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Abstract

Background: Recently, mesenchymal stem cells (MSCs) have been shown to have immunomodulatory properties
which hold promise for their clinical use to treat inflammatory conditions. Relative to bone marrow-derived MSCs
(BMSCs), which are typically isolated from the iliac crest, we have recently demonstrated that MSCs can be
predictably isolated from the alveolar bone (@BMSCs) by less invasive means. As such, the aim of this study was to
characterize the immunomodulatory properties of aBMSCs relative to BMSCs.

Methods: aBMSCs isolated from the human alveolar bone and BMSCs isolated from the human bone marrow of
the iliac crest were cultured in the same conditions. Cytokine arrays and enzyme-linked immunosorbent assays
(ELISA) of a conditioned medium were used to evaluate differences in the secretion of cytokines. In different
functional assays, aBMSCs and BMSCs were cocultured with different types of immune cells including THP-1
monocytes, macrophages, and peripheral blood mononuclear cells (PBMCs) to evaluate their effects on important
immune cell functions including proliferation, differentiation, and activation.

Results: The protein arrays identified interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 to be the major
cytokines secreted by aBMSCs and BMSCs. ELISA determined that aBMSCs secreted 268.64 + 46.96 pg/mL of IL-6 and
196.14 +97.31 pg/mL of MCP-1 per microgram of DNA, while BMSCs secreted 774.86 + 414.29 pg/mL of IL.-6 and 856.37 +
43303 pg/mL of MCP-1 per microgram of DNA. The results of the coculture studies showed that aBMSCs exhibited
immunosuppressive effects on monocyte activation and T cell activation and proliferation similar to BMSCs. Both aBMSCs
and BMSCs drove macrophages into an anti-inflammatory phenotype with increased phagocytic ability. Taken together,
these data suggest that aBMSCs have potent immunomodulatory properties comparable to those of BMSCs.

Conclusions: The findings of this study have important implications for the development of immunomodulatory stem cell
therapies aimed to treat inflammatory conditions using aBMSCs, a more feasible tissue source of MSCs.
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Background

For many years, mesenchymal stem cells (MSCs) from the
bone marrow have shown promise as a viable cell type for
cell therapies due to their regenerative properties [1-6].
More recently, the therapeutic potential of MSCs has signifi-
cantly increased in that recent evidence demonstrates these
cells also have potent immunomodulatory properties and
can be isolated from more readily accessible tissues other
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than the bone marrow, including the adipose tissue [7], um-
bilical cord [8, 9], placenta [10], and oral/dental tissues [11].
Compared to MSCs derived from the bone marrow of the
iliac crest (BMSCs), our group and others have recently
demonstrated that MSCs can be predictably isolated by less
invasive means from the alveolar bone [12-14]. Alveolar
bone-derived MSCs (aBMSCs) meet the current MSC “gold
standards” [15], i.e., they are highly positive for MSC markers
CD73, CD90, and CD105, negative for CD11b, CD19, and
CD45; exhibit multipotent differentiation capacity into osteo-
blasts, adipocytes, and chondroblasts; and induce ectopic
bone formation in vivo [12]. Additionally, preclinical animal
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models have shown the potential of aBMSCs in cell-
mediated regeneration of bone defects [14, 16].

In contrast to the well-established regenerative proper-
ties of MSCs, the immunomodulatory functions of MSCs
have only recently been studied [2, 4, 17]. Preclinical
studies on MSCs’ immunomodulatory properties have
identified the importance of MSC-secreted soluble fac-
tors (cytokines, chemokines, growth factors, etc.) and
their interactions with other immune cells in the context
of treating chronic inflammatory and autoimmune dis-
eases (e.g., systemic lupus erythematosus/SLE), and
transplant complications (e.g., graft-versus-host disease/
GvHD) [2]. Many clinical trials using MSCs as cell ther-
apies for such conditions have been conducted, and a
number of them report promising results although chal-
lenges remain [17]. MSC injections have shown benefits
in patients with steroid-refractory acute GvHD after
allogeneic hematopoietic stem cell transplantation [18,
19]. In another cell therapy, the European Commission
recently approved the first MSC pharmaceutical agent
(Alofisel) to treat enterocutaneous fistulas developed in
patients with Crohn’s disease, a chronic inflammatory
bowel disease [17]. MSC therapy has also been recom-
mended as a third-line treatment for acute steroid-
refractory GvHD in the UK [18] and has been granted
conditional approval for treatment of children with
GvHD in other countries throughout the world [17].

