes. A new regulatory mechanism has
been identified that ncRNAs, such as lncRNAs and miR-
NAs, can be potential triggers in the decision of cell fates
by methylated modification. For example, lncRNA Plnc1
was reported to mediate the differentiation of bone marrow
stromal cells (BMSCs) into adipocytes by DNA methylation
[32], and miRNA-455-3p changed the methylation status of
chondrogenic-specific genes during the differentiation of
human bone marrow mesenchymal stem cells (hBMSCs)
towards chondrocytes [33], which would be discussed in
more detail in later sections.

Osteogenic differentiation
MicroRNAs
MicroRNAs (miRNAs) are single-stranded ncRNAs with
approximately 22 nucleotides, and multiple miRNAs have
been found to regulate the expression of osteogenic-related
genes at the post-transcriptional level. DNA methylation of
miRNAs was determined to regulate the development of
many human diseases. For example, miR-34b was reported
to affect leukemia cell proliferation by DNA methylation
[34]. The latest research also found that miRNAs had this
particular regulation function in osteogenic differentiation
(Table 1).
In 2019, Li et al. reported high-frequency methylation

of miR-149 regulated the osteogenic differentiation of
MSCs. They found miR-149 directly targeted SDF-1 and
regulated SDF-1/CXCR4 signaling during MSCs osteo-
genic differentiation. When treated with the methyl-
transferase inhibitor 5′-AZA-2′-deoxycytidine (5′-AZA),
the methylation levels were declined and the expression
of miR-149 were elevated. It revealed that miR-149 regu-
lated MSCs osteogenic differentiation through epigenetic
modifications (Fig. 1) [35].
Another research confirmed that miR-29b targeted

DNMT1 and led to the methylation modification in the
Notch1 promoter, which affected the Notch signaling
pathway and regulated osteogenic differentiation in
BMSCs of systemic lupus erythematosus mice. When
miR-29b was overexpressed, DNMT1 mRNA expression
was downregulated, resulting in demethylation in the
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promoter of Notch1. Hypomethylated modification pro-
moted Notch1 expression, and the activation of Notch sig-
naling decreased osteogenic differentiation of BMSCs [36].
Enah/Vasp-like (EVL) is an actin-related protein of the

Ena/VASP family, which involved in various processes re-
lated to cell polarity and cytoskeletal remodeling, including
axon guidance and cell migration [41]. It was reported that
EVL contained a CpG island in the promoter region, and

the CpG island aberrant methylation inhibited miR-342 ex-
pression in human colorectal cancer, which was a transcrip-
tion product of EVL intron [42]. Another article confirmed
the effect of miR-342-3p in osteogenic differentiation and
explored the regulation mechanism between miR-342-3p
and DNA methylation of its hosting gene EVL [37]. They
found hypomethylation in the promoter of EVL promoted
the miR-342-3p expression in osteogenic differentiation,

Table 1 DNA methylation of ncRNAs in the osteogenic differentiation

ncRNAs Gene ID DNA methylation and effects References

miRNA miR-149 Hypermethylation of miR-149 regulated the osteogenic
differentiation of MSCs via SDF-1/CXCR4 signaling.

Li et al. [35]

miRNA miR-29b MiR-29b targeted DNMT1 and led to the methylation
modification in the Notch1 promoter, which affected
the Notch signaling pathway and regulated the
osteogenic differentiation in BMSCs.

Liu et al. [36]

miRNA miR-342-3p Hypomethylation in the promoter of EVL promoted
the miR-342-3p expression in osteogenic differentiation
of hMSCs and human pre-osteoblast.

Han et al. [37]

lncRNA H19 H19 has a strong osteogenic effect via the NOTCH1
pathway, and hypomethylation in the H19 promoter
was associated with the high expression of H19.

Hadji et al. [38]

lncRNA H19 Hypermethylation in the promoter of H19 by DNMT1
resulted in the low expression of H19 and suppression
of the ERK signaling in disuse osteoporosis.

Li et al. [39]

lncRNA ANRIL DNA methylation of CDKN2A promoter mediated ANRIL
expression and altered the binding of the transcription
factor, which was inversely associated with bone size,
bone density, and mineralization.