Though aBMSCs and BMSCs are both isolated from the
bone tissues, an important development difference exists
between the two types of the bone from which these stem
cells are derived. The craniofacial bones, including the al-
veolar bone, are derived from the ectoderm, more specific-
ally, the neural crest cells; other bones, including the iliac
crest bone, originate from embryonic mesodermal cells
[20]. Hence, it cannot be assumed that aBMSCs have the
same or comparable immunomodulatory functions as the
BMSCs. As such, the aim of this study was to determine if
aBMSCs exhibited immunomodulatory properties in that
the immunomodulatory properties of aBMSCs have not
been previously reported. It would be of high interest to test
this hypothesis because aBBMSCs may serve as an alternative
to BMSCs to treat immune-mediated diseases, particularly
since aBMSCs can be obtained more readily and more
cost-effectively than BMSCs. In this study, we explored and
characterized the immunomodulatory functions of aBMSCs
relative to BMSCs through an assessment of cytokine and
growth factor secretion and in vitro cell functional assays.

Materials and methods

Cell culture

Following the University of Michigan Institutional Re-
view Board approval (IRB #HUMO00034368), alveolar
bone specimens were obtained from patients undergoing
routine oral surgical procedures, and the bone marrow
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was collected from patients undergoing routine bone
marrow aspirations from the iliac crest. BMSCs were
isolated from the bone marrow aspirated from the iliac
crest [21] while aBMSCs were isolated from alveolar
bone samples as previously described [12]. Both aBMSCs
and BMSCs were cultured in Minimum Essential Media
a containing ribonucleosides and deoxyribonucleosides
(MEM a; Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 15% fetal bovine serum (FBS; Milli-
poreSigma, Burlington, MA, USA), 0.1 mM L-ascorbic
acid-2-phosphate (MilliporeSigma), and 25 pg/mL genta-
micin (Thermo Fisher Scientific). The isolated cells were
confirmed to be MSCs by performing mesodermal dif-
ferentiation assays (osteogenic, adipogenic, and chondro-
genic) and immunophenotype characterization as
described by Dominici et al. [15]. aBMSCs and BMSCs
at passages 4—8 were used in this study.

Primary peripheral blood mononuclear cells (PBMCs)
were obtained from BioIlVT (Westbury, NY) and cul-
tured in RPMI 1640 medium (Thermo Fisher Scientific)
supplemented with 10% FBS, 50 U/mL penicillin, and
50 pg/mL  streptomycin (Thermo Fisher Scientific).
THP-1 monocytic cell line was obtained from the
American Type Culture Collection (ATCC, Manassas,
VA, USA) and maintained between 2 and 8 x 10°/mL in
the RPMI-FBS medium described herein with the
addition of 0.05 mM 2-mercaptoethanol (ATCC).

Assessment of cytokine and growth factor secretion
aBMSCs and BMSCs were cultured to 75-80% confluent
in T-25 flasks and then washed briefly with DPBS and
incubated with 2.5 mL basal medium (MEM « without
serum) for 24 h. The conditioned media (CM) were col-
lected, centrifuged at 4 °C to remove cellular debris, and
stored at —80°C until use. The secretion of cytokines
and growth factors by aBMSCs and BMSCs was assessed
by a Human Cytokine Array C3 (RayBiotech, Peachtree
Corners, GA, USA; detecting 42 human cytokines: ENA-
78, GCSF, GM-CSF, GRO, GRO-qa, I-309, IL-1a, IL-14,
IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 p40/
p70, IL-13, IL-15, IFN-y, MCP-1, MCP-2, MCP-3,
MCSF, MDC, MIG, MIP-18, RANTES, SCF, SDF-1,
TARC, TGF-f1, TNF-a, TNEF-B, EGF, IGF-I, Angio-
genin, Oncostatin M, Thrombopoietin, VEGF-A, PDGF
BB, Leptin). The concentrations of IL-6 and MCP-1 in
CM were evaluated by ELISA kits (R&D Systems, Min-
neapolis, MN, USA).

DNA isolation and quantification

Cells were lysed in passive lysis buffer (PLB; Promega,
Madison, WI, USA)) and frozen at - 80°C until proc-
essed as follows. Thawed cell lysates in PLB were soni-
cated and centrifuged at 10,000 rpm for 10 min at 4 °C.
The pellet was resuspended and sonicated in Caron’s
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buffer and centrifuged at 13,000 x g for 10 min at 4 °C.
The supernatant was collected, and the DNA concentra-
tion was quantified by Qubit Assay using a Qubit
fluorometer (Thermo Fisher Scientific).

Cytokine expression in THP-1 cells

2.0 x 10° THP-1 cells were either cocultured with 1 x 10°
aBMSCs/BMSCs or cultured alone in 3mL THP-1
growth medium in 6-well plates for 72h. To evaluate
the effect of aBMSCs/BMSCs through secreted soluble
factors, aBMSCs or BMSCs were plated at 1 x 10*/cm?
for 16—18 h overnight and then incubated with THP-1
growth medium for 24 h to collect CM. The media were
centrifuged to remove any cells and kept at — 80 °C until
added to THP-1 cultures: 1 x 10° THP-1 cells in 2 mL
fresh THP-1 growth medium per well with additional 1
mL of aBMSCs/BMSCs CM. After 72h of coculture or
monoculture, 1pg/mL lipopolysaccharide (LPS) from
Escherichia coli (E. coli; MilliporeSigma) was added to
the cell culture for additional 4h of incubation in the
presence of 5 pug/mL brefeldin A (to block secretion of
cytokines; BioLegend, San Diego, CA, USA). The non-
adherent cells were harvested and subjected to flow cy-
tometry detecting intracellular tumor necrosis factor a
(TNF-a) as previously described [22]. In brief, collected
cells were first incubated with peridinin-chlorophyll-
protein/cyanine5.5  (PerCP/Cy5.5)-conjugated  anti-
human CD90 antibody (Thermo Fisher Scientific) to
label MSCs, if any, to be excluded from counting THP-1
cells, and then fixed and permeabilized using the Cyto-
fix/Cytoper Fixation/Permeabilization kit from BD Bio-
sciences (Hercules, CA, USA), followed by incubation
with phycoerythrin (PE)-conjugated anti-human TNF-a
antibody. Cells were rinsed, suspended in Cell Staining
Buffer (BioLegend), and analyzed by Bio-Rad ZE5 Cell
Analyzer (San Jose, CA, USA).

Phagocytosis of E. coli in THP-1 macrophages

Similar to what has been previously described [23], 2 x 10°
THP-1 cells plated per well of 6-well plates were differen-
tiated into macrophages with 10ng/mL phorbol 12-
myristate 13-acetate (PMA) for 96 h in the presence or ab-
sence of 1 x 10> aBMSCs or BMSCs cultured in Transwell
inserts (Corning Inc., Corning, NY, USA). For control pur-
pose, 100 ng/mL of IL-4, an M2 inducer, was added to
some wells of THP-1 cells cultured alone at 24 h since the
beginning of PMA induction. At the end of differentiation
incubation, the Transwell inserts were removed, and the
bottom wells with THP-1 macrophages were briefly rinsed
with PBS and then incubated with 10 ug/mL AlexaFluor
(AF) 488-conjugated E. coli (Thermo Fisher Scientific) for
1h. After quenching the extracellular fluorescence with
0.4% Trypan Blue, the THP-1 macrophages were washed
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three times, detached with 5 mM Na, EDTA, and ana-
lyzed by Bio-Rad ZE5 Cell Analyzer.

Immunosuppression on T lymphocyte response

T lymphocyte proliferation was studied in vitro as previ-
ously described [24]. Briefly, primary human peripheral
blood mononuclear cells (PBMCs) were first labeled with
2 uM CESE (formally known as 5-(and 6)-carboxyfluo-
rescein diacetate succinimidyl ester), a cell-permeable
fluorescent dye, and then cultured at 1 x 10° or 2 x 10°
per well of a 96-well plate in the presence or absence of
1x10* aBMSCs or BMSCs with or without Immuno-
Cult™ Human CD3/CD28/CD2 T Cell Activator (anti-
CD3/CD28/CD2 antibody complexes; StemCell Tech-
nologies, Vancouver, BC, Canada) for 5days. Non-
adherent cells were harvested and subjected to flow cy-
tometry using PE-conjugated anti-human CD4 and allo-
phycocyanin =~ (APC)-conjugated  anti-human CD8
antibodies (BioLegend) to gate for CD4" and CD8" T
lymphocytes. The culture media were collected, centri-
fuged, and stored at — 80°C. The interferon y (IFN-y)
levels in the supernatants were assessed by ELISA (Bio-
Legend) as a measure of the T cell activation.

Data analysis

The flow cytometry data were analyzed with FCS
Express 6 and 7 (De Novo Software, Pasadena, CA,
USA). The results in this study are presented as
mean + standard deviation (SD). The statistical ana-
lyses were performed in Prism 8 (GraphPad Software,
San Diego, CA, USA) using an unpaired two-tailed T
test. A difference with a P value less than 0.05 was
considered statistically significant.

Results

Cytokine and growth factor secretion in aBMSCs and
BMSCs

Since cytokines play important roles in the regulation of
immune responses, we first collected conditioned medium
(CM) of aBMSCs and BMSCs to determine their produc-
tion of soluble cytokines. Among 42 pro- and anti-
inflammatory cytokines and growth factors tested, only
IL-6 and MCP-1 (CCL2) were found to be secreted by
both aBMSCs and BMSC at detectable levels (Fig. 1a). Se-
cretion levels of IL-6 and MCP-1 were quantified by
ELISA and showed the following: aBBMSCs and BMSCs se-
creted IL-6 at 268.64 +46.96 and 774.86 + 414.29 pg/mL
per ug of DNA, respectively (Fig. 1b), and MCP-1 at
196.14 + 97.31 and 856.37 + 433.03 pg/mL per pg of DNA,
respectively (Fig. 1c). Overall, aBMSCs secreted less IL-6
and MCP-1 than BMSCs but this difference was not sig-
nificant for either IL-6 (P =0.1033; Fig. 1b) or for MCP-1
(P=0.0615; Fig. 1c). Additionally, the CM were also sub-
jected to a prostaglandin E2 (PGE,) parameter assay;
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Fig. 1 IL-6 and MCP-1 are the major cytokines secreted by resting aBMSCs and BMSCs. aBMSCs or BMSC-conditioned media were collected and
analyzed by a protein array detecting human pro- and anti-inflammatory cytokines and growth factors (a), and ELISA kits detecting IL-6 (b) and
MCP-1 (c). b, € The cytokine levels were normalized according to the DNA content of the cells. n =3 for each cell type from three