Curtis et al. [40]

ncRNAs noncoding RNAs, DNMT DNA methyltransferase enzymes, BMSCs bone marrow stromal cells, hMSCs human mesenchymal stem cells

Fig. 1 Hypermethylation at the CpG sites of miR-149 promoter inhibited the expression of miR-149, thereby eliminating the inhibitory effect on
SDF-1 and activating the SDF-1/CXCR4 signaling, which ultimately induced osteogenic differentiation of MSCs [35]
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while hypermethylation associated with low expression of
miR-342-3p in the undifferentiated group.

lncRNAs
lncRNA is a kind of ncRNAs longer than 200 nucleo-
tides and possesses mRNA-like characteristics, including
5′ cap and 3′ polyA tail, but no protein-coding ability
[43]. Emerging evidence shows that lncRNAs are aber-
rantly methylated in osteogenic differentiation (Table 1)
and thus contributed to the pathogenesis and progres-
sion of bone disease.
lncRNA H19 is transcribed from maternally inherited

genes and is a crucial regulator of osteogenic differenti-
ation, which has an underlying association with bone-
related diseases [44]. As an imprinted gene, DNA
methylation changes of H19 can also lead to differential
expression of H19 and involves in bone diseases. In
2016, Hadji et al. found a reduction of DNA methyla-
tion in lncRNA H19 promoter, and its expression level
was increased in calcific aortic valve disease [38]. The
researchers subsequently showed a strong osteogenic
effect of H19 via negatively regulating the NOTCH1
pathway. In 2018, Liu et al. confirmed that DNMT1 ex-
pression was significantly enhanced in disuse osteopor-
osis and resulted in 5-methylcytosine cumulation in the
H19 promoter, which accompanied by low expression
of lncRNA H19 and suppression of the ERK signaling
[39]. This evidence revealed the crucial function of H19
methylation in controlling skeletal metabolism.
lncRNA ANRIL was reported to be involved in regu-

lating bone development as well. CDKN2A promoter
was identified to contain CpG regions and demonstrated
that DNA methylation changes in these sites mediated
lncRNA ANRIL expression and altered the binding of
the transcription factor, which was inversely associated
with bone size, bone density, and mineralization [40].

Adipogenic differentiation
In recent years, the role of DNA methylation of miRNA in
adipocyte differentiation has been investigated. For ex-
ample, in 2018, Miranda et al. detected miRNA expression
profile in the obese mice, and miRNA-30 family (miRs
30a-5p, 30c-5p, and 30e-5p) was identified to be downreg-
ulated. Further research revealed that low expression of
miRNA-30 eliminated Notch1-mediated inhibition of adi-
pogenic differentiation. More importantly, they found a
high level of DNA methylation in the CpG island of
miRNA-30, indicating that DNA methylation alteration of
miRNA-30 might be associated with obesity [45].
As previously described, lncRNA Plnc1 had an active ef-

fect on adipocyte formation by DNA methylation. The
knockdown of Plnc1 inhibited BMSCs differentiating to-
wards mature adipocytes. However, overexpression of Plnc1
was observed in adipose tissue and induced adipogenic

differentiation via PPAR-λ2. The biological mechanism in-
dicated that Plnc1 increased the transcriptional activity of
PPAR-λ2 through mediating the CpG region hypomethyla-
tion in the process of adipogenesis [32].

Chondrogenic differentiation
A previous study reported that the potential role of
DNA methylation in miRNA regulated chondrogenic
differentiation under hypoxic conditions. MiR-124 was
downregulated and promoted the expression of Sox9 by
targeting NFATc1 during chondrogenesis in hypoxia
[46]. They found CpG islands in the miR-124 promoter
and detected hypermethylation level of the promoter
under hypoxic conditions, which was significantly de-
creased by treating with 5′-AZA. Further experiments
suggested that low methylation levels with 5′-AZA ele-
vated the miR-124 expression and impeded the initiation
of chondrogenic differentiation.
It was reported that miR-455-3p directly targeted the

3′-UTR of DNMT3A and regulated the process of chon-
drogenic differentiation in hBMSCs by altering the
methylation levels of genes associated with cartilage de-
velopment. Most of these genes, including FOXO3A,
SMAD3, COL11A1, and SOX6, were hypomethylated
and involved in the P13K-Akt signaling pathway [33], re-
vealing the hypomethylated signaling pathway was a cru-
cial regulator of chondrogenic differentiation.
The P13K-Akt signaling pathway can control many dif-