however, the PGE, concentrations were not detectable
(data not shown).

aBMSCs induced immunosuppression on THP-1

monocytic cells

Because MCP-1 has been implicated in the recruitment of
monocytes and macrophages, we next initiated the investi-
gation of aBMSCs’ immunomodulatory properties with
coculture of aBMSCs and THP-1 human monocytic
cells. Naive THP-1 cells without activation by LPS
did not express the pro-inflammatory cytokine TNF-a
(0.82 £0.01%; Fig. 2b, f). When THP-1 cells were
stimulated with 1pg/mL LPS for 4h, an average of
86.30 £ 0.55% cells expressed TNF-a (Fig. 2¢, f). In
contrast, coculture with aBMSCs or BMSCs for 72h
significantly reduced the percentage of THP-1 cells express-
ing TNF-« in response to LPS stimulation to 55.25 + 2.09%
and 60.51 + 3.94%, respectively (Fig. 2d, f). This suggests
that aBMSCs has immunosuppressive effects on monocytes
with at least the same potency as BMSCs. To determine
whether the interaction between aBMSCs/BMSCs and
THP-1 is attributed to the secretion of soluble factors, CM
was incubated in the THP-1-stimulated cultures. The re-
sults showed that aBMSC CM and BMSC CM also sup-
pressed the TNF-a expression in THP-1 cells, although to a
lesser extent than cocultures of BMSCs and aBMSCs in dir-
ect contact (76.66 + 1.53% and 73.50 + 1.35%, respectively,
Fig. 2f). This indicates that the soluble factors play an im-
portant role in the immunosuppressive functions of
aBMSCs and BMSCs.

aBMSCs skewed THP-1 macrophages into a highly
phagocytic phenotype

One of the mechanisms involved in the immunosuppres-
sive effects of MSCs is the induction of macrophages
with immunomodulatory capacities, which greatly de-
pend on the soluble factors secreted by MSCs; coculture
of MSCs or MSC-CM can convert macrophages from
M1 pro-inflammatory phenotype or resting status to an
anti-inflammatory phenotype with low production of
pro-inflammatory factors (e.g, TNF-a and IL-1f) and
high expression of anti-inflammatory cytokines (e.g., IL-
10) and phagocytic activities, which is similar to M2
phenotype prototypically induced by IL-4 [23, 25-27].
Thus, we differentiated THP-1 monocytic cells into
macrophages by incubating them with 10 ng/mL phorbol
12-myristate 13-acetate (PMA) for 96 h in the presence
or absence of aBMSCs or BMSCs cultured in Transwell
inserts. After differentiation, the THP-1 macrophages
were incubated with AF488-labeled E. coli for 1h at
37°C, and their phagocytic activity was assessed by the
percentage of fluorescent cells among the total popula-
tion. THP-1 macrophages cultured alone in PMA-
containing medium had an average of 48.25 + 1.71% cells
that had undergone phagocytosis of E. coli (Fig. 3a, e).
Both aBMSCs and BMSCs, even without direct cell-cell
contact, significantly increased the phagocytic activity of
THP-1 macrophages to 58.30 £ 2.29% and 62.92 + 2.58%,
respectively, which were comparable to THP-1 macro-
phages differentiated in the presence of IL-4 at 55.41 +
10.34% (Fig. 3b—e). The difference between aBMSC- and
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Fig. 2 aBMSCs and BMSCs inhibited TNF-a expression in THP-1 cells in response to LPS stimulation. THP-1 cells were cultured in the presence or
absence of aBMSCs or BMSCs or their CM for 72 h before treated with 1 ug/mL LPS and 5 pg/mL brefeldin A for 4 h. The non-adherent cells were
collected and analyzed by flow cytometry using PerCP/Cy5.5-CD90 and PE-TNF-a antibodies. a-e Representative flow cytometric density plots
and histograms of CD90™ cells (THP-1 cells). a Isotype control. b Naive THP-1 cells without LPS stimulation. (c) THP-1 cells cultured alone and
treated with LPS. d THP-1 cells cocultured with aBMSCs and treated with LPS. e THP-1 cells cocultured with BMSCs and treated with LPS. f
Quantification of TNF-a* THP-1 cells in CD90™ population of indicated treatment groups. **P < 0.01. ***P < 0,001, ****P < 0.0001. n=3 in each
group, and aBMSCs and BMSCs were isolated from three different donors, respectively
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BMSC-treated groups was not statistically significant
(P =0.0809; Fig. 3e), indicating that aBMSCs as well as
BMSCs skewed monocytes to differentiate into anti-
inflammatory macrophages with higher phagocytic
activities.

aBMSCs inhibited T cell activation and proliferation
To determine if aBMSCs affect T cell-mediated adaptive
immunity, we cocultured them with PBMCs containing

T cells and evaluated their effects on T cell activation
and proliferation. Without the use of T cell activator, T
cells in the PBMCs cultured alone did not proliferate
(Figs. 4a and 5a). We first confirmed that aBMSCs as
well as BMSCs did not evoke activation and proliferation
of analogous T cells with the presence of antigen-
presenting cells in PBMCs: Only 1.123 + 0.555% in CD4"
T cells were divided cells after 5days of coculture with
aBMSCs, which was similar to 1.167 + 0.300% in CD4" T
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Fig. 3 aBMSCs and BMSCs promoted phagocytosis of £. coli in THP-1 macrophages. THP-1 cells were incubated for 96 h with PMA to differentiate
into macrophages in the presence or absence of aBMSCs/BMSCs cultured in Transwell inserts. THP-1 cells differentiated in the presence of IL-4 at
100 ng/mL for 72 h served as a M2 polarization control. THP-1 macrophages were treated with AF488-labeled E. coli for 1 h, followed by 1 min
Trypan blue treatment to quench extracellular fluorescence. Cells were rinsed, detached, and subjected to flow cytometry to evaluate the
phagocytic activity by counting AF 488-positive cells. a—d Representative flow cytometric density plots and histograms of THP-1 macrophages
treated with PMA alone (a), PMA + IL-4 (b), PMA + aBMSCs (c), and PMA + BMSCs (d). e Quantitation of fluorescent THP-1 macrophages (AF488-
positive events) in indicated treatment groups. **P < 0.01. n=3 in each group, and aBMSCs and BMSCs were isolated from three different
donors, respectively

cells in BMSC coculture (Fig. 4). Thus, aBMSCs appear to
be immunoevasive as BMSCs have been shown to be.
When the anti-CD3/CD28/CD2 activator was added, it
mimicked in vivo activation from antigen-presenting cells,
and T cells underwent a series of cell divisions (Figs. 4b
and 5b). However, in response to the activator at day 5,
both aBMSCs and BMSCs significantly diminished the

CD4* T cell division times to 6.42 +3.73% and 7.07 +
5.99%, respectively, compared to the stimulated PBMC
monoculture (Fig. 5e). The percentage of divided cells in
CD4" population at day 5 was reduced to 46.55 + 14.81%
by aBMSCs and 44.92 + 17.85% by BMSCs compared to
the monoculture (Fig. 5e). Similar immunosuppressive ef-
fects were observed in CD8" T cells where the number of



Cao et al. Stem Cell Research & Therapy

(2020) 11:102

Page 7 of 13

A naive ()
A
108 45 CD4 =
o2 @ 99.48%
104 34 o 222 3 § X
IS B 3
, ¢ g 3§32
10 22 N S
102 1
101 & .
107 102 10° 104 105 101 102 10°
B +activator
108 56
104 42 S
8
108 28 2
102 14
707 102 105 104 105 107
C +aBMSCs
A
108 45 CD4 —
—Io'g | 9s.69%
104 @ 34 ° §§§ § 2 B
108 2 22T
102 11
10 i fi .
707 102 105 104 10° 101 102 10°
D +BMSCs
.
A o " CD4
—To7g || 9s.66%
108 36 S o298 3 R =
~ S a3k x =
=1 BEC g o=
O 24 E
1
o N 12
101 - i 0
107 102 10% 10¢ 10° 101 102 10°
CFSE
E 50—
45+
o —
% 40
= 35
[}
© 30N
B 15}
K]
2 10 P =0.9051
[a) —
5_
Ty

Fig. 4 (See legend on next page.)

o
| -

1
+aBMSCs +BMSCs +activator

unoo




Cao et al. Stem Cell Research & Therapy (2020) 11:102

Page 8 of 13

(See figure on previous page.)