ferentiation processes including chondrocyte proliferation,
osteogenic differentiation, adipogenic differentiation, and
cell apoptosis [47–49]. Various studies have proposed the
interacted regulation role between PTEN and P13K-Akt
signaling in many diseases [50, 51]. In 2019, Shen et al.
found different DNA methylation levels in the promoter of
PTEN in BMSCs and dental pulp mesenchymal stem cells
(DP-MSCs), which related to the lineage commitment [52].
Hypomethylation of PTEN was mediated by DNMT3B and
downregulated PTEN expression, which promoted P13K-
AKT signaling and induced BMSC adipogenic differenti-
ation. However, high expression of PTEN was observed,
and the P13K-Akt pathway was downregulated in DP-
MSCs, which promoted the osteogenic differentiation of
DP-MSCs. A large number of miRNAs have been reported
to regulated osteogenesis by the PTEN/P13K-Akt pathway.
For example, miRNA-21 and miRNA-181a/b-1 were deter-
mined to promote osteogenic differentiation by modulating
the PTEN/PI3K/AKT signaling pathway [53, 54]. It is spec-
ulated that these miRNAs are likely to regulate osteogenic
differentiation by altering DNA methylation of the PTEN/
PI3K/AKT signaling pathway. Although further studies are
required to verify the speculation, it sheds light on the pro-
gress for novel therapeutic strategies in the prevention or
treatment of bone diseases.
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DNA methylation of ncRNAs in common bone
diseases
Osteoarthritis
Osteoarthritis (OA) is a prevalent joint chronic disease,
which is characterized by cartilage degeneration, includ-
ing fibrosis of synovial membrane, synovial inflamma-
tion, and subchondral bone reconstruction, resulting in
structural changes and function loss in articular cartilage
of the hip, knee, and hand [55]. GWAS research revealed
epigenetics altered OA-related gene expression without
changing the DNA sequence, including DNA methyla-
tion, histone acetylation, and ncRNAs [56].
It was the first time to screen methylated genes in

health and OA synovial cells and framed regulatory net-
works based on miRNAs and related methylated genes,
opening the research of ncRNAs and methylation in OA
[57]. Zhang et al. performed genome-wide DNA methy-
lation to study the development of knee osteoarthritis;
identified DNA methylation changes of EMX2OS, the
chain encoding lncRNAs; and predicted many miRNAs
regulating methylated genes, such as miR-130a-3p and
miR128, revealing DNA methylation of ncRNAs may in
part mediate OA [58].
In 2019, Papathanasiou et al. reported the high-frequency

methylation of miR-140 and miR-146a in the CpG island
inhibited the miR-140-5p and miR-146a expression and re-
duced the binding with SMAD-3 and NF-kB in both osteo-
arthritic chondrocytes and synoviocytes, which was
reversed by treating the 5′-AZA [59]. Another study con-
firmed MMP-13 was inhibited by 5′-AZA, and TET-1 was
downregulated in OA chondrocytes, which was reported to
induce DNA methylation in many biological processes. Be-
sides, miR-370 or miR-373 could target SHMT-2 (serine
hydroxymethyltransferase) or ECP-2 (methyl-CpG-binding
protein) and regulated MMP-13 expression in OA chon-
drocytes, suggesting that these miRNAs might mediate dys-
regulation of methylation in OA events [60].
In 2019, lncRNA XIST was reported to mediate the

degradation of collagen in OA by inducing hypermethy-
lation of TIMP-3 and downregulating the expression of
TIMP-3 [61]. Kim et al. determined that miR-101 was
downregulated, which could target DNMT-3B and chan-
ged the methylation status of integrin-α1 in OA. Add-
itionally, lncRNA HOTTIP was overexpressed in OA
chondrocyte, and HoxA13 was inhibited, thereby sup-
pressing integrin-α1. The results suggested that miR-101
and lncRNA HOTTIP contribute to OA progression by
epigenetic modification of integrin-α1 [62].
In addition, DNA-methylated modification may pro-

vide a potential therapeutic strategy for OA. It is gener-
ally recognized that a low methylation level in the
promoter of IL-1β is associated with the initiation and
progression of OA [63]. Besides, it was confirmed that
glucosamine (GlcN) can reverse hypomethylation in the

CpG island of IL-1β promoter and inhibit the expression
of IL-1β in OA, revealing that DNA methylation alter-
ation could intervene in the process of OA and could be
a prospective therapeutic approach [64]. Several ncRNAs
have been determined to regulate IL-1β in OA, suggest-
ing that ncRNAs may participate in DNA methylation of
IL-1β in the pathogenesis and progression of OA. For
example, miR-204 promoted cartilage degradation in
OA via targeting IL-1β [65], and lncRNA HOTAIR
could regulate IL-1β function in the pathogenesis of OA
[66]. Further studies are required to elucidate the under-
lying regulatory mechanisms.