cocultured with BMSCs from three different donors

Fig. 4 aBMSC and BMSCs did not evoke T cell proliferation. Primary PBMCs prelabeled with CFSE (1 x 10°) were cultured in the presence or
absence of aBMSCs or BMSCs (1 x 10%) with or without a T cell activator for 5 days. Non-adherent cells were harvested and analyzed by flow
cytometry using PE-CD4 antibody to label T cells. a-d Representative flow cytometric density plots of PBMCs and histograms of CD4" T cells. a
Naive PBMCs cultured alone without activator. b PBMCs cocultured with BMSCs without activator. ¢ PBMCs cocultured with aBMSCs without
activator. d PBMCs cultured alone with activator. e The percentage of divided CD4" T cells at day 5 of indicated treatment groups. n =2 for
PBMCs cultured alone with or without activator, n =6 for PBMCs cocultured with aBMSCs from three different donors, and n =3 for PBMCs

divisions was only 7.56 + 4.07% or 8.70 + 8.41% in the pres-
ence of aBMSCs or BMSCs, respectively, and the divided
CD8" cells were 69.18% + 18.55% and 63.02% + 19.96%, re-
spectively (Fig. 5f). Again, there was no difference between
aBMSC- and BMSC-cocultured groups (Fig. 5e). To fur-
ther assess the activation of T cells, we collected their cul-
ture supernatant and measured the IFN-y levels by ELISA.
The IEN-y results were in agreement with the reduced
proliferation rates seen in the cocultures, whereby both
aBMSCs and BMSCs substantially reduced T cell secretion
of IFN-y to a similar degree (Fig. 5f).

Discussion

The recently identified immunomodulatory properties of
MSCs have generated high interest for the therapeutic
use of MSCs to treat chronic inflammatory conditions.
While preclinical studies conducted in murine models
have predominantly positive results, the outcomes of
clinical trials in human subjects are mixed [17]. In fact,
the first major industry-sponsored phase III trial of
MSCs (Prochymal) to treat steroid-refractory GvHD
concluded that these allogeneic BMSCs did not signifi-
cantly enhance the overall response rate comparing to
placebo [17]. Nonetheless, Prochymal showed benefit in
pediatric patients [28] and received approval to treat
children with acute GvHD in Canada. In addition,
BMSC injection has become an acceptable treatment for
acute steroid-refractory GvHD in the UK and Japan [17].
However, debates on the effectiveness continue, which
calls for a deeper understanding of the mechanisms.
Keto et al. reported in 2018 that the lymphocyte profiles
of responders and non-responders were similar among
16 acute GVHD patients’ outcomes after the treatment
of third-party BMSCs [29]. Relative to MSCs derived
from the bone marrow of the iliac crest (BMSCs) that
are the most intensively investigated in the preclinical
and clinical studies of MSC therapies, alveolar bone-
derived MSCs (aBMSCs) are a more readily accessible
and abundant tissue source of MSCs yet their immuno-
modulatory properties have not been previously de-
scribed. The aim of this study was to characterize the
immunomodulatory properties of aBMSCs relative to
BMSCs through cytokine production as well as their in-
fluence on different immune cells.

In this study, we first determined that similar to
BMSCs, aBMSCs cultured alone without stimulation do
not secrete inflammatory cytokines and chemokines ex-
cept IL-6 and MCP-1 (CCL2), yet at slightly lower levels.
Additionally, unstimulated aBMSCs do not secrete high
levels of PGE,, which was similar to unstimulated
BMSCs as we and others have observed [30]. IL-6 is a
pleiotropic cytokine with context-dependent pro- and
anti-inflammatory properties [31]. In the classic acute
inflammatory episode, neutrophils are first recruited to
the inflammatory site, followed by monocytes and
lymphocyte infiltration to replace neutrophils, and sub-
sequent tissue repair. IL-6 is an indispensable cytokine
for a normal neutrophil generation (granulopoiesis) and
function (respiratory burst and degranulation) [31, 32]
and also regulates neutrophil accumulation by modulat-
ing the expression of chemokines and adhesion mole-
cules in stromal tissue cells [31, 33]. In regard to
monocytes, IL-6 drives monocytes differentiation to-
wards macrophages rather than dendritic cells (DCs)
[34, 35], favoring anti-inflammatory phenotypes associ-
ated with wound healing, reduced microbicidal activities,
secretion of pro-inflammatory cytokines, and enhanced
expression of the M2 macrophage marker CD206 [31,
36]. IL-6 also plays key roles in the regulation of lym-
phocytes including roles in survival, expansion, and mat-
uration of B cells and plasmablasts, and the T cell
proliferation, survival, differentiation, and cytokine ex-
pression [31].

MSC production of MCP-1 is also of high interest in
that one of its major roles is to recruit monocytes as well
as macrophages [37], but it also affects monocyte activa-
tion and macrophage polarization. The transition of
macrophages from M1 pro-inflammatory to M2 anti-
inflammatory phenotype is key to the resolution of in-
flammation and tissue restoration [38]. MCP-1 has been
shown to induce M2 polarization of macrophages and
promote IL-10 secretion in response to LPS by macro-
phages differentiated by GM-CSF in vitro [36, 39]. In a
mouse model of foreign body response, wild type macro-
phages was found to undergo unique polarization that
expresses both M1 and M2 markers, whereas MCP-1
knockout macrophages were defected in fusion and for-
mation of foreign body giant cells, and the induction of
TNF-a and activation of the canonical NF-kB pathway
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BMSCs from three different donors

Fig. 5 aBMSC and BMSCs inhibited T cell activation and proliferation. Primary PBMCs prelabeled with CFSE (2 x 10°) were cultured in the
presence or absence of aBMSCs or BMSCs (1 x 10%) with or without a T cell activator for 5 days. Non-adherent cells were harvested and analyzed
by flow cytometry using PE-CD4 and APC-CD8 antibodies to label T cells. a-d Representative flow cytometric density plots of PBMCs and
histograms of CD4™ and CD8™ T cells. a Naive PBMCs cultured alone without activator (negative control). b PBMCs cultured alone with activator
(positive control). ¢ PBMCs cultured with aBMSCs and activator. d PBMCs cultured with BMSCs and activator. e—f The division times and the
percentage of divided cells in CD4" (e) and CD8" T cells (f) at day 5 normalized according to the positive and negative controls. g The IFN-y
levels in the culture medium at day 5 in the indicated treatment groups determined by ELISA. **P < 0.01. ***P < 0.001. ****P < 0.0001. n =4 for
PBMC cultured alone with activator, n = 12 for PBMCs cocultured with aBMSCs from three different donors, and n=11 for PBMCs cocultured with

were compromised [40, 41]. Yet, some studies using
transgenic mice with systemic or tissue-specific expres-
sion of MCP-1 suggest that MCP-1 recruits circulating
monocytes at a low level, which then differentiate into
different phenotypes of macrophages according to other
mediators in loco [42]. Additionally, DCs, Langerhans
cells, and T and B lymphocytes have also been found to
be infiltrated in MCP-1 transgenic mice [42]. Further-
more, MCP-1 is also involved in Th2 polarization and
enhances the secretion of IL-4 by T cells [37, 43]. Inter-
estingly, there is a discrepancy in previous studies in re-
gard to the migration of BMSCs to MCP-1. Some
groups have shown that MCP-1 is chemotactic to hu-
man and rodent BMSCs [44—48], and its receptor CCR2
was found to be expressed in human and rat BMSCs
[45, 48]. This may contribute to the recruitment of
BMSCs to inflammatory sites in vivo. However, Ringe
et al. reported that human BMSCs did not migrate to-
wards MCP-1 [49] and Takano et al. reported similar
findings with rat BMSCs [50].

Both IL-6 and MCP-1 play key roles in regulating
monocyte/macrophage phenotype and activities. BMSC
secretion of IL-6 has been reported to skew monocyte
differentiation from CD14 CDla* DCs to CD14"CDla”
cells (which have a lower immunostimulatory capacity
towards anti-inflammatory macrophage differentiation)
[51]. Using mouse macrophages lacking a chain of IL-6
receptor, Philipp et al. suggested that IL-6 signaling is
indispensable for alternative activation of macrophages
by BMSC coculture or IL-4 treatment [52]. Therefore,
we hypothesized that aBMSCs have immunomodulatory
effects on monocytes and macrophages similar to
BMSCs. Cocultures of THP-1 monocytic cells or macro-
phages with aBMSCs or BMSCs were carried out and
the phenotypes following coculture in response to in-
flammatory stimuli were evaluated. When stimulated by
LPS, THP-1 cells turned into a pro-inflammatory pheno-
type with high levels of TNF-a expression. When co-
cultured with either aBMSCs or BMSCs, LPS-induced
TNE-a expression in THP-1 cells was significantly inhib-
ited. This effect is at least partially due to their secretion
of soluble factors, because the TNF-a-expressing THP-1
percentages were also reduced by the aBMSC or BMSC
CM without contacting MSCs. Furthermore, we also

have shown that aBMSCs and BMSCs, even without
cell-to-cell contact, significantly increased the phagocytic
activities of THP-1 macrophages like IL-4, a classic in-
ducer of M2 polarization [27]. This finding suggests that
their ability to skew macrophage differentiation into an
anti-inflammatory phenotype is at least in part
dependent on the secretion of soluble factors. This is in
alignment with a number of other studies that have
demonstrated that BMSCs and MSCs from other tissue
origins induce monocyte differentiation into anti-
inflammatory macrophages [22, 23, 25, 26, 53].