Osteosarcoma
Emerging evidence has revealed the interaction between
lncRNA and miRNA and demonstrated the dysregula-
tion of ncRNAs implicated in the pathogenesis and pro-
gression of cancer, including osteosarcoma (OS) [67].
OS is the most frequent primary tumors of the bone,
which are derived from mesenchymal cells and produce
immature bone and osteoid [68]. Recent researches of-
fered new insights into DNA methylation in osteosar-
coma pathogenesis, progression, and therapy.
The relationship between aberrant methylation and miR-

NAs has been involved in OS. For example, miR-485-3p
was demonstrated to directly interact with the 3′-UTR of
CtBP1, while the expression of miR-485-3p was associated
with the DNA methylation of CpG islands in its promoter.
When treating with 5′-AZA, miR-485-3p was upregulated
to inhibit OS cell development by reducing CtBP1 expres-
sion [69]. High methylation levels in the CpG sites of miR-
7 promoter were decreased by treating 5′-AZA, thus pro-
moting miR-7 expression in OS cells. The overexpression
of miR-7 inhibited OS oncogenic phenotypes via targeting
IGF1R [70]. MiR-370 was significantly downregulated by
DNA methylation in OS cells, which eliminated the inhib-
ition of FOXM1 and β-catenin and promoted the Wnt/β-
catenin pathway [71]. Besides, miR-142 was downregulated
in OS cells with hypermethylated modification in the CpG
island, indicating the association between aberrant methyla-
tion and OS [72].
It has been reported that the occurrence of osteosarcoma

is also related to the methylation alteration of lncRNAs. Li
et al. identified that lncRNA HOTAIR was upregulated in
OS cells and significantly inhibited CDKN2A expression by
hypermethylated modification of the CDKN2A promoter.
They found the downregulation of HOTAIR suppressed
the DNMT1 expression and thereby led to the changes in
DNA methylation [73]. Their further research indicated
that HOTAIR regulated the DNMT1 expression via inhibit-
ing miR126 expression. This article enriched a new insight
into the regulation mechanism and interaction between
ncRNAs and DNA methylation in OS and wound and pro-
vided a novel strategy in treating OS patients.
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DNA modification is expected to be a treatment for
OS. A study found that demethylation promoted miR-
129-5p overexpression and inhibited the metastasis and
invasion of OS via targeting valine-containing protein
(VCP) [74], which could be a treatment for OS in the fu-
ture. In order to study the recurrence and survival of pa-
tients with OS, a recent study described the profile of
miRNA expression and found that most of these prog-
nostic miRNAs were sited in 14q32, which affects the
gene expression through DNA methylation [75]. It is re-
ported that the human 14q32 location encoded more
than 40 miRNAs, including imprinted genes that were
important in osteogenic differentiation and inhibiting
cancer [76]. The degree of DNA methylation in the dif-
ferentially methylated regions located in the 14q32,
which regulated the imprinted genes, participated in the
development of OS and could predict the prognosis of
OS, suggesting that the strategy of repairing DNA modi-
fication for treating OS might be possible [77].

Conclusions
DNA methylation can affect gene expression and change
gene function by altering the methylation status and is
associated with various human diseases. Plenty of evi-
dence have revealed that DNA methylation of different
genes plays a significant role in bone development,
homeostasis, and osteocyte activity. Recently, there have
been considerable researches into the role of ncRNAs in
cancer and bone diseases as a result of epigenetic alter-
ations. In this review, we present several studies on the
effects of DNA methylation on CpG island of ncRNAs
promoters, which consequently influenced the osteo-
genic function of ncRNAs. Some ncRNAs can regulate
the expression of DNA methyltransferase enzymes and
other DNA methylation-related enzymes and then
change the methylation level of osteogenic related genes.
The complicated mechanisms of DNA methylation and
ncRNAs in osteogenesis are essential to understand the
pathological process of bone-related diseases and remain
unclear.
Recently, DNA methylation has been used as a thera-

peutic method for cancer. DNMT inhibitors (DNMTi) are
generally classified as nucleoside and non-nucleoside [78].
Azacitidine is a kind of nucleoside inhibitor, and low-dose
azacitidine has shown clinical benefit in the treatment of
myelodysplastic syndrome (MDS) in the methylation
mechanism, and FDA has approved azacitidine drugs for
the treatment of MDS [79]. Meanwhile, zebularine, an-
other nucleoside inhibitor, has also been confirmed to be
effective in treating bone marrow disease [80]. DNMTi
drugs may also have a therapeutic effect on bone diseases.
Although the relevant research is minimal, DNA methyla-
tion of ncRNAs is expected to be a promising therapeutic
strategy for bone diseases.
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