It is well established that macrophages not only play
powerful roles in innate immunity but their M1/M2
phenotypes also generally cause Th1/Th2 responses, re-
spectively, in adaptive immunity, thereby implicating a
potentially important role for them in autoimmunity as
well [38]. T lymphocytes play a central role in cell-
mediated adaptive immunity, which becomes malignant
in patients who received allografts and those of auto-
immune diseases such as type I diabetes, multiple scler-
osis, rheumatoid arthritis, and SLE. Many studies have
confirmed varieties of MSCs including BMSCs inhibit T
cell activation and proliferation [24, 54—57]. To evaluate
the immunomodulatory functions of aBMSCs in adap-
tive immune responses, we used a well-established T cell
activation and proliferation model where the activator
comprised of antibodies that bind CD3 and CD28 sur-
face ligands provides the primary and costimulatory sig-
nals required for T cell activation. Considering that
monocytes seem to be indispensable for the suppression
of T cell proliferation by BMSCs and MSCs from the
umbilical cord, umbilical cord blood [55], and placenta
[56], we used primary human PBMCs consist of lympho-
cytes (T cells, B cells, nature killer cells) and monocytes
instead of purified T cells. Our results showed that
aBMSCs cocultured with PBMCs even at a 1:20 ratio
had substantial immunosuppressive effects on T cell re-
sponses to the same extent as BMSCs. Prior evidence
has indicated that the BMSCs utilize different mecha-
nisms to suppress T lymphocyte proliferation in re-
sponse to mitogens or alloantigens in vitro: suppression
on phytohemagglutinin-induced T cell proliferation was
partially attributed to PGE, released by BMSCs whereas
in mixed (allogeneic) lymphocyte culture BMSCs
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increased levels of IL-10, IL-2, and soluble IL-2 receptor
[57]. PGE, production was also attributed to the
monocyte-dependent suppression on mitogen-induced T
cell proliferation by umbilical cord MSCs [55]. Also, dif-
ferent types of MSCs may use different mechanisms to
modulate T cell responses [56, 58]. Finally, the favor of
monocytes for M2 macrophage differentiation rather
than DC differentiation is considered as an indirect sup-
pression on T cell response [53]. Further studies are re-
quired to reveal which mechanisms aBMSCs use to
block T cell proliferation in different scenarios.

IEN-y is a pivotal pro-inflammatory cytokine, and in the
current study, we also confirmed that both BMSCs and
aBMSCs can inhibit IFN-y production by cultured
PBMCs. According to Ren et al, the initial production of
IEN-y is required for the immunosuppressive effects of
BMSCs, because mouse BMSCs lacking IFN-y receptor 1
failed to suppress anti-CD3-activated splenocyte prolifera-
tion in coculture [59]. Yet, anti-CD3-activated T cells were
found to induce BMSC apoptosis through the Fas/Fas lig-
and pathway in mouse (tested in 5:1 coculture) [60]. Simi-
lar cell death was also observed in the mouse orofacial
bone/bone marrow-derived MSCs cocultured with pan T
cells activated by anti-CD3 antibody [61]. Furthermore,
Liu et al. found that pro-inflammatory T cells inhibit the
osteogenesis of BMSCs by secreting IFN-y, which upregu-
lated Smad6 expression in BMSCs [62]. However, treat-
ment of IFN-y, ranging from 10 to 200 ng/mL, did not
induce mouse BMSC apoptosis under their experiment
settings in spite of the IFN-y-induced upregulation of Fas
expression [62]. Nonetheless, they found that IFN-y en-
hance TNF-a-induced BMSC apoptosis, and the combin-
ation of TNF-a and IFN-y induced Fas internalization and
clustering in a Fas ligand-independent manner and select-
ively inhibited TNF receptor 2-mediated anti-apoptotic ef-
fect [62].

In the current study, we have confirmed that aBMSCs
are immunoevasive in vitro for T cell proliferation was
barely observed when cocultured with allogeneic
PBMCs, and they have immunomodulatory properties
comparable to BMSCs. A number of animal models have
demonstrated that following injections of BMSCs to
treat different inflammatory conditions (GvHD,
bisphosphonate-related osteonecrosis of the jaw, allogen-
eic skin graft, etc.), and immunomodulatory activities of
BMSCs were responsible for successful outcomes of the
cell therapy approaches [63—65]. Furthermore, the infu-
sion of MSCs has been implied in clinical trials to treat
GvHD [18, 19], SLE [66], rheumatoid arthritis [67], mul-
tiple sclerosis, and amyotrophic lateral sclerosis [68, 69].
Considering that the alveolar bone tissue is a more ac-
cessible and cost-effective source of MSCs compared to
the iliac crest bone marrow, aBMSCs can be a better al-
ternative to BMSCs for immunomodulatory cell
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therapies although preclinical studies are needed to fur-
ther evaluate these promising findings.

Conclusions

In summary, this study characterizes the immunomodu-
latory properties of aBMSCs in comparison with BMSCs,
both of which have potent effects on immune cells.
aBMSCs induce a less inflammatory monocyte pheno-
type and a more anti-inflammatory macrophage pheno-
type and significantly inhibit T cell activation and
proliferation. The secretome of aBMSCs and BMSCs
contribute to their immunosuppressive functions, with
MCP-1 and IL-6 being two inflammatory cytokines at
high levels. Taken together, aBMSCs should be consid-
ered a viable stem cell candidate for immunomodulatory
cell therapies aimed to treat inflammatory conditions.
